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0 Introduction

0.1 Background

In this course we are going to explore topics that sit at the rich interface between probability and
analysis and, especially, those that link the two areas through partial differential equations. To some
extent, it is just a collection of things that I think you ought to know, ranging from powerful abstract
results to tools that allow you to do hands on calculations,

We begin by recasting what you already know about continuous time Markov processes in the
language of operator semigroups. We then develop the notion of martingale problem which provides
us with a new way of characterising stochastic processes. This is particularly well suited to proving
convergence theorems and we shall see how to use this framework to prove (weak) convergence of a
sequence of stochastic processes. This is an important tool in modelling where it is often convenient
to approximate a process taking discrete values by a continuous one. En route we shall encounter the
method of duality, in which the distribution of one stochastic process is expressed in terms of that of
another.

Each diffusion process can be associated with a second order differential operator, and through this
operator the theory of diffusion processes is intricately connected with that of second order parabolic
(and elliptic) differential equations. For example, if one can find the fundamental solution to the
parabolic equation, then one can answer essentially any question about the finite-dimensional distri-
butions of the stochastic process. However, in practice, it is rarely possible to find an explicit form for
the fundamental solution. Nonetheless, in one spatial dimension a very large number of explicit calcu-
lations can be carried out through the theory of speed and scale. This theory uncovers and exploits
the fundamental rôle played by Brownian motion as a building block from which to construct other
diffusion processes.

Finally we shall return to general spatial dimensions and explore a menagerie of equations whose
solutions can be expressed in terms of the law of a diffusion process which not only allows us to prove
results about the diffusion, but also paves the way for proving results about the deterministic equations
through their stochastic representation.

We will not work in the greatest possible generality, because it is too easy for simple ideas to be
obscured by technical details. More general results can certainly be found in the references.

0.2 Recommended Reading

These notes and the accompanying problem sheets essentially define the course, but there are a huge
number of books to which you can turn for supplementary reading. A few are listed below.

Important references:

(i) O. Kallenberg. Foundations of Modern Probability. Second Edition, Springer 2002. This com-
prehensive text covers essentially the entire course, and much more, but should be supplemented
with other references in order to develop experience of more examples.

(ii) L.C.G Rogers & D. Williams. Diffusions, Markov Processes and Martingales; Volume 1, Founda-
tions and Volume 2, Itô calculus. Cambridge University Press, 1987 and 1994. These two volumes
have a very different style to Kallenberg and complement it nicely. Again they cover much more
material than this course.
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Supplementary reading:

(i) S.N. Ethier & T.G. Kurtz. Markov Processes: characterization and convergence. Wiley 1986. It
is not recommended to try to sit down and read this book cover to cover, but it is a treasure trove
of powerful theory and elegant examples.

(ii) S. Karlin & H.M. Taylor. A second course in stochastic processes. Academic Press 1981. This
classic text does not cover the material on semigroups and martingale problems that we shall
develop, but it is a very accessible source of examples of diffusions and things one might calculate
for them.

Also highly recommended (in no particular order) are:

• D.W. Stroock & S.R.S. Varadhan, Multidimensional diffusion processes, Springer 1979. This
is an excellent place to learn about martingale problems - or more generally Stroock-Varadhan
theory.

• K. Yosida, Functional Analysis, Springer 1980.A comprehensive source for material leading up to
the Hille-Yosida Theorem.

• K.J. Engel & R. Nagel, A short course on operator semigroups, Springer 2005. A very accessible
account of the Hille-Yosida Theorem. A longer book by the same authors is a good source of
examples.

• R.F. Bass, Diffusions and elliptic operators, Springer 1997.Covers all the material on stochastic
representation of solutions to differential equations which makes up the second half of the course.
Also has a nice revision of stochastic differential equations if you need it.

• D. Revuz & M. Yor. Continuous martingales and Brownian motion. Springer 1999. An extremely
thorough reference for the material on continuous parameter martingales.

• T.M. Liggett, Interacting Particle Systems, Springer 1985. We won’t actually discuss interact-
ing particle systems, but the very accessible introductions to the Hille-Yosida Theorem and to
martingale problems form the basis of our approach to those topics in these the notes.

• R. Durrett. Stochastic calculus: a practical introduction. CRC Press 1996. A lot of relevant
material, presented in a user-friendly way.

If you feel that you need to revise the background functional analysis, then try

• E. Kreyszig, Introductory functional analysis with applications. Wiley 1978.

1 Review of some measure-theoretic probability

The purpose of this section is to refresh your memory and establish some notation. We will tend to
suppress the measure-theoretic niceties in future sections. Those wanting more detail should consult
Rogers & Williams or Revuz & Yor. I hope that you have seen most of this material before. If not,
try reading the online notes for the Part B discrete parameter martingales course to get you started on
the basic ideas and then look at, for example, Rogers & Williams to understand some of the subtleties
when we move to continuous time.

This section of the notes draws heavily on Chapter II of Volume 1 of Rogers & Williams.
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Definition 1.1 (Probability triple, random variable, law). (i) A probability triple (Ω,F ,P) consists
of a sample space Ω; a σ-algebra, F , on that sample space; and a probability measure P on F .

(ii) Given a measure space (E, E), an (E, E)-valued random variable with carrier triple (Ω,F ,P) is a
measurable mapping X from (Ω,F) to (E, E).

(iii) By the law µX of X, we mean the probability measure µX = P ◦X−1 on (E, E), so that

µX(A) = P[X ∈ A] = P[{ω ∈ Ω : X(ω) ∈ A}].

We shall often be interested in random variables taking values in Euclidean space, in which case
(E, E) = (Rd,B(Rd)) with B(Rd) the Borel subsets of Rd.

Definition 1.2 (σ-algebra generated by a random variable). Let (Ω,F ,P) be a probability space and
let X be an E-random variable on (Ω,F ,P), that is a measurable function from (Ω,F) to (E, E). Then

σ(X) = σ ({{ω ∈ Ω : X(ω) ∈ A};A ∈ E})
= σ

({
X−1(A) : A ∈ E

})
.

It is the smallest sub σ-algebra of F with respect to which X is a measurable function.

Definition 1.3 (Stochastic process). Let T be a set, (E, E) a measure-space and (Ω,F ,P) a probability
triple. A stochastic process with time-parameter set T , state space (E, E) and carrier triple (Ω,F ,P)
is a collection {Xt}t∈T of (E, E)-valued random variables, carried by the triple (Ω,F ,P).

Often we shall abuse notation and write X for {Xt}t∈T .

Definition 1.4 (Sample path, realisation). Let X be a stochastic process. For ω ∈ Ω, the map
t 7→ Xt(ω) from T to E is called the sample path or realisation of {Xt}t∈T corresponding to ω.

As things stand, we have made no regularity assumptions on our stochastic process, the mapping
X(ω) : T → E can be any function. For most of what follows, we shall take (E, E) to be Euclidean
space (or a subset thereof) and the time set T to be be R+, and we shall be primarily interested in
stochastic processes for which each realisation is either a continuous function of time (we’ll say the
process has continuous paths) or a càdlàg function.

Definition 1.5 (Càdlàg function). A function f : R+ → Rd is said to be càdlàg if it is ‘right continuous
with left limits’, that is

f(t) = f(t+) := lim
u↓t

f(u)

and
f(t−) := lim

s↑t
f(s) exists finitely for every t > 0.

The name comes from the French ‘continu à droite, limites à gauche’.
We are not going to be able to guarantee regularity just through specifying the finite dimensional

distributions of the stochastic process. It is not hard to cook up examples of processes with the same
finite dimensional distributions, but different sample paths.

Definition 1.6 (Modification). A process X is called a modification of Y if X has the same state-space,
(time) parameter set and carrier triple as Y and

P[Xt = Yt] = 1 for every t ∈ T.
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We should like to know when we can find a càdlàg modification of a stochastic process with a partic-
ular law. For continuous parameter martingales (and supermartingales), Doob’s Regularity Theorems
tell us that the key is to consider martingales adapted to a ‘big enough’ filtration.

Definition 1.7 (Filtration, filtered space). By a filtration on (Ω,F ,P), we mean an increasing family
{Ft}t≥0 of sub-σ-algebras of F such that for 0 ≤ s ≤ t

Fs ⊆ Ft ⊆ F∞ := σ
( ⋃
u≥0

Fu
)
⊆ F . (1)

Then (Ω,F , {Ft}t≥0,P) is called a filtered probability space.

Definition 1.8 (Adapted). The stochastic process X is adapted to the filtration {Ft}t≥0 if Xt is
measurable with respect to Ft for all t.

For discrete parameter stochastic processes, the most näıve example of filtration is adequate.

Definition 1.9 (Natural filtration). Let W = {Wn}n≥0 be a discrete time stochastic process carried by
the probability triple (Ω,F ,P). The natural filtration {Wn}n≥0 is defined to be the smallest filtration
relative to which W is adapted. That is,

Wn = σ (W0,W1, . . . ,Wn) .

The obvious analogue of this filtration for continuous martingales is not big enough for many
purposes. However, suppose we take a supermartingale {Yt}t≥0 with respect to its ‘natural’ filtration,
which we denote by {Gt}t≥0, then it turns out that for almost all ω, the limit through rational times

Xt(ω) := lim
Q3q↓t

Yq(ω)

exists simultaneously for all t and defines a right-continuous supermartingale relative to the ‘usual
augmentation’ {Ft}t≥0 of {Gt}t≥0 (see Definition 1.11). If the map t 7→ E[Yt] is continuous, then X is
a modification of Y .

Definition 1.10 (The usual conditions). A filtered space (Ω,F , {Ft}t≥0,P) is said to satisfy the usual
conditions if in addition to (1) the following properties hold:

(i) the σ-algebra F is P-complete (that is contains all subsets of all of the P-null sets);

(ii) F0 contains all P-null sets;

(iii) {Ft}t≥0 is right-continuous, that is

Ft = Ft+ :=
⋂
u>t

Fu for all t ≥ 0.

Definition 1.11 (Usual augmentation). The usual augmentation of the filtered space (Ω,G, {Gt}t≥0,P)
is the minimal enlargement (Ω,F , {Ft}t≥0,P) that satisfies the usual conditions.

Here ‘enlargement’ just means that G ⊆ F and Gt ⊆ Ft for every t. Recall that the P-completion
of a σ-algebra is the smallest enlargement which is P-complete.

Lemma 1.12 (See e.g. Rogers & Williams Lemma II.67.4). Writing N for the collection of P-null sets,
the usual enlargement is obtained by taking F to be the P-completion of G and setting

Ft =
⋂
u>t

σ(Gu,N ).
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1.1 Continuous time Markov Processes

Informally, a Markov process models the (random) motion of a particle that moves around in a mea-
surable space (E, E) in a ‘memoryless’ way. More formally, we’ll need a filtered space (Ω,F , {Ft}t≥0)
on which we define an Ft-measurable random variable Xt which gives the position of our particle at
time t and we’ll introduce a probability measure Px for each point x ∈ E, which will determine the law
of the process started from the point x. The Markov property will tie together the different laws Px.

Definition 1.13 (Markov process, transition function).
A Markov process X = (Ω, {Ft}t≥0, {Xt}t≥0, {Pt}t≥0, {Px}x∈E) with state space (E, E) is an E-valued
stochastic process, adapted to {Ft}t≥0 such that for 0 ≤ s ≤ t, and f a real-valued bounded measurable
function on E and x ∈ E,

Ex[f(Xs+t)|Fs] =

∫
E
f(y)Pt(Xs, dy) Px − a.s.

where {Pt}t≥0 is a transition function on (E, E); that is a family of kernels Pt : E × E → [0, 1] such
that:

(i) for t ≥ 0 and x ∈ E, Pt(x, ·) is a measure on E with

Pt(x,E) ≤ 1;

(ii) for t ≥ 0 and Γ ∈ E, Pt(·,Γ) is E-measurable;

(iii) for s, t ≥ 0, x ∈ E and Γ ∈ E,

Pt+s(x,Γ) =

∫
E
Ps(x, dy)Pt(y,Γ). (2)

Remark 1.14. (i) We shall sometimes write P (t, x,Γ) instead of Pt(x,Γ).

(ii) Unless it leads to ambiguity, we will usually not specify the state space explicitly and, throughout,
the filtration will be taken to be the usual enlargement of the natural filtration. Unless otherwise
stated, we shall also assume that we are considering a càdlàg version (although sometimes we
shall restrict to continuous processes).

(iii) Requiring only Pt(x,E) ≤ 1 instead of Pt(x,E) = 1 allows for the possibility of killing (in which
our Markov process is typically thought of as being sent to a cemetery state).

(iv) Equation (2) is called the Chapman-Kolmogorov equation. It is this equation that captures the
‘lack of memory’ property, also known as the Markov property.

Example 1.15. (i) (Pure jump processes.) By a pure jump process we mean a model of a particle
which, if it is currently at x, will wait an exponentially distributed amount of time with parameter
α(x) before jumping to a new location determined by a probability measure µ(x, dy). That is, the
probability that a particle currently at x does not jump in the next t units of time is exp(−α(x)t)
and, when it jumps, the probability that its new location is in the set B is µ(x,B) =

∫
B µ(x, dy).

In the special case when α is constant, these processes are sometimes called pseudo-Poisson pro-
cesses.
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If the jumps of the process are homogeneous, in the sense that∫
B
α(x)µ(x, dy) =

∫
B−x

α(0)µ(0, dy),

then we call the process a compound Poisson process. Such processes are the simplest examples
of so-called Lévy processes.

Of course µ does not have to have a density with respect to Lebesgue measure. For example, a
continuous time random walk on the integers is a pure jump process for which µ is purely atomic.

(ii) (Brownian motion in Rd.) For d-dimensional Brownian motion, the transition functions are given
by

Pt(x,E) =

∫
E

1

(2πt)d/2
exp

(
−‖x− y‖

2

2t

)
dy.

(iii) (Solutions to stochastic differential equations.) The processes that you constructed last term as
solutions to stochastic differential equations are continuous time Markov processes. In this case
we can specialise from càdlàg to continuous paths.

By taking more general state spaces, we can construct Markov processes taking their values in, for
example, spaces of functions, or measures, and we can model anything from spin systems in statistical
physics to frequencies of different genetic types in a biological population. We can also sometimes
gain insight into deterministic quantities by representing them in terms of expectations of functions of
Markov processes.

Often we want to consider a stochastic process stopped at a random time. A particularly important
class of random times is the stopping times.

Definition 1.16 (Stopping time). Suppose that the filtration {Ft}t∈T satisfies the usual conditions.
An Ft-stopping time is a map τ : Ω→ [0,∞) such that {ω : τ(ω) ≤ t} ∈ Ft for all t ∈ [0,∞).

For these times we have the following important extension of the Markov property.

Definition 1.17 (Strong Markov property). Let X be a càdlàg E-valued Markov process, {Ft}t≥0 the
usual enlargement of the natural filtration, and τ an Ft-stopping time. Then X is strong Markov at τ
if

P [X(t+ τ) ∈ Γ| Fτ ] = P (t,X(τ),Γ), ∀t ≥ 0,∀Γ ∈ E .

Equivalently,

E [f(Xt+τ )| Fτ ] =

∫
f(y)P (t,X(τ), y)dy.

We say that X is a strong Markov process if it has the strong Markov property at all {Ft}-stopping
times.

The strong Markov property was formulated by Doob in the 1940’s and finally proved for Brownian
motion by Hunt in 1956.

2 Feller Semigroups and the Hille Yosida Theorem

The starting point in discussing a Markov process is sometimes its sample paths. For example, last
term you studied diffusion processes ‘pathwise’, as solutions of stochastic differential equations. There
will only rarely be a closed form expression for the corresponding transition function. On the other
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hand, sometimes we might be given the transition functions, and the challenge is to establish that
they really do correspond to a well-defined Markov process. Theorem 2.12 below establishes very mild
conditions under which we can guarantee that there is a Markov process corresponding to a collection
of transition functions. However, it is rather rare to be provided with an explicit form for the transition
functions. Instead, modelling considerations often lead to an ‘infinitesimal’ description of the process
and then we must establish the existence of ‘nice’ transition functions. This will be the substance of the
Hille-Yosida Theorem. Before stating it (a proof is beyond our scope here), we examine some analytic
properties of transition functions.

2.1 Transition semigroups

We introduced the transition functions of a Markov process as a family of (sub) probability kernels,
but we could equally think of them as a collection of positive bounded operators, of norm less than or
equal to one, on the space of bounded measurable functions on E. To be precise, define

Ttf(x) := (Ttf)(x) =

∫
f(y)Pt(x, dy) = Ex[f(Xt)].

Then, approximating f by simple functions, it is easy to see that Ttf is again a bounded measurable
function on E. Moreover, the operator Tt is a positive contraction operator, that is 0 ≤ f ≤ 1 implies
0 ≤ Ttf ≤ 1.

Lemma 2.1 (Transition kernels and operators). The probability kernels {Pt}t≥0 satisfy the Chapman
Kolmogorov relation (2) if and only if the corresponding transition operators {Tt}t≥0 have the semigroup
property:

Ts+t = TsTt s, t ≥ 0. (3)

Example 2.2 (Brownian motion). For Brownian motion, the heat semigroup is the operator that maps
a function f to the solution at time t to the heat equation with initial condition f ; that is Ttf = u
where

∂u

∂t
(t, x) =

1

2
∆u(t, x), u(0, x) = f(x). (4)

Of course we can write the solution as

u(t, x) =

∫
Rd

1

(2πt)d/2
exp

(
−‖x− y‖

2

2t

)
f(y)dy.

The Chapman-Kolmogorov equation just tells us that to solve the equation at time (t+s) is the same as
solving at time t and then, starting from the resulting solution as initial condition, solving the equation
at time s.

Remark 2.3. The 1/2 in front of the Laplacian in (4) is a probabilistic convention.

2.2 Continuous time Markov chains with finite state space

To illustrate some of the ideas to follow, we work in the simple setting of a continuous time Markov
chain on a finite state space.

Suppose that E is a finite set and E is the corresponding power set. We use the notation

pij(t) = Pt(i, {j}), P (t) = {pij(t) : i, j ∈ E},
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where {Pt}t≥0 is a transition function on (E, E). We shall assume that {Pt}t≥0 is honest in that
Pt(i, E) = 1. (In other words there is no killing.)

In this setting, a transition semigroup is simply a semigroup of E × E-matrices. If we want to
construct a chain with a right-continuous version, then we are going to require some regularity of these
matrices. For example, the chain which jumps immediately at time zero from its current state to a point
picked according to some non-trivial distribution on E where it just stays, is perfectly well-defined, but
it cannot have a right-continuous version. So we insist that

pij(t)
t↓0→ δij . (5)

We shall see below (Proposition 2.14), that this condition is enough to guarantee the existence of a
matrix Q = {qij : i, j ∈ E}, with

p′ij(0) = qij .

Definition 2.4 (Q-matrix). The matrix Q is called the Q-matrix, or infinitesimal generator, of the
Markov chain corresponding to {Pt} and has the properties:

(i) qij ≥ 0 for all i 6= j,

(ii)
∑

k∈E qik = 0 for all i ∈ E.

Since P ′(0) exists and equals Q, it follows that for t ≥ 0,

P ′(t) = lim
ε↓0

P (t+ ε)− P (t)

ε
= lim

ε↓0

P (ε)− I
ε

P (t) = QP (t). (6)

We shall prove this in the more general setting of Proposition 2.14 below. Solving this equation, we
find that

P (t) = exp(tQ). (7)

Indeed, we can start with any matrix satisfying the properties of Q given in Definition 2.4 and from it
recover a transition semigroup using the recipe of (7) and the definition of the matrix exponential as

etQ =
∞∑
n=0

(tQ)n

n!
. (8)

However, when we start to consider Markov processes on more general spaces, the analogue of the
Q-matrix will, in general, be unbounded and then it is not clear how to make sense of the exponential
formula, since (8) is only defined on

⋂
n≥0D(Qn), and for unbounded Q this could be a very small

set of functions. To see how we might circumvent this problem, consider the real-valued function
p(t) ≡ exp(ta). We can recover a from p(t) either by differentiation or by integration:

1

t
(p(t)− 1)→ a as t→ 0,

or ∫ ∞
0

e−λtp(t)dt =
1

λ− a
, for λ > a. (9)

If we replace p(t) by the transition matrix of our Markov chain, then the first expression leads to the
Q-matrix. The second expression also makes perfectly good sense (for any λ > 0) and leads to the so-
called resolvent, {Rλ : λ > 0} of the transition semigroup. In the case of the finite state space Markov
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chains of this section, this is most easily understood as the (componentwise) Laplace transform of the
semigroup. In other words,

(λRλ)ij =

∫ ∞
0

λe−λtpij(t)dt = P[Xτ = j|X0 = i],

where τ , which is independent of X, is an exponentially distributed random variable with rate λ. It
follows from (7) and (9) that

Rλ = (λI −Q)−1. (10)

In what follows we shall see the same structure emerge in a much more general setting: subject to an
analogue of (5), the infinitesimal generator of a transition semigroup will be its derivative at zero, the
resolvent, which is just the Laplace transform of the semigroup, is defined by (10) and the semigroup
is found by inverting the Laplace transform. In this way, sense can be made of the analogue of the
exponential formula (7).

2.3 Poisson and pseudo-Poisson processes

Before moving onto some general theory, we work through two more important examples. The first
is one of the simplest examples of a continuous time Markov chain with a countable state space and
provides a fundamental building block from which we can construct a vast array of other models.

Example 2.5 (The Poisson process). The Poisson process is the continous time Markov chain with
states {0, 1, 2, . . .} and Q-matrix

Q =


−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
...

...
...

. . .
. . .

 .

In this case it is not difficult to check that Qn = (q
(n)
ij )i,j≥0 with

q
(n)
ij =

{
(λ)n(−1)j−i

(
n
j−i
)

0 ≤ j − i ≤ n
0 otherwise,

and so

Pt =

∞∑
n=0

(tQ)n

n!

satisfies

(Pt)ij =

{
(λt)j−i

(j−i)! e
−λt 0 ≤ j − i <∞

0 otherwise.

In other words, the number of new arrivals in any time interval of length t is Poisson with parameter
λt. It is an easy exercise to check that P ′t = QPt.

Instead of this ‘bare hands’ approach, we could also have applied the resolvent method. To see how
this works in this case, note that for ρ > 0,

(ρI −Q) =


ρ+ λ −λ 0 0 · · ·

0 ρ+ λ −λ 0 · · ·
0 0 ρ+ λ −λ · · ·
...

...
...

. . .
. . .

 .
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The coefficients rin of the inverse matrix therefore satisfy

r00(ρ+ λ) = 1, and r0,n−1(−λ) + r0,n(ρ+ λ) = 0, for n ≥ 1.

Solving, this gives

r0,n =
λ

ρ+ λ
r0,n−1 =

λn

(λ+ ρ)n+1
.

Recall that

(Rλ)ij =

∫ ∞
0

e−λtpij(t)dt,

so inverting the Laplace transform, we recover

(Pt)0,n = P [Xt = n|X0 = 0] =
(λt)n

n!
e−λt,

as before. To check this, take the Laplace transform of this expression and invoke uniqueness of Laplace
transforms: ∫ ∞

0
e−ρt

(λt)n

n!
e−λtdt =

λn

n!

∫ t

0
e−(λ+ρ)ttndt =

λn

(λ+ ρ)n+1
.

At the next level of complexity we have the pseudo-Poisson processes of Example 1.15 (i).

Proposition 2.6. Let Tt be the transition semigroup associated with a pseudo-Poisson process X in
E. Then Tt = etA for all t ≥ 0, where for any bounded measurable function f : E → R,

(Af)(x) = α

∫
y∈E

(f(y)− f(x))µ(x, dy), x ∈ E.

Proof. The pseudo-Poisson process can be written as X = Y ◦N where N is a Poisson process with
parameter α and Y is a discrete time Markov chain, independent of N , with jumps determined by µ.
That is, the number of jumps that the process has made by time t is Poisson with parameter αt and
the distribution of each jump is determined by the probability kernel µ. Now write G for the transition
operator associted with µ. That is G, which is the analogue of the transition matrix for a finite state
space Markov chain, governs a single jump of the process, so that

Gf(x) =

∫
f(y)µ(x, dy).

Then for any t ≥ 0 and bounded measurable f ,

Ttf(x) = Ex[f(Xt)] =
∞∑
n=0

Ex[f(Yn);Nt = n]

=

∞∑
n=0

P[Nt = n]Ex[f(Yn)]

=
∞∑
n=0

e−αt
(αt)n

n!
Gnf(x)

= eαt(G−I)f(x).

2

Once again (c.f. (6)), since Af(x) = α(G−I)f(x), we see that Ttf is the solution to Cauchy’s equation:

(Ttf)′ = ATtf, T0f = f.
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2.4 A little bit of functional analysis

Let (E, E) be complete (contains all its limit points) compact and separable (contains a countable
dense set). Recall that we can always make E compact by adding a ‘point at infinity’. We write
C(E) for the space of continuous real-valued functions on E equipped with the sup norm, that is
‖f‖∞ = supx∈E{|f(x)|}. This norm makes C(E) into a Banach space (that is a complete normed
vector space).

Definition 2.7 (Operator norm). Given a linear operator T : C(E) → C(E), we define its operator
norm by

‖T‖ = sup {‖Tf‖∞ : f ∈ C(E), ‖f‖∞ = 1} .

Definition 2.8 (Closed operator). A linear operator A with domain D(A) is closed if its graph is
closed.

If A is closed, then if xn is a Cauchy sequence in D(A), converging to x say, then x ∈ D(A) and
Ax = y = limn→∞Axn.

To make formulae easier to read, we sometimes write T (t) in place of Tt.

Definition 2.9 (Strongly continuous contraction semigroup). A family of bounded operators {T (t), 0 ≤
t ≤ ∞} on a Banach space C is called a strongly continuous contraction semigroup if

(i) T (0) = I;

(ii) T (s)T (t) = T (s+ t),∀s, t ∈ R+;

(iii) ‖T (t)‖ ≤ 1 for all t ≥ 0.

(iv) for any z ∈ C, t 7→ T (t)z is continuous.

When our Banach space is C(E), we shall use f rather than z to denote a typical element and we
shall abuse notation and use 1 to denote the function f(x) ≡ 1.

Definition 2.10 (Feller semigroup). A strongly continuous contraction semigroup on C(E) with the
additional properties

(i) T (t)1 = 1 and

(ii) T (t)f ≥ 0 for all nonegative f ∈ C(E),

is called a Feller semigroup.

Remark 2.11. In fact there is some inconsistency in the literature over the definition of Feller semi-
group. For example, if one only assumes that E is locally compact (rather than compact), then it is
usual to replace C(E) by C0(E), the continuous functions on E which tend to zero at infinity. Such
functions are continuous in the one-point compactification of E.

Theorem 2.12. Suppose that T (t) is a Feller semigroup on C(E). Then there exists a unique Markov
process, X, taking values in càdlàg paths on E, with law {Pη, η ∈ E} such that Pη[X0 = η] = 1 and

T (t)f(η) = Eη [f(Xt)]

for all f ∈ C(E), η ∈ E and t ≥ 0.

12



Remark 2.13. Notice that our assumptions include the statement that the mapping f 7→ g, where
g(η) = Eη[f(Xt)], maps C(E) to C(E). We then say that the Markov process X is a Feller process or
has the Feller property.

We don’t prove Theorem 2.12. For the construction of the process from the semigroup we refer to
Chapter 4 of Ethier & Kurtz (1986).

Proposition 2.14 (Infinitesimal generator). Let T (t) be a strongly continuous contraction semigroup
on a Banach space C and define

At =
1

t
(T (t)− I) , ∀t > 0.

Set Az = limt↓0Atz where D(A) = {z : limt↓0Atz exists}. Then A is a densely defined closed operator
and is called the infinitesimal generator of T (t). Moreover, for any z ∈ D(A) we have

dT (t)z

dt
= AT (t)z = T (t)Az. (11)

Proof. For any z ∈ C and s > 0 define the mean value

zs =
1

s

∫ s

0
T (u)zdu.

Then for t < s,

Atzs =
1

st

∫ s

0
[T (t+ u)− T (u)]zdu (semigroup property)

=
1

st

∫ t+s

t
T (u)zdu− 1

st

∫ s

0
T (u)zdu

=
1

st

∫ t+s

s
T (u)zdu− 1

st

∫ t

0
T (u)zdu (since t < s, so

∫ s
t cancels)

→ 1

s
(T (s)− I) z = Asz, as t ↓ 0 (since t 7→ T (t)z is continuous).

This shows that zs ∈ D(A) and so, since zs → z as s→ 0, D(A) is a dense set.
To verify (11), first observe that by definition of As, we have

AsT (t)z =
1

s
(T (t+ s)− T (t)) z = T (t)Asz.

If z ∈ D(A), then we can take the limit as s ↓ 0 on the right hand side. But then this shows that
T (t)z ∈ D(A) and so T (t) : D(A)→ D(A). Moreover,

d+T (t)z

dt
= lim

s↓0

T (t+ s)z − T (t)z

s
= T (t)Az = AT (t)z.

To complete the proof of (11), we must check that for t > 0, d−T (t)z
dt = d+T (t)z

dt . For any t > δ > 0,∥∥∥∥T (t)z − T (t− δ)z
δ

− T (t)Az

∥∥∥∥ ≤
∥∥∥∥T (t− δ)

(
T (δ)z − z

δ
−Az

)∥∥∥∥+ ‖T (t− δ) (Az − T (δ)Az)‖

≤ ‖T (t− δ)‖
∥∥∥∥T (δ)z − z

δ
−Az

∥∥∥∥+ ‖T (t− δ)‖ ‖Az − T (δ)Az‖ .

13



Since ‖T (t− δ)‖ ≤ 1, letting δ ↓ 0, we have that

d−T (t)z

dt
= T (t)Az =

d+T (t)z

dt

as required.
Finally, we check that A is closed. Suppose that xn ∈ D(A) is such that zn → z and yn = Azn → y.

Then

lim
t↓0

Atz = lim
t↓0

lim
n→∞

Atzn

= lim
t↓0

lim
n→∞

1

t
(T (t)− I) zn

= lim
t↓0

lim
n→∞

1

t

∫ t

0
T (u)Azndu

= lim
t↓0

1

t

∫ t

0
T (u)ydu = y.

Thus z ∈ D(A) and y = Az as required. 2

2.5 The Hille-Yosida Theorem

So far we have proved that to every strongly continuous contraction semigroup, there corresponds an
infinitesimal generator. Our next aim is to go the other way: starting from an infinitesimal generator,
we’d like to recover the transition semigroup of a Markov process. This section follows Liggett (1985)
closely.

First we need to know how to recognise an infinitesimal generator when we see one.

Definition 2.15 (Markov pregenerator). A (usually unbounded) linear operator A on C(E) with do-
main D(A) is said to be a Markov pregenerator if it satsifies the following conditions:

(i) 1 ∈ D(A) and A1 = 0;

(ii) D(A) is dense in C(E);

(iii) If f ∈ D(A), λ ≥ 0 and f − λAf = g, then

µ = min
ζ∈E

f(ζ) ≥ min
ζ∈E

g(ζ).

Exercise 2.16. Show that a Markov pregenerator has the property that if f ∈ D(A), λ ≥ 0 and
f − λAf = g, then ‖f‖ ≤ ‖g‖. Deduce that, in particular, g determines f uniquely.

To verify (iii) one usually uses the following result.

Proposition 2.17. Suppose that the linear operator A on C(E) satisfies the following property: if
f ∈ D(A) and f(η) = minζ∈E f(ζ), then Af(η) ≥ 0. Then A satisfies property (iii) of Definition 2.15.

Proof. Suppose f ∈ D(A), λ ≥ 0 and f − λAf = g. Let η be any point at which f attains its
minimum. Such a point exists by the compactness of E and the continuity of f . Then

min
ζ∈E

f(ζ) = f(η) ≥ f(η)− λAf(η) = g(η) ≥ min
ζ∈E

g(ζ).

14



2

A Markov pregenerator necessarily satisfies a maximum principle. Recall from elementary calculus
that a function f ∈ C(a, b) taking a local maximum at x satisfies f ′(x) = 0 and f ′′(x) ≤ 0. This is
often rephrased to say that if f ∈ C2([a, b]) satisfies f ′′ ≥ 0, and f attains its maximum in (a, b), then
f is constant. This can be extended to elliptic operators on Rd.

Definition 2.18 (Elliptic operator). A second order differential operator

L(u) =
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(x)
∂u

∂xi
− c(x)u (12)

is called elliptic at a point x if the matrix A(x) = (aij(x)) is positive definite, that is satisfies

zTA(x)z ≥ µ(x)‖z‖2, ∀z ∈ Rd,

for some positive µ, and is called uniformly elliptic if µ > 0 can be taken independent of x.

Lemma 2.19 (Maximum principle for elliptic operators). Let L be an elliptic operator as in (12) with
c(x) ≥ 0, and suppose that Lu ≥ 0 in some domain E ⊆ Rd. If u takes a non-negative maximum in
the interior of E, then u is constant.

This same positive maximum principle holds for a Feller semigroup:

Lemma 2.20 (Positive maximum principle for Feller semigroups). Let A be the generator of a Feller
semigroup acting on functions on E ⊆ Rd. If f is such that Af ≥ 0 in E and f takes a non-negative
maximum inside E, then f is constant.

Remark 2.21. The fact that elliptic operators and Feller semigroups satisfy the same maximum prin-
ciple reflects a much deeper connection between the two classes. Write C∞c for the class of infinitely
differentiable functions with compact support on Rd. If X is a continuous Feller process on [0, T ] with
infinitesimal generator A and C∞c ⊆ D(A), then A is an elliptic operator.

Example 2.22. It can be easily checked using Proposition 2.17 that the following are Markov pregen-
erators:

(i) A = G−I where G is a positive operator (maps non-negative functions to non-negative functions)
defined on all of C(E) such that G1 = 1.

(ii) E = [0, 1] and Af(η) = 1
2f
′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′(0) = 0 = f ′(1)}.

(iii) E = [0, 1] and Af(η) = 1
2f
′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′′(0) = 0 = f ′′(1)}.

Exercise 2.23. Calculate the infinitesimal generator of the pure jump process of Example 1.15 (i) and
check that it is of the form of Example 2.22 (i) above.

Definition 2.24 (Closure of a linear operator). Let A be a linear operator on C(E). A linear operator
Ā is called the closure of A if it is the smallest closed extension of A.
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Not every linear operator has a closure, the difficulty being that the closure of the graph of a linear
operator may not correspond to the graph of a linear operator (see the problem sheet for an example),
but instead to a ‘multivalued’ operator. Happily, this won’t affect us:

Proposition 2.25. Suppose that A is a Markov pregenerator. Then A has a closure Ā which is again
a Markov pregenerator.

Proof. The first step is to check that the closure of the graph of A is the graph of a single-valued
linear operator Ā. To this end, suppose that fn ∈ D(A), fn → 0 and Afn → h. Choose any g ∈ D(A).
Then, as we already observed (Exercise 2.16), for λ ≥ 0,

‖(I − λA)(fn + λg)‖ ≥ ‖fn + λg‖,

and so letting n→∞

‖− λh+ λ(g − λAg)‖ = ‖λg − λh− λ2Ag‖ ≥ ‖λg‖.

Dividing by λ and letting λ ↓ 0 gives ‖g− h‖ ≥ ‖g‖. Since g was an arbitrary element of the dense set
D(A) we deduce that h = 0. This implies that the closure of the graph of A is indeed the graph of a
single-valued linear operator.

It remains to check that Ā is also a Markov pregenerator, for which we must check (iii) of Defi-
nition 2.15. Take f ∈ D(Ā), λ ≥ 0 and g = f − λĀf . By definition, there is a sequence fn ∈ D(A)
such that fn → f , and Afn → Āf . Setting gn = fn − λAfn, and using the fact that A is a Markov
pregenerator,

min
ζ∈E

fn(ζ) ≥ min
ζ∈E

gn(ζ).

Since gn → g as n→∞, passing to the limit we obtain property (iii) of Definition 2.15 as required. 2

Proposition 2.26. Suppose that A is a closed Markov pregenerator. Then for each λ > 0, the range
of I − λA, which we denote R(I − λA) is a closed subset of C(E).

Proof. Suppose that gn ∈ R(I − λA) and gn → g as n→∞. Define fn by fn − λAfn = gn. Then by
linearity,

(fn − fm)− λA(fn − fm) = gn − gm
so that by Exercise 2.16, ‖fn − fm‖ ≤ ‖gn − gm‖ and, since gn is a Cauchy sequence, the same must
be true of fn. Let f = limn→∞ fn, then

lim
n→∞

Afn =
1

λ
lim
n→∞

(fn − gn) =
1

λ
(f − g)

and so, since A is closed (and rearranging),

f − λAf = g.

We have shown that g ∈ R(I − λA), as required. 2

Definition 2.27 (Markov Generator). A Markov generator is a closed Markov pregenerator A for
which R(I − λA) = C(E) for all λ ≥ 0.

Remark 2.28. On the problem sheet, you are asked to prove the following claims:

(i) For a closed Markov pregenerator, if R(I −λA) = C(E) for all sufficiently small positive λ, then
the same will follow for all non-negative λ.
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(ii) If a Markov pregenerator is everywhere defined and is a bounded operator, then it is automatically
a Markov generator.

We are finally in a position to state the main result of this section.

Theorem 2.29 (Hille-Yosida Theorem). There is a one-to-one correspondence between Markov gen-
erators on C(E) and Markov semigroups on C(E), given as follows:

(i)

D(A) =

{
f ∈ C(E) : lim

t↓0

T (t)f − f
t

exists

}
,

and

Af = lim
t↓0

T (t)f − f
t

for f ∈ D(A).

(ii)

T (t)f = lim
n→∞

(
I − t

n
A

)−n
f for f ∈ C(E) and t ≥ 0.

Furthermore,

(iii) if f ∈ D(A), it follows that T (t)f ∈ D(A) and

d

dt
T (t)f = AT (t)f = T (t)Af,

and

(iv) for g ∈ C(E) and λ ≥ 0, the solution to f − λAf = g is given by

f =

∫ ∞
0

λe−λtT (t)gdt.

Usually, in order to show existence of a process, first we provide an infinitesimal description and
use this to write down a Markov pregenerator, A. The next, and most difficult, step is to show that
R(I − λA) is dense in C(E) (for sufficiently small positive λ). Then the closure of A exists and is a
Markov generator, which the Hille-Yosida Theorem tells us generates a Markov semigroup.

Example 2.30. On the problem sheet you are asked to check that each of the pregenerators in Exam-
ple 2.22 is actually a Markov generator.

The Markov processes to which these examples correspond are

(i) The pure jump process of Example 1.15 (i);

(ii) Brownian motion on [0, 1] with reflecting barriers at 0 and 1;

(iii) Brownian motion on [0, 1] with absorbing barriers at 0 and 1.

Notice that the intersection of the domains of the generators in (ii) and (iii) is a dense subset of
C([0, 1]) and the generators agree on that set, even though the processes generated are quite different.
This tells us that a Markov generator is not automatically determined by its values on a dense subset
of C(E). For this reason we make the following definition.
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Definition 2.31 (Core of a generator). Suppose that A is a Markov generator on C(E). A linear
subspace D of D(A) is said to be a core for A if A is the closure of its restriction to D.

Trivially, A is uniquely determined by its values on a core. If we follow the procedure described
immediately after Theorem 2.29 to write down a generator, then the domain of the original pregenerator
is automatically a core for the generator. In fact, in most cases we won’t know the full domain of a
generator explicitly, but knowing a core is just as good.

Example 2.32 (Wright-Fisher diffusion). This diffusion process is of fundamental importance in pop-
ulation genetics, where it is used to model the evolution of gene frequencies, and we shall return to it
many times in the rest of the course. It takes its values in [0, 1] and the infinitesimal generator takes
the form

Af(x) =
1

2
x(1− x)f ′′(x),

for an appropriate subset of C2([0, 1]) (the twice continuously differentiable functions on [0, 1]). The
issue of exactly which functions are in D(A) is not clear, but to construct the process from the Hille-
Yosida Theorem, we define Af for a reasonable class of functions f and then check that R(I − λA)
is dense in C([0, 1]). To do so, take a polynomial g(x) =

∑n
k=0 akx

k, and try to solve the equation
f − λAf = g. Let us write f(x) =

∑n
k=0 ckx

k. This leads to a recursion for the coefficients ck:

ck −
λ

2
[k(k + 1)ck+1 − (k − 1)kck] = ak,

which can be solved. It follows that if we define A on the set of polynomials then R(I − λA) is dense
in C([0, 1]) as required. Taking the closure, it follows that the domain of A is

{f : there exist polynomials pn such that pn → f uniformly and x(1− x)p′′n has a uniform limit}.

In particular, we see that every f ∈ D(A) satisfies Af(0) = 0 = Af(1). This corresponds to the fact
that if gene frequencies hit zero or one, then they stay there.

Remark 2.33. The Wright-Fisher diffusion solves the stochastic differential equation

dXt =
√
Xt(1−Xt)dBt,

where Bt is Brownian motion. In particular, notice that the coefficient in front of the noise is not
uniformly Lipschitz, but only locally Lipschitz continuous.

Often we obtain stochastic processes of interest by an approximation procedure. In this context
the following result is helpful.

Theorem 2.34 (Trotter-Kurtz). Suppose that An and A are the generators of Markov semigroups
Tn(t) and T (t) respectively. If there is a core D for A such that D ⊆ D(An) for all n and Anf → Af
for all f ∈ D, then

Tn(t)f → T (t)f

for all f ∈ C(E) uniformly for t in compact sets.

Part (iii) of the Hille-Yosida Theorem tells us that F (t) = T (t)f gives a solution to the Cauchy
problem:

d

dt
F (t) = AF (t), F (0) = f, for f ∈ D(A).

Sometimes one would like to know that the semigroup actually gives the unique solution to a problem
of this type:
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Theorem 2.35. Suppose that A is the generator of a Markov semigroup. Further, suppose that F (t)
and G(t) are functions on [0,∞) with values in C(E) which satisfy

(i) F (t) ∈ D(A) for each t ≥ 0;

(ii) G(t) is continuous on [0,∞); and

(iii)
d

dt
F (t) = AF (t) +G(t), for t ≥ 0.

Then

F (t) = T (t)F (0) +

∫ t

0
T (t− s)G(s)ds. (13)

Proof. We establish the derivative of T (t− s)F (s) with respect to s. First observe that

T (t− s− h)F (s+ h)− T (t− s)F (s)

h
= T (t−s)

[
F (s+ h)− F (s)

h

]
+

[
T (t− s− h)− T (t− s)

h

]
F (s)

+ [T (t− s− h)− T (t− s)]F ′(s) + [T (t− s− h)− T (t− s)]
[
F (s+ h)− F (s)

h
− F ′(s)

]
.

Since T (t− s) is a bounded operator, the first term on the right hand side converges to T (t− s)F ′(s)
as h → 0. Using (iii) of Theorem 2.29 (and the first assumption), the second term converges to
−T (t − s)AF (s). The third term tends to zero since for each f ∈ C(E) the mapping t 7→ T (t)f is
uniformly continuous; and the fourth tends to zero since T (t−s) and T (t−s−h) are both contractions.
Combining these observations, we have that, for 0 < s < t,

d

ds
(T (t− s)F (s)) = T (t− s)F ′(s)− T (t− s)AF (s),

which, by the third assumption, becomes

d

ds
T (t− s)F (s) = T (t− s)G(s). (14)

Finally, by the second assumption (and continuity of the mapping t 7→ T (t)f for f ∈ C(E)), T (t−s)G(s)
is a continuous function of s. Integrating (14) then gives

F (t)− T (t)F (0) =

∫ t

0
T (t− s)G(s)ds,

as required. 2

Remark 2.36. Evidently we can specialise equation (13). For example, if A = 1
2∆, then we see that

we can represent the solution to

∂f

∂t
(t, x) =

1

2
∆f(t, x) + g(t, x)

as

f(t, x) = Ex
[
f(0, Bt) +

∫ t

0
g(s,Bt−s)ds

]
,

where Bt is a Brownian motion and the subscript ‘x’ in the expectation indicates that it starts at B0 = x.
This gives us a nontrivial example of a stochastic representation of a solution to a deterministic pde.

If we consider Brownian motion on [0, 1] with absorbing boundary (or some higher-dimensional
analogue), then for example setting g ≡ 1 gives the expected time for the process to leave the domain.
We return to this later.

19



3 Martingale problems

We now turn to the martingale approach to stochastic processes. Originally developed by Stroock
and Varadhan for the construction and analysis of diffusion processes with continuous coefficients, it
is particularly well adapted to weak convergence arguments. A thorough exposition in the diffusion
context can be found in Stroock & Varadhan (1979). Connections to weak convergence are covered in
Ethier & Kurtz (1986).

3.1 Martingale problems and Markov (pre-)generators

Definition 3.1 (The space D and its associated filtration). We shall write D[0,∞), or sometimes just
D, for the space of càdlàg functions from [0,∞) to E. This is the canonical path space for a Markov
process with state space E. For s ∈ [0,∞), the evaluation mapping πs : D[0,∞) → E is defined by
πs(η·) = ηs. Let F be the smallest σ-algebra with respect to which all the mappings πs are measurable
and for t ∈ [0,∞), let Ft be the smallest σ-algebra on D[0,∞) relative to which all the mappings πs
for 0 ≤ s ≤ t are measurable.

Definition 3.2 (Martingale problem). Suppose that A is a Markov pregenerator and that η ∈ E. A
probability measure P on D[0,∞) is said to solve the martingale problem for A with initial point η if

(i) P[ζ. ∈ {ζ ∈ D[0,∞) : ζ0 = η}] = 1, and

(ii)

f(ηt)−
∫ t

0
Af(ηs)ds

is a (local) martingale relative to P and the σ-algebras {Ft, t ≥ 0} for all f ∈ D(A).

More generally, this can be extended in the obvious way to random initial values.
Notice that in contrast to the Hille-Yosida Theorem, which required A to be a Markov generator,

here we only require that it be a Markov pregenerator. Existence of a solution to the martingale
problem often requires only rather minimal conditions on the infinitesimal parameters of the process.
Uniqueness is typically much more difficult to establish. We shall present a powerful approach to
uniqueness in §5, but first we explore the connection between Feller processes and martingale problems
in a little more detail.

Theorem 3.3. Suppose that A is a Markov pregenerator and that its closure Ā is a Markov generator.
Let {Px, x ∈ E} be the unique Feller process that corresponds to Ā (through Theorem 2.12 and Theo-
rem 2.29). Then for each x ∈ E, Px is the unique solution to the martingale problem for A with initial
point x.

Proof. In order to check that Px is a solution to the martingale problem, fix f ∈ D(A) and, for
0 < r < t, write

Ex
[∫ t

r
Af(ηs)ds

∣∣∣∣Fr] = Eηr
[∫ t−r

0
Af(ηs)ds

]
=

∫ t−r

0
Eηr [Af(ηs)]ds

=

∫ t−r

0
T (s)Af(ηr)ds

=

∫ t−r

0
ĀT (s)f(ηr)ds

= T (t− r)f(ηr)− f(ηr).
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The last two equalities follow from (iii) of Theorem 2.29. Using this we now compute that for r < t

Ex
[
f(ηt)−

∫ t

0
Af(ηs)ds

∣∣∣∣Fr] = Ex [f(ηt)| Fr]−
∫ r

0
Af(ηs)ds− Ex

[∫ t

r
Af(ηs)ds

∣∣∣∣Fr]
= Eηr [f(ηt−r)]−

∫ r

0
Af(ηs)ds− T (t− r)f(ηr) + f(ηr)

= f(ηr)−
∫ r

0
Af(ηs)ds.

Therefore Px is a solution to the martingale problem for A.
We now turn to uniqueness. Fix x ∈ E and let P be any solution to the martingale problem for A

(and hence for Ā) with initial point x. We are going to check that P has the same finite-dimensional
distributions as Px. Given g ∈ C(E) and λ > 0, there is f ∈ D(Ā) for which

(λ− Ā)f = g. (15)

Since P solves the martingale problem, for r < t we have

E
[
f(ηt)−

∫ t

r
Āf(ηs)ds

∣∣∣∣Fr] = f(ηr),

where E is the expectation with respect to P. Multiplying by λe−λt and integrating from r to infinity,
we obtain

E
[∫ ∞

r
λe−λtf(ηt)dt−

∫ ∞
r

∫ t

r
λe−λtĀf(ηs)dsdt

∣∣∣∣Fr] = E
[∫ ∞

r
λe−λtf(ηt)dt−

∫ ∞
r

e−λsĀf(ηs)ds

∣∣∣∣Fr]
= e−λrf(ηr),

which, by (15), can be written

E
[∫ ∞

r
e−λtg(ηt)dt

∣∣∣∣Fr] = e−λrf(ηr). (16)

Setting r = 0 in (16), and using the uniqueness theorem for Laplace transforms, we see that the
one-dimensional distributions of P are the same as those for Px, since Px is another solution to the
martingale problem. We shall use induction to extend this to higher dimensional distributions. Take
0 < s1 < s2 < · · · < sn, λi > 0 and hi ∈ C(E). Setting r = sn in (16), multiplying by

exp

(
−

n∑
i=1

λisi

)
n∏
i=1

hi(ηsi),

taking expectations of both sides and integrating we obtain∫
· · ·
∫

0<s1<···<sn<t
exp

(
−λt−

n∑
i=1

λisi

)
E

[
g(ηt)

n∏
i=1

hi(ηsi)

]
ds1 · · · dsndt

=

∫
· · ·
∫

0<s1<···<sn
exp

(
−λsn −

n∑
i=1

λisi

)
E

[
f(ηsn)

n∏
i=1

hi(ηsi)

]
ds1 · · · dsn. (17)

Applying uniqueness for multidimensional Laplace transforms to (17) (and the corresponding expression
with E replaced by Ex), we see that the equality of the n-dimensional distributions of P and Px implies
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that of the (n+ 1)-dimensional distributions. By induction, P and Px have the same finite-dimensional
distributions and so P = Px as required. 2

Notice that we didn’t use the Hille-Yosida Theorem. The key point was to be able to solve the
resolvent equation (15).

Definition 3.4 (Well-posed martingale problem). Suppose that A is a Markov pregenerator. The
martingale problem for A is said to be well-posed if, for each x ∈ E, the martingale problem for A with
initial point x has a unique solution.

Martingale problems provide a very powerful way to characterise the Markov processes associated
with a given generator. Liggett (1985), which we have been following thus far, moves on to discuss
martingale problems associated with interacting particle systems. We now depart from Liggett and
turn to the setting in which martingale problems were first developed.

The rest of this section and the next owes a lot to lecture notes on stochastic calculus written by
Nathanaël Berestycki of the University of Cambridge, which in turn follow Durrett (1996) and Stroock
& Varadhan (1979).

3.2 Recap on Stochastic Differential Equations

Last term, you saw how to make sense of the notion of solution to a stochastic differential equation
(SDE).

dXt = b(Xt)dt+ σ(Xt)dBt,

which is really shorthand for

Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dBs , (18)

where {Bt}t≥0 is Brownian motion and the last term on the right is an Itô integral.
More precisely, let B be a Brownian motion in Rm with m ≥ 1. Let d ≥ 1 and suppose

σ(x) =
(
σij(x)

)
1≤i≤d
1≤j≤m

: Rd → Rd×m

and
b(x) =

(
bi(x)

)
1≤i≤d : Rd → Rd

are given Borel functions, bounded on compact sets. Consider the equation in Rd:

dXt = σ(Xt) dBt + b(Xt) dt , (19)

which may be written componentwise as

dXi
t =

m∑
j=1

σij(Xt) dB
j
t + bi(Xt) dt , 1 ≤ i ≤ d . (20)

This general SDE will be called E(σ, b).

Definition 3.5 (Solutions of stochastic differential equations). A solution to E(σ, b) in (19) consists
of

(i) a filtered probability space
(
Ω,F , (Ft)t≥0,P

)
satisfying the usual conditions;
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(ii) an (Ft)t≥0-Brownian motion B = (B1, . . . , Bm) taking values in Rm;

(iii) an (Ft)t≥0-adapted continuous process X = (X1, . . . , Xd) ∈ Rd such that

Xt = X0 +

∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds.

When, in addition, X0 = x ∈ Rd, we say that X is a solution started from x.

There are several different notions of existence and uniqueness for SDE’s.

Definition 3.6 (Uniqueness in law, pathwise uniqueness, strong solution). Let E(σ, b) be the SDE in
(19).

(i) We say that E(σ, b) has a solution if for all x ∈ Rd, there exists a solution to the SDE started
from x.

(ii) There is uniqueness in law if all solutions to E(σ, b) started from x have the same distribution.

(iii) There is pathwise uniqueness if, when we fix
(
Ω,F , (Ft)t≥0,P

)
and B then any two solutions X

and X ′ satisfying X0 = X ′0 a.s. are indistinguishable from one another (that is their trajectories
coincide a.s.).

(iv) We say that a solution X of E(σ, b) started from x is a strong solution if X is adapted to the
natural filtration of B.

Remark 3.7 (Weak solution). In general, σ(Bs, s ≤ t) ⊆ Ft and a solution might not be measurable
with respect to the Brownian motion B. A strong solution depends only on x ∈ Rd and the Brownian
motion B, and is moreover non-anticipative: if the path of B is known up to time t, then so is the path
of X up to time t. We will term weak any solution that is not strong.

Since we are primarily interested in relating SDEs to martingale problems, we shall be concerned
with weak solutions and uniqueness in law, but for completeness we make some remarks on the rela-
tionship between the various notions of existence and uniqueness.

Remark 3.8. If every solution is strong, then pathwise uniqueness holds. Indeed, any solution must
then be a certain measurable functional of the path B. If two functionals F1 and F2 of B gave two
solutions to the SDE, then we would construct a third one by tossing a coin and choosing X1 or X2.
This third solution would then not be adapted to FB.

It is possible to have existence of a weak solution and uniqueness in law, without pathwise uniqueness
(see the second problem sheet).

Theorem 3.9 (Yamada-Watanabe Theorem). Let σ, b be measurable functions. If pathwise uniqueness
holds for E(σ, b) and there exist solutions, then there is also uniqueness in law. In this case, for every
filtered probability space (Ω,F , (Ft)t≥0,P) and every Ft-Brownian motion B = (Bt, t ≥ 0), and for
every x ∈ Rd, the unique solution X to Ex(σ, b) is strong.

In particular, provided that there exist solutions, pathwise uniqueness is stronger than uniqueness
in law.
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Lipschitz coefficients

Last term you were primarily concerned with SDEs with Lipschitz coefficients.

Definition 3.10 (Lipschitz continuous function). For U ⊆ Rd and f : U → Rd, we say that f is
Lipschitz with Lipschitz constant K <∞ if∣∣f(x)− f(y)

∣∣ ≤ K|x− y| for all x, y ∈ U , (21)

where |.| denotes the Euclidean norm on Rd. (If f : U → Rd×m then the left-hand side is the Euclidean
norm in Rd×m).

The key result which you proved last term is that SDE’s with Lipschitz coefficients have pathwise
unique solutions which are furthermore always strong.

Finally we note that weak uniqueness implies the strong Markov property.

3.3 Diffusion processes and martingale problems

Lévy (1948) characterised standard Brownian motion as the unique continuous process B such that
B(t) and B2(t) − t are both martingales. Our next aim is to find an analogous characterisation of
the diffusion processes which arise as solutions of stochastic differential equations and relate it to the
notion of martingale problem.

We shall sometimes be sloppy and say that a process solves a martingale problem, when really we
mean that its law does. We shall also sometimes fail to specify the initial value in a martingale problem,
in which case saying that a solution exists means that a solution exists for any choice of intitial value.

Let σi,j(x)1≤i,j≤d and (bi(x))1≤i≤d be a family of measurable functions with values in R. Let
a(x) = σ(x)σT (x). (Here we assume for simplicity that m = d).

Definition 3.11 (Martingale problem M(a, b)). We say that a process X = (Xt, t ≥ 0) with values in
Rd, together with a filtered probability space (Ω,F , (Ft),P), solves the martingale problem M(a, b) if
for all 1 ≤ i, j ≤ d,

M i =

(
Xi
t −

∫ t

0
bi(Xs)ds; t ≥ 0

)
and (

M i
tM

j
t −

∫ t

0
aij(Xs)ds; t ≥ 0

)
are local martingales.

In particular, when d = 1 the statements become

Mt = Xt −
∫ t

0
b(Xs)ds

and

M2
t −

∫ t

0
σ2(Xs)ds

are local martingales.
If σ, b are Lipschitz continuous, then the solution to the SDE (18) exists, that is, there is a process

X with

Xt −X0 =

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs.
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The stochastic integral is a local martingale and so

Mt = Xt −X0 −
∫ t

0
b(Xs)ds

is a mean zero local martingale. Squaring and using the Itô isometry for stochastic integrals, yields

M2
t −

∫ t

0
σ2(Xs)ds

is a local martingale. In other words, X then solves the martingale problem M(a, b). Rather remarkably,
as the next theorem shows, these are the only solutions.

Theorem 3.12. Let a = σσT and let X and (Ω,F , (Ft),P) be a solution to M(a, b). Then there exists
an (Ft)-Brownian motion (Bt, t ≥ 0) in Rd defined on an enlarged probability space, such that (X,B)
solves E(σ, b).

Sketch of proof: We satisfy ourselves with a sketch of the proof in d = 1. For simplicity, we suppose
that σ(x) > δ > 0 for all x ∈ R. We have that

Mt = Xt −X0 −
∫ t

0
b(Xs)ds

is a local martingale, as is

M2
t −

∫ t

0
σ2(Xs)ds.

Since σ(Xs) is bounded away from zero, we can define

Bt =

∫ t

0

1

σ(Xs)
dMs

and since d[Bt] = dt, by Lévy’s characterisation of Brownian motion, B is a Brownian motion on R.
Moreover, ∫ t

0
σ(Xs)dBs = Mt −M0 = Xt −

∫ t

0
b(Xs)ds. (22)

But (22) is simply the statement that (X,B) solves E(σ, b). 2

Theorem 3.12 shows that there is a one-to-one correspondence between solutions to the stochastic
differential equation E(σ, b) and the martingale problem M(a, b). In particular, there is uniqueness in
distribution to the solutions of E(σ, b), if and only if the solutions to the martingale problem M(a, b)
are unique, where uniqueness means that all solutions to M(a, b) with identical starting points have
the same law.

Of course we should connect this version of the martingale problem to the one that we introduced
in Definition 3.2. It is clear from Itô’s formula that any solution to the SDE (18) will provide a solution
to the martingale problem corresponding to the infinitesimal generator A given by

Af(x) =
1

2

∑
ij

aij(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x)
∂f

∂xi
(x). (23)

In one dimension this takes the form

Af(x) =
1

2
a(x)f ′′(x) + b(x)f ′(x).
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We shall call b and a the infinitesimal drift and infinitesimal variance of the diffusion. That a solution
to the martingale problem for A is also a solution to the martingale problem M(a, b) is the content of
the next lemma.

Lemma 3.13. A solution (in the sense of Definition 3.2) to the martingale problem for A given by (23)
is also a solution to the martingale problem M(a, b).

Proof. For simplicity we provide a sketch of the proof in one dimension only.
Taking f(x) ≡ x, it is immediate that

Mt = Xt −
∫ t

0
b(Xs)ds

is a local martingale. Now consider M2
t .

M2
t =

(
Xt −

∫ t

0
b(Xs)ds

)2

= X2
t − 2Xt

∫ t

0
b(Xs)ds+

(∫ t

0
b(Xs)ds

)2

= X2
t − 2Xt

∫ t

0
b(Xs)ds+

∫ t

0
2b(Xs)

∫ t

s
b(Xu)duds

= X2
t − 2

∫ t

0
b(Xs)

(
Xt −

∫ t

s
b(Xu)du

)
ds.

Now setting f(x) = x2 we have that

X2
t −

∫ t

0
{2Xsb(Xs) + a(Xs)} ds

is a local martingale, so we will be able to deduce that

M2
t −

∫ t

0
a(Xs)ds

is a local martingale if we can show that

2

∫ t

0
b(Xs)

(
Xt −

∫ t

s
b(Xu)du

)
ds− 2

∫ t

0
Xsb(Xs)ds = 2

∫ t

0
b(Xs)

(
Xt −Xs −

∫ t

s
b(Xu)du

)
ds

is a local martingale. To see this, we use the tower property of conditional expectations. Suppose that
0 < r < t. First observe that

E
[∫ t

r
b(Xs)

(
Xt −Xs −

∫ t

s
b(Xu)du

)
ds

∣∣∣∣Fr] = E
[∫ t

r
E
[
b(Xs)

(
Xt −Xs −

∫ t

s
b(Xu)du

)∣∣∣∣Fs] ds∣∣∣∣Fr]
= E

[∫ t

r
b(Xs)E

[(
Xt −Xs −

∫ t

s
b(Xu)du

)∣∣∣∣Fs] ds∣∣∣∣Fr]
= 0,

since Mt is a local martingale. Now note that

E
[∫ r

0
b(Xs)

(
Xt −Xs −

∫ t

s
b(Xu)du

)
ds

∣∣∣∣Fr] =

∫ r

0
b(Xs){E

[(
Xt −Xr −

∫ t

r
b(Xu)du

)∣∣∣∣Fr]
+Xr −Xs −

∫ r

s
b(Xu)du}ds

=

∫ r

0
b(Xs)

(
Xr −Xs −

∫ r

s
b(Xu)du

)
ds,
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as required (where again we have used that Mt is a local martingale).

Remark 3.14. The infinitesimal generators corresponding to solutions to E(σ, b) are the second order
differential operators given in (23) where we assume that σ and b are Lipschitz. This condition is
stronger than we need for the process to exist, as we have already seen in Example 2.32, in which
σ(x) =

√
x(1− x) is certainly not uniformly Lipschitz. In that example, we also allowed σ2(x) to

vanish on the boundary. This is crucial in many applications, but to avoid pathologies we shall only
allow σ to vanish on the boundary, and never on the interior, of the domain.

4 Stroock-Varadhan theory of diffusion approximation

For section C students: proofs of results in this section are not examinable. For the exam, I expect
you to be able to state and apply the results of Section 4.2.

4.1 Notions of weak convergence of processes

In this section we describe (without proof) some basic results in the theory of weak convergence of
processes. We will use these in the next section to derive conditions under which Markov chains
(suitably rescaled) converge to (weak) solutions of stochastic differential equations.

This subsection is challenging. Try to get a feel for the results, but for the rest of the course we
shall concentrate on the case where the limiting process has continuous paths, and for that we really
only need Definition 4.11 and Theorem 4.12.

We view a process as a random variable with values in a space D of trajectories (paths) and so it
is convenient to deal with weak convergence in a general metric space.

Definition 4.1 (Complete, separable, metric space, Borel σ-algebra). A metric space (S, d) consists
of a nonempty set S and a map d : S × S → R such that:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) ≥ 0;

(iii) d(x, z) ≤ d(x, y) + d(y, z).

The open ball B(x, r) is the set {y ∈ S : d(x, y) < r}. The Borel σ-algebra is the σ-algebra generated
by all open sets.

We say that (S, d) is separable if it contains a countable dense subset and complete if every Cauchy
sequence in (S, d) converges to a limit in S.

When we talk about measurability, we shall implicitly assume that we are using the Borel σ-algebra.
The notion of convergence in distribution is defined in terms of integration against test functions.

Definition 4.2 (Weak convergence, convergence in distribution/law). Let (µn)n≥1 be a sequence of
probability distributions on S. We say that µn → µ weakly as n→∞, if

∫
S fdµn →

∫
S fdµ as n→∞

for all bounded continuous functions f . If µn is the law of a random variable X(n) and µ that of a
random variable X, we say that X(n) → X in distribution (or in law).

Remark: What a probabilist calls weak convergence is what an analyst calls weak* convergence.

There are a number of ways one can reformulate the notion of weak convergence in terms of the mass
assigned to events that are either closed or open.
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Theorem 4.3 (Portmanteau Theorem). Let (X(n))n≥1 be a sequence of random variables taking values
in S. The following are equivalent.

(i) X(n) → X in distribution.

(ii) For any closed set K ⊆ S, lim supn→∞ P(X(n) ∈ K) ≤ P(X ∈ K).

(iii) For any open set O ⊆ S, lim infn→∞ P(X(n) ∈ O) ≥ P(X ∈ O).

(iv) For all Borel sets A such that P[X ∈ ∂A] = 0, limn→∞ P[X(n) ∈ A] = P[X ∈ A].

(v) For any bounded function f , denote by Df the set of discontinuities of f . Then for any f such
that P[X ∈ Df ] = 0, E[f(X(n))]→ E[f(X)] as n→∞.

The notion of weak convergence makes perfectly good sense even when the random variables X(n)

are not related to one another in any particular way. Indeed they don’t even have to be defined on
the same probability space. However, it turns out that provided the space (S, d) is sufficiently nice,
one can find a single probability space and a collection of random variables Y (n) on that space with
the property that, for each n, Y (n) has the same law as X(n) and the sequence Y (n) converges almost
surely. This is the content of the following theorem (which we include for completeness).

Theorem 4.4 (Skorokhod Representation Theorem). Suppose that (S, d) is a complete, separable
metric space. If µn → µ weakly then there exist random variables Y (n) defined on [0, 1] equipped with

the Lebesgue measure P, such that Y (n) d
= µn for all n ≥ 1, and limn→∞ Y

(n) = Y , P-almost surely,

where Y
d
= µ.

A standard strategy for proving that a sequence xn converges to a limit x is to prove that (a) the
sequence takes its values in a compact set and (b) there is only one possible subsequential limit. In the
context of stochastic processes, the analogous strategy is to first check that the laws of the processes
are tight and then to prove uniqueness of the limit point.

Definition 4.5 (Tightness). Let (S, d) be a metric space. A family of probability measures M ∈M1(S)
is said to be tight if for each ε > 0, there exists a compact set Kε ⊆ S such that for all µ ∈ M ,
µ(Kε) > 1− ε.

This condition implies that M is relatively compact (that is the closure of M is compact), in
the topology of weak convergence, and is equivalent to relative compactness if (S, d) is complete and
separable.

Definition 4.6. A sequence, {X(n)
· }n≥1, of processes taking values in the space D([0,∞), E) is said to

be tight if their distributions {P(n)}n≥1 are tight.

Granted tightness, any infinite subsequence of the P(n)’s will contain a convergent subsequence.
In order to apply this in practice, we need a convenient characterisation of the compact sets in
D([0,∞), E). First we must specify our metric.

For any complete separable metric space (E, d), one can define the Skorohod metric on the space
D([0,∞), E) of càdlàg paths in E, and this space will again be complete and separable.

Definition 4.7 (The Skorohod topology). Let (E, d) be a metric space, and let {ηn}n≥1 be a sequence
and η a point in D([0,∞), E). Then ηn → η as n → ∞ in the Skorohod topology if and only if,
whenever tn is a sequence of points in [0,∞) converging to t ∈ [0,∞), the following conditions are
satisfied.
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(i)
lim
n→∞

min{d(ηn(tn), η(t)), d(ηn(tn), η(t−))} = 0

(ii) If limn→∞ d(ηn(tn), η(t)) = 0, then for any sequence of times sn with sn ≥ tn and limn→∞ sn = t,

lim
n→∞

d(ηn(sn), η(t)) = 0.

(iii) If limn→∞ d(ηn(tn), η(t−)) = 0, then for any sequence of times sn with sn ≤ tn and limn→∞ sn =
t,

lim
n→∞

d(ηn(sn), η(t−)) = 0.

This is not the usual definition of the Skorohod topology, but it is equivalent (see Ethier & Kurtz,
Proposition 3.6.5). This form has the advantage of (relative) transparency: the first condition ensures
that there are at most two limit points of the sequence {ηn(tn)}, the second condition guarantees right
continuity of the limiting path η at t, the third left limits.

The following result, Theorem 3.7.2 of Ethier & Kurtz, demonstrates the nature of the hurdles to
be overcome in proving tightness of a sequence of processes with càdlàg sample paths. It requires some
notation. Let us suppose that (E, d) is complete and separable. For a path x(s) ∈ D([0,∞), E), define

w′(x, δ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

d(x(s), x(t)),

where {ti} ranges over all partitions of the form 0 = t0 < t1 < . . . < tm = T with m ≥ 1 and
min1≤i≤m(ti − ti−1) > δ. The rôle of w′ will become clear soon.

For a compact set K, Kε denotes the ε-expansion of K, that is the set {x ∈ E : infy∈K d(x, y) < ε}.

Theorem 4.8 (Ethier & Kurtz). Let {X(n)}n≥1 be a sequence of processes taking values in D([0,∞), E).
Then {X(n)}n≥1 is relatively compact if and only if the following two conditions hold.

(i) For every ε > 0 and every (rational) t ≥ 0, there exists a compact set γε,t ⊆ E, such that

lim inf
n→∞

P
[
X(n)(t) ∈ γεε,t

]
≥ 1− ε (24)

(ii) For every ε > 0 and T > 0, there exists δ > 0 such that

lim sup
n→∞

P
[
w′(X(n), δ, T ) ≥ ε

]
≤ ε (25)

The first condition could instead be replaced by the requirement of relative compactness of the
one-dimensional disributoins at each fixed time. The second condition prevents large jumps from being
too close together. That is, for any ε > 0, there won’t be a limit point of jumps of size greater than
ε. (If the jumps are sufficiently ‘spread out’ then we can choose the partition in such a way that each
jump point corresponding to a jump of size more than ε is a point ti. If they are not, then no matter
how small δ, we cannot arrange for w′(x, δ, T ) to be less than ε.)

This condition is rather unwieldy to work with. If we are dealing with real-valued processes, then
the following criterion due to Aldous, is extremely helpful.

Theorem 4.9 (Aldous (1978)). Let Y (n) be a sequence of real valued processes with càdlàg paths.
Suppose that the following conditions are satisfied.
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(i) For each fixed t, Y
(n)
t are tight.

(ii) Given a sequence of stopping times τn, bounded by T , for each ε > 0 there exists δ > 0 and n0

such that
sup
n≥n0

sup
θ∈[0,δ]

P
[∣∣∣Y (n)(τn + θ)− Y (n)(τn)

∣∣∣ > ε
]
≤ ε. (26)

Then the Y (n) are tight.

If the Y (n) are square integrable semimartingales, then we write V (n) for the corresponding pre-
dictable finite variation process and [M (n)] for the quadratic variation of the martingale part. The
following version of Theorem 4.9 can be found in Rebolledo (1980).

Theorem 4.10 (The Aldous-Rebolledo Criterion). Let Y (n) be a sequence of real valued semimartin-
gales with càdlàg paths. Suppose that the following conditions are satisfied.

(i) For each fixed t, Y
(n)
t are tight.

(ii) Given a sequence of stopping times τn, bounded by T , for each ε > 0 there exists δ > 0 and n0

such that
sup
n≥n0

sup
θ∈[0,δ]

P
[∣∣∣V (n)(τn + θ)− V (n)(τn)

∣∣∣ > ε
]
≤ ε, (27)

and
sup
n≥n0

sup
θ∈[0,δ]

P
[∣∣∣[M (n)]τn+θ − [M (n)]τn

∣∣∣ > ε
]
≤ ε. (28)

Then the Y (n) are tight.

This is more generally applicable than it looks. For example, provided that one can prove a compact
containment condition, tightness of measure-valued processes is implied by that of the real-valued
processes obtained by integrating against test functions from a large enough class.

So far in this section we have considered processes with càdlàg paths. If we specialise to the case
where the random variables X(n) take values in the space C of continuous paths over a compact time
interval, [0, 1] for example, then things are simpler. For definiteness (and since it is all we use in what
follows), let us also specialise to E ⊆ Rd. We equip C with the distance induced by the sup-norm:

d(f, g) = ‖f − g‖∞ = sup
t∈[0,1]

|f(t)− g(t)|. (29)

This turns C into a complete, separable metric space, which is continuously embedded in the space D.
Whereas in the case of càdlàg paths, we used the quantity w′(x, δ, T ) to control the accumulation of
‘large jumps’, for continuous paths, we can work with a much simpler quantity:

Definition 4.11 (Modulus of continuity at precision δ, oscδ(ω)). For a continuous path ω(t), t ∈ [0, 1],
let

oscδ(ω) = sup{|ω(s)− ω(t)| : s, t ∈ [0, 1], |s− t| ≤ δ}.

oscδ is simply the modulus of continuity of the path ω, at precision δ.

Theorem 4.12. Suppose that {X(n)}n≥1 is a sequence of processes with values in C. Then {X(n)}n≥1

is tight, if and only if for each ε > 0, there exist n0,M ≥ 1 and δ > 0 such that:

(i) P[|X(n)(0)| > M ] ≤ ε for all n ≥ n0.
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(ii) P(n)[oscδ > ε] ≤ ε.

Thus, to show that a sequence converges weakly in C, it suffices to prove that the conditions of
Theorem 4.12 are satisfied and that there is a unique weak subsequential limit. This uniqueness is for
instance the case if one has already established convergence of the finite-dimensional distributions, i.e.,

convergence of the k-dimensional vector (X
(n)
t1
, . . . , X

(n)
tk

) towards (Xt1 , . . . , Xtk), for any k ≥ 1 and
any choice of ‘test times’ t1, . . . , tk. The first condition of Theorem 4.12 says that the initial value of
the process, X(n)(0), takes values in a compact set with arbitrarily high probability. This is of course
trivial in the case when the starting point of a process is a deterministic point.

In the next section, we will prove weak convergence of certain rescaled Markov chains towards dif-
fusion processes. For this, we will usually use the fact that any weak subsequential limit must satisfy
the associated martingale problem M(a, b) for which sufficient smoothness of the coefficients proves
uniqueness in distribution. Although the limiting processes will be continuous, the approximating
Markov chains are not. We could circumvent this by linear interpolation, but then we lose the Markov
property, and so we prefer to work in the space D. Evidently if we can check the second condition of
Theorem 4.12 for these càdlàg processes, then the second condition of Theorem 4.8 follows a fortiori.
Moreover, combining this estimate on the ‘oscillations’ of the process with the first condition of Theo-
rem 4.12 is enough to guarantee that the first condition of Theorem 4.8 is also satisfied. Thus it will
suffice to check the conditions of Theorem 4.12 for our càdlàg processes and, in this case, any subse-
quential limit will actually be a continuous process (in the sense that P[X ∈ C] = 1). Furthermore,
weak convergence with respect to the Skorokhod topology towards a continuous process X, implies
weak convergence in C of the linear interpolations. We shall also use the fact that if xn → x in the
Skorokhod topology, then xn(t)→ x(t) for all t ≥ 0.

4.2 Markov chains and diffusions

The result which we now discuss is due to Stroock and Varadhan (1969). It can be found in Chapter 11
of Stroock & Varadhan (1979). It shows how to obtain diffusion processes as limits of sequences of
Markov chains and is applicable in a remarkably wide variety of contexts. Our treatment follows rather
closely the book of Durrett.

We take a sequence of Markov chains Y h indexed by a parameter h > 0. We shall focus on discrete
time chains, but see Remark 4.14 below.

The chain Y h takes its values in a certain set Eh ⊆ Rd. The transition probabilities of Y h are given
by a transition kernel Πh,

P[Y h
n+1 ∈ A|Y h

n = x] = Πh(x,A).

We define the random process Xh on [0, 1] by

Xh
t = Y h

bt/hc, t ∈ [0, 1],

so that Xh is almost surely right-continuous and is constant between successive jumps, which occur
every h units of time. We write Kh for the rescaled transition kernel:

Kh(x, dy) =
1

h
Πh(x, dy).

For 1 ≤ i, j ≤ d, define:

ahij(x) =

∫
|y−x|≤1

(yi − xi)(yj − xj)Kh(x, dy), (30)
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bhi (x) =

∫
|y−x|≤1

(yi − xi)Kh(x, dy), (31)

and
∆h
ε (x) = Kh(x,B(x, ε)c).

Suppose that the coefficients aij and bi are continuous functions on Rd for which the martingale problem
M(a, b) is well posed, i.e. for each x ∈ Rd there is a unique in distribution process (Xt, 0 ≤ t ≤ 1) such
that X0 = x almost surely, and

M i
t = Xi

t −
∫ t

0
bi(Xs)ds and M i

tM
j
t −

∫ t

0
aij(Xs)ds

are all local martingales.

Theorem 4.13. Under the assumptions above, suppose further that for each 1 ≤ i, j ≤ d, and for
every R > 0, ε > 0,

(i) limh→0 sup|x|≤R |ahij(x)− aij(x)| = 0.

(ii) limh→0 sup|x|≤R |bhi (x)− bi(x)| = 0.

(iii) limh→0 sup|x|≤R ∆h
ε (x) = 0.

Then if Xh
0 = xh → x0, we have (Xh

t , 0 ≤ t ≤ 1) → (Xt, 0 ≤ t ≤ 1) weakly in D, where Xt solves the
martingale problem M(a, b), and in particular, the linear interpolations of Y h converge weakly in C.

Remark 4.14 (Convergence of continuous time chains). We have stated the result for discrete time
Markov chains. In fact, Durrett treats discrete and continuous time chains simultaneously. Suppose
that we have continuous time chains {Xh

t }t≥0 taking values in Sh ⊆ R. In place of the sequence of
transition probabilities Πh for the discrete time chain, we have a sequence of transition rates:

d

dt
P[Xh

t ∈ A|Xh
0 = x]

∣∣∣∣
t=0

= Qh(x,A), for x ∈ Sh, A ⊆ Rd, x /∈ A.

We assume that for any compact set K,

sup
x∈K

Qh(x,Rd\{x}) <∞. (32)

Let us write
Kh(x, dy) = Qh(x, dy).

Then the statement of Theorem 4.13 remains valid.

The rest of this subsection is devoted to the proof of Theorem 4.13. The idea is simple. The
first two conditions ensure convergence of the infinitesimal mean and variance to those of the diffusion
process. The third guarantees that there are no macroscopic jumps in the limit. By localization, see
Durrett (1996), Section 8.7(c) p.304, we can, and do, replace (i), (ii) and (iii) by the following stronger
conditions:

(i) limh→0 supx∈Rd |ahij(x)− aij(x)| = 0.

(ii) limh→0 supx∈Rd |bhi (x)− bi(x)| = 0.
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(iii) limh→0 supx∈Rd ∆h
ε (x) = 0.

(iv) Moreover, ahij , b
h
i , ∆h

ε are uniformly bounded in h and x.

Step 1. Tightness

Let f be a bounded and measurable function. Define the operator Lh by

Lhf(x) =

∫
Kh(x, dy)(f(y)− f(x)). (33)

This plays the rôle of the infinitesimal generator for our discrete time process. In particular, the process

f(Y h
k )−

k−1∑
j=0

hLhf(Y h
j ), k = 1, 2, . . . (34)

is a (discrete-time) martingale. For our proof of tightness we are going to need an estimate on the time
needed by the chain to make a deviation of size roughly ε > 0, when it starts at position y ∈ Rd. To
do this, we introduce a function g ∈ C2(R) (the twice continuously differentiable functions on R) with
0 ≤ g ≤ 1, g(0) = 1 and g(x) = 0 for x ≥ 1. For x ∈ Rd, set fε(x) = g(|x|2/ε2) which is also C2, and
vanishes for |x| ≥ ε. Finally, for a ∈ Rd, let fa,ε(x) = fε(x− a).

Here, and elsewhere, we shall use Dif to denote ∂f
∂xi

and Dijf for ∂2f
∂xi∂xj

.

Lemma 4.15. There exists Cε <∞, independent of h, such that |Lhfa,ε(x)| ≤ Cε for all a, x ∈ Rd.

Proof. This is simply an application of Taylor’s theorem. For x, y ∈ Rd, there exists cxy ∈ [0, 1] such
that

fa,ε(y)− fa,ε(x) =

d∑
i=1

(yi − xi)Difa,ε(x) +

d∑
i,j=1

(yi − xi)(yj − xj)Dijfa,ε(zxy),

where zxy = x+ cxy(y − x) ∈ [x, y] (the straight line segment joining x and y).
To obtain Lhfa,ε(x), we integrate with respect to Kh(x, dy) which yields the bound∣∣∣Lhfa,ε(x)

∣∣∣ =

∣∣∣∣∫
y∈Rd

Kh(x, dy)(fa,ε(y)− fa,ε(x))

∣∣∣∣
≤

∣∣∣∣∣∇fa,ε(x) ·
∫
|y−x|≤1

(y − x)Kh(x, dy)

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
|y−x|≤1

∑
i,j

(yi − xi)(yj − xj)Dijfa,ε(zxy)Kh(x, dy)

∣∣∣∣∣∣
+ 2‖fa,ε‖∞Kh(x,B(x, 1)c).

Let Aε = supx |∇fa,ε(x)| and Bε = supz ‖Dfa,ε(z)‖, where Df = (Dijf)1≤i,j≤d is the Hessian matrix
of f and for a d× d matrix M , the matrix norm is defined by

‖M‖ := sup
u∈Rd:|u|=1

|〈u,Mu〉|.

In this notation ∣∣∣∣∣∣
∑
i,j

(yi − xi)(yj − xj)Dijfa,ε(zxy)

∣∣∣∣∣∣ ≤ ‖y − x‖2Bε.
33



Hence

Lhfa,ε(x) ≤ Aε|bh(x)|+Bε

∫
|y−x|≤1

|y − x|2Kh(x, dy) + 2Kh(x,B(x, 1)c).

Since
∫
|y−x|≤1 |y − x|

2Kh(x, dy) =
∑

i a
h
ii(x), using the uniform boundedness assumptions of (iv), the

lemma is proved. �

To estimate oscδ(X
h), we first define a sequence of stopping times {τn}n≥0. Set τ0 = 0 and then,

inductively,
τn = inf{t ≥ τn−1 : |Xh

t −Xh
τn−1
| ≥ ε}.

Now set
N = min{n : τn > 1},

σ = min{τn − τn−1 : 1 ≤ n ≤ N}

and, finally
θ = max{|Xh(t)−Xh(t−)| : 0 < t ≤ 1}.

The relationship between these random variables and tightness is provided by the following lemma:

Lemma 4.16. Assume that σ > δ and that θ < ε. Then oscδ(X
h) ≤ 4ε.

Proof. The proof is straightforward. We want to show that for all s, t ∈ [0, 1] with |s − t| ≤ δ,
|Xh(s)−Xh(t)| ≤ 4ε. The point is that since |s− t| ≤ δ < σ, s and t can only span at most one of the
intervals [τn−1, τn], and the definition of the stopping times τn ensures that Xh does not vary by more
than 2ε on such an interval. More explicitly, if τn−1 ≤ s < t < τn, then |Xh(s) −Xh(t)| ≤ 2ε. If on
the other hand, τn−1 ≤ s < τn ≤ t, then

|Xh(s)−Xh(t)| ≤ |Xh(s)−Xh(τn−1)|+ |Xh(t)−Xh(τn)|
+ |Xh(τn)−Xh(τn−)|+ |Xh(τn−)−Xh(τn−1)|
≤ 4ε.

2

We now check the conditions of Theorem 4.12. Since it is assumed that the starting point Xh
0 = xh0

is nonrandom and converges towards a fixed x0, it suffices to check the second condition: for all ε > 0,
there exists δ > 0 and h0 such that for h ≤ h0,

P[oscδ(X
h) ≥ ε] ≤ ε.

From Lemma 4.16, this will follow if we show that for all δ sufficiently small and all x ∈ Rd,

Px[θ > ε/4] < ε/2 and Px[σ < δ] < ε/2 as h→ 0.

The first statement is very simple: since there are at most 1/h time steps in the interval [0, 1], a simple
union bound yields

Px[θ > ε] ≤ 1

h
sup
y

Πh(y,B(y, ε)c) ≤ sup
y

∆h
ε (y)→ 0

by (iii), so certainly for h sufficiently small Px[θ > ε/4] < ε/2. The second claim requires more work.
The first step is to estimate Px[τ1 ≤ u] for small u. Note that by Lemma 4.15,

E[fx,ε(Y
h
k+1)− fx,ε(Y h

k )− hCε] ≥ 0,
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from which it follows that the process

fx,ε(Y
h
k ) + Cεhk, k = 0, 1, . . .

is a submartingale. We set τ = inf{k ≥ 1 : |Y h
k −x| > ε}, so that τ1 = hτ . Using the Optional Stopping

Theorem at τ ∧ u′ with u′ = u/h,

Ex
[
fx,ε(Y

h
τ∧u′) + hCε τ ∧ u′

]
≥ Ex[fx,ε(Y

h
0 )] = 1. (35)

On the event {τ ≤ u′}, we have that |Y h
τ∧u′ − x| ≥ ε, so that fx,ε(Y

h
τ∧u′) = 0, and evidently τ ∧ u′ ≤ u′,

so we have:
Px[τ1 ≤ u] = P[τ ≤ u′] ≤ Ex

[
1− fx,ε(Y h

τ∧u′)
]
≤ hCεu′ = Cεu. (36)

(To see this, observe that the expression under the expectation is non-negative and equals one if τ ≤ u′
and rearrange (35).) Consequently, for all u > 0, letting p = Px[τ1 ≤ u]:

Ex[e−τ1 ] ≤ Px[τ1 ≤ u] + e−uPx[τ1 ≥ u]

= p+ e−u(1− p) = e−u + p(1− e−u)

≤ e−u + pu ≤ 1− u+ Cεu
2.

Thus, by choosing u small enough, we can find λ < 1, independent of x or δ (depending solely on ε
through Cε), such that Ex[e−τ1 ] ≤ λ. Now, iterating and using the strong Markov property at times
τ1, . . . , τn, since λ does not depend on x, we have

Ex[e−τn ] ≤ λn,

and thus, by Markov’s inequality,

Px[N > n] = Px[τn < 1] ≤ Px[e−τn ≥ e−1]

≤ eEx[e−τn ] ≤ eλn.

Now observe that for any k ∈ N,

Px[σ ≤ δ] ≤ k sup
y

Py[τ1 ≤ δ] + Px[N > k]

≤ k Cεδ + eλk,

where we used (36) to estimate P[τ1 ≤ δ]. Thus taking k large enough that eλk < ε/4 and then δ small
enough that Cεkδ < ε/4, we have that P[σ ≤ δ] < ε/2 and tightness is proved.

Step 2. Uniqueness of the weak subsequential limits.
Since we have assumed that the martingale problem M(a, b) is well posed, it suffices to show that the
limit of any weakly convergent subsequence solves the martingale problem M(a, b). The first step is to
show that the operator Lh defined in (33) converges in a suitable sense to the infinitesimal generator
L of the diffusion:

Lf(x) =
1

2

d∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x)
∂f

∂xi
(x).

Lemma 4.17. Let f ∈ C2
K (the space of twice continuously differentiable functions with compact

support). Then Lhf(x)→ Lf(x) uniformly in x ∈ Rd as h→ 0.
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Proof. As in Lemma 4.15, we apply a Taylor expansion to Lhf(x), and, recalling the definition of
bhi (x), we write

Lhf(x) =

d∑
i=1

bhi (x)Dif(x) +
1

2

∫
|y−x|≤1

d∑
i,j=1

(yi − xi)(yj − xj)Dijf(zxy)Kh(x, dy)

+

∫
|y−x|>1

[f(y)− f(x)]Kh(x, dy)

The final term on the right-hand side converges to 0, uniformly in x, by assumption (iii) with ε = 1.
To deal with the first term, note that∣∣∣∣∣

d∑
i=1

bhi (x)Dif(x)−
d∑
i=1

bi(x)Dif(x)

∣∣∣∣∣ ≤ sup
1≤i≤d

|bhi (x)− bi(x)|
d∑
i=1

‖Dif‖∞,

which converges to 0 uniformly in x by assumption (ii) (since f ∈ C2
K). It remains to control the middle

term. Recalling the definition of ahij(x), we obtain:∣∣∣∣∣∣
∫
|y−x|≤1

d∑
i,j=1

(yi − xi)(yj − xj)Dijf(zxy)Kh(x, dy)−
d∑

i,j=1

aij(x)Dijf(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
d∑

i,j=1

ahij(x)Dijf(x)−
d∑

i,j=1

aij(x)Dijf(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
|y−x|≤1

d∑
i,j=1

(yi − xi)(yj − xj)[Dijf(zxy)−Dijf(x)]Kh(x, dy)

∣∣∣∣∣∣ .
The first term converges to 0 uniformly in x by (i) and the fact that the derivatives of f are uniformly
bounded. The second term can be split into integrals over |y − x| > ε and |y − x| ≤ ε. The first of
these converges to 0 uniformly in x ∈ Rd thanks to (iii) and the fact that the integrand is bounded.
For the other term, let

Γ(ε) = sup
1≤i,j≤d

sup
|y−x|≤ε

|Dijf(zxy)−Dijf(x)|,

then since zxy lies on the segment between x and y, and since Dijf is continuous on the compact set
K (and hence uniformly continuous), Γ(ε)→ 0 as ε→ 0. On the other hand, by the Cauchy-Schwarz
inequality,∣∣∣∣∣∣
∫
|y−x|≤ε

d∑
i,j=1

(yi − xi)(yj − xj)[Dijf(zxy)−Dijf(x)]Kh(x, dy)

∣∣∣∣∣∣
≤ Γ(ε)

∫
|y−x|≤ε

d|y − x|2Kh(x, dy),

and the proof of the lemma is complete. �

To complete the proof of Theorem 4.13, fix a sequence hn → 0 for which Xhn → X weakly (in D)
as n→∞. Recall from (34) that

f(Xhn
khn

)−
k−1∑
j=0

hnL
hnf(Xhn

jhn
), k = 0, 1, . . .
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is a (discrete parameter) martingale. In particular, taking kn = ds/hne, and `n = dt/hne, we obtain
that for any Fs-measurable F : D → R,

Ex

F (Xhn)

f(Xhn
`nhn

)− f(Xhn
knhn

)−
`n−1∑
j=kn

hnL
hnf(Xhn

jhn
)


 = 0. (37)

Using the Skorokhod Representation Theorem, we can find Y n such that Y n d
= Xhn and Y n → Y

almost surely, where Y
d
= X. We recognize a Riemann sum in the expectation on the left hand side

of (37). Since almost sure convergence in D implies almost sure convergence of the marginals, we
deduce that

Ex
[
F (X)

{
f(Xt)− f(Xs)−

∫ t

s
Lf(Xu)du

}]
= 0.

Since F is an arbitrary, it follows that

f(Xt)−
∫ t

0
Lf(Xu)du, t ≥ 0

is a martingale for all f ∈ C2
K . Since the martingale problem has a unique solution, we have proved

uniqueness of limits and the proof of Theorem 4.13 is complete. �

Theorem 4.13 is a remarkably powerful result, not only as a means of constructing diffusions, but
also for identifying an appropriate diffusion process with which to approximate a Markov chain. Often
the limiting diffusion is simpler to study than the Markov chain that it approximates. Moreover, our
models are only ever a caricature of reality. The fact that a diffusion approximates so many different
local structures suggests that predictions made from the diffusion approximation are ‘robust’ to changes
in the (often unreliable) local details of our modelling.

Here we present one simple example of a diffusion approximation. There are more on the problem
sheet.

Example 4.18 (The Ehrenfest chain). The Ehrenfest chain was proposed by Tatania and Paul Ehren-
fest in 1907 to explain the second law of thermodynamics. We suppose that 2n molecules are placed in
two chambers. In the original model, molecules independently change container at rate 1/2n. (In other
words, at the times of a rate one Poisson process, a molecule is picked independently at random to
change container.) We shall work with the discrete time version, in which at each time step a molecule
is picked at random to change container (the limiting diffusion is the same as for the original model).
Let Znt denote the number of molecules in the first contained at time t. The transition probabilities of
this chain are, in an obvious notation,

qi,i−1 =
i

2n
qi,i+1 =

2n− i
2n

.

The chain has an equilibrium distribution which we denote by πi. Mark Kac proved in 1947 that if the
initial system is not in equilibrium, then entropy, given by

H(t) = −
∑
i

P[Zt = i] log
(
P[Zt = i]/πi

)
,

increases.
Define the centred and normalized process Xn

t = (Znbtnc − n)/
√
n, and suppose (for definiteness)

that Zn0 = n.
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The process (Xn
t , 0 ≤ t ≤ 1) converges weakly to an Ornstein-Uhlenbeck diffusion (Xt, 0 ≤ t ≤ 1)

with unit viscosity, that is the pathwise unique solution to

dXt = −Xtdt+ dBt, X0 = 0.

We prove this using Theorem 4.13 with Y n
t = (Znt − n)/

√
n so that Xn

t is just a timechange of Y n
t .

Here hn = 1/n and we have abused notation by writing Xn for Xhn. The state space of Xn is
En = {k/

√
n : −n ≤ k ≤ n} and (again abusing notation) Kn(x, dy) = nΠn(x, dy), where

Πn(x, x+ n−1/2) =
n− x

√
n

2n
, Πn(x, x− n−1/2) =

n+ x
√
n

2n
.

To see this, if Y n
t = x, then the number of particles in the first container is n + x

√
n and if one of

those is chosen (which happens with probability (n + x
√
n)/2n) then the number of molecules in the

container will go down by one.
Since the chain can only make jumps of size 1/

√
n, condition (iii) of Theorem 4.13 holds trivially,

and for all n ≥ 1,

bn(x) =

∫
(y − x)Kn(x, dy) = n

{
n−1/2n− x

√
n

2n
− n−1/2n+ x

√
n

2n

}
= −x,

while

an(x) =

∫
(y − x)2Kn(x, dy) = n

{
n−1n− x

√
n

2n
+ n−1n+ x

√
n

2n

}
= 1.

Since the coefficients of the Ornstein-Uhlenbeck diffusion are Lipschitz, there is pathwise uniqueness for
the associated SDE and thus uniqueness in distribution. Therefore, (Xn

t , 0 ≤ t ≤ 1) converges weakly
to (Xt, 0 ≤ t ≤ 1), by Theorem 4.13.

5 The method of duality

Often, proving that a sequence of processes is tight, and that any limit point solves a martingale
problem, is relatively straightforward, but uniqueness of the solution to the martingale problem is
much harder. Sometimes in this context, the method of duality can be helpful. It has also found
widespread use as a means of characterising the distribution of a complex stochastic process in terms
of another, simpler, process (or even a deterministic equation).

Theorem 5.1 (The method of duality). Let E1, E2 be metric spaces and suppose that P and Q are
probability distributions on the space of càdlàg functions from [0,∞) to E1, E2 respectively. (These
spaces are endowed with the natural σ-fields.) Take two bounded functions f , g on E1 × E2 for which
the following are true:

(i) For each y ∈ E2, f(·, y) and g(·, y) are continuous functions on E1.

(ii) For each x ∈ E1, f(x, ·) and g(x, ·) are continuous functions on E2.

(iii) For y ∈ E2,

f(X(t), y)−
∫ t

0
g(X(s), y)ds

is a P-martingale.
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(iv) For x ∈ E1,

f(x, Y (t))−
∫ t

0
g(x, Y (s))ds

is a Q-martingale.

Then
EP
X(0) [f(X(t), Y (0))] = EQ

Y (0) [f(X(0), Y (t))] .

Proof. Taking expectations and differentiating gives that for s ≥ 0,

d

ds
EP [f (X(s), y)] = EP [g (X(s), y)] ,

and
d

ds
EQ [f (x, Y (s))] = EQ [g (x, Y (s))] .

(The interchange of differentiation and integration is valid, since f and g are bounded.) Thus for each
fixed t and 0 ≤ s ≤ t,

d

ds
EP×Q [f (X(s), Y (t− s))] = 0.

Integrating s over [0, t] yields the result. �

(There is no ambiguity if we drop the superscripts P, Q, from the expectations. From now on, we
do so.)

The application that we have in mind is the following. If we can find a sufficiently large class of
functions f(·, y) for which the conditions of Theorem 5.1 are satisfied, then we can use Y to characterise
the distribution of X (or vice versa). In particular, existence of a dual process Y (for a sufficiently rich
class of functions f) is sufficient to guarantee uniqueness of X. To see why, suppose that we have two
solutions to the martingale problem, X, X̃. Then, for a dual process Y ,

E[f(X(t), Y (0))] = E[f(X(0), Y (t))] = E[f(X̃(0), Y (t))] = E[f(X̃(t), Y (0))].

If the class of f is wide enough, it follows that the one dimensional distributions of X and X̃ coincide.
But as we saw in Theorem 3.3, this is enough to deduce that the finite dimensional distributions
coincide. That is the solution to the martingale problem is unique. In general, it is far simpler to prove
existence than uniqueness and so this observation has found widespread application.

The method of duality can be generalised in several ways. For example, in the form above we
insisted that if we write AX for the generator of the process X on E1 and AY for the generator of the
process Y on E2, then AXf(·, y)(x) = AY f(x, ·)(y). If instead we have

AXf(·, y)(x) + α(x)f(x, y) = AY f(x, ·)(y) + β(y)f(x, y),

then at least provided that
∫ t

0 |α(X(s))|ds < ∞ a.s. and
∫ t

0 |β(Y (s))|ds < ∞ a.s. and we have the
additional integrability conditions

E
[∣∣∣∣f(X(t), Y (0)) exp

(∫ t

0
α(X(s))ds

)∣∣∣∣] <∞
and

E
[∣∣∣∣f(X(0), Y (t)) exp

(∫ t

0
β(Y (s))ds

)∣∣∣∣] <∞,
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the duality formula can be modified to

E
[
f(X(t), Y (0)) exp

(∫ t

0
α(X(s))ds

)]
= E

[
f(X(0), Y (t)) exp

(∫ t

0
β(Y (s))ds

)]
.

A proof of this more general form of the method of duality (and some examples of its ramifications)
can be found in Ethier & Kurtz, p.188ff.

Remark 5.2 (Approximate duality). A very useful extension of the method of duality is the following
observation of Mytnik (1996). The purpose of the dual process Y is to provide an expression for the
one-dimensional distributions of a solution to the martingale problem for X. The same objective is
achieved if one can find an ‘approximate dual’. That is, if, for each y, we can find a sequence of
processes Yn such that

E [f(X(t), y)] = lim
n→∞

E [f(X(0), Yn(t))] . (38)

Uniqueness of the solution to the martingale problem follows as before.

The function f of Theorem 5.1 is often referred to as a ‘duality function’. In general, finding a
duality function is something of a black art. However, for diffusion processes arising in genetics, one
can often use a so-called moment dual.

Example 5.3 (The Wright-Fisher diffusion and Kingman’s coalescent). Suppose that

dXt =
√
Xt(1−Xt)dBt.

Then
E
[
XN0
t

]
= E

[
XNt

0

]
,

where Nt is a pure death process in which Nt 7→ Nt − 1 at rate
(
Nt

2

)
.

To check this, we take f(x, n) = xn as the duality function in Theorem 5.1. Then writing LWF for
the infinitesimal generator of the Wright-Fisher diffusion,

LWF f(·, n)(x) =

(
n

2

)
xn−2x(1− x) =

(
n

2

)
(xn−1 − xn).

Similarly, writing LK for the infinitesimal generator of the pure death process,

LKf(x, ·)(n) =

(
n

2

)
(f(x, n− 1)− f(x, n)) =

(
n

2

)
(xn−1 − xn).

We take g(x, n) =
(
n
2

)
(xn−1 − xn) in Theorem 5.1. Since 0 < x < 1 and n only ever decreases through

positive integer values, boundedness is immediate and so the result follows.
There is actually a much stronger relationship between the pure death process we have just described

and the Wright-Fisher diffusion. If we consider the ancestors of a sample taken from the population at
the current time, then as we trace backwards in time, the death process counts the number of individuals
ancestral to the sample. A death event, corresponds to two ancestral lineages having a common parent.
The process that describes the whole tree of ancestral lineages is known as Kingman’s coalescent and
has proved to be an immensely powerful tool in population genetics.

6 The theory of speed and scale

With apologies, in this section we shall change our notation. Diffusions will have infinitesimal drift µ
and infinitesimal variance σ2 and will be defined on the interval (a, b).
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6.1 The speed measure and the scale function

Evidently diffusion processes are intricately connected with second order parabolic equations. Indeed,
if we have an expression for the fundamental solution to the corresponding equation, then we have the
transition density of the diffusion and so can calculate essentially any quantity of interest. However, in
general, it is certainly not going to be possible to find an explicit expression for the transition density.
Nonetheless, a nice feature of one dimensional diffusions is that many quantities can be calculated
explicitly. This is because (except at certain singular points which, under our conditions, will only
ever be at the endpoints of the interval in which our diffusion lives) all one-dimensional diffusions can
be transformed into Brownian motion, first by a change of space variable (through the so-called scale
function) and then a timechange (through what is known as the speed measure).

To see how this works, we first investigate what happens to a diffusion when we change the timescale.
Suppose that a diffusion {Zt}t≥0 has generator LZ , with infinitesimal drift µZ(x) and infinitesimal
variance σ2

Z(x). We use ∆h to denote the operator that reports the increment of a process over the
next time step of length h (where we are thinking of h as being infinitesimally small). Thus, for
example,

E [∆hZ(0)|Z0 = y] = µZ(y)h+ o(h),

and
E
[
(∆hZ(0))2

∣∣Z0 = y
]

= σ2
Z(y)h+ o(h).

We define a new process {Yt}t≥0 by Yt = Zτ(t) where

τ(t) =

∫ t

0
β(Ys)ds,

for some function β(x) which we assume to be bounded, continuous and strictly positive. So if Y0 = Z0,
then the increment of Yt over an infinitesimal time interval (0, dt) is that of Zt over the interval
(0, dτ(t)) = (0, β(Y0)dt). In our previous notation,

E[∆hY (0)|Y0 = y] = β(Y0)hµZ(Z0) + o(h) = β(y)µZ(y)h+ o(h),

and
E[(∆hY (0))2|Y0 = y] = β(Y0)hσ2

Z(Z0) + o(h) = β(y)σ2
Z(y)h+ o(h).

In other words,
LY f(x) = β(x)LZf(x).

In the simplest example, β is a constant and we are simply changing our time units in a spatially
homogeneous way. In general, the rate of our ‘clock’ depends upon where we are in space. We are now
in a position to understand speed and scale. Let {Xt}t≥0 be governed by the infinitesimal generator

Lf(x) =
1

2
σ2(x)

d2f

dx2
+ µ(x)

df

dx
, (39)

for f twice continuously differentiable on (a, b). We assume that µ(x) and σ(x) are bounded and
locally Lipschitz on (a, b) with σ2(x) > 0 on (a, b) (although it can vanish on {a, b}). As we know
from Example 2.22, in general, we are going to need to be more specific about which functions lie in
the domain of our generator, but we defer that to §6.2. Suppose now that S(x) is a strictly increasing
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function on (a, b) and consider the new process Zt = S(Xt). Then the generator LZ of Z can be
calculated as

LZf(x) =
d

dt
E [f(Zt)|Z0 = x]

∣∣∣∣
t=0

=
d

dt
E [f(S(Xt))|S(X0) = x]

∣∣∣∣
t=0

= LX(f ◦ S)(S−1(x))

=
1

2
σ2(S−1(x))

d2

dx2
(f ◦ S)(S−1(x)) + µ(S−1(x))

d

dx
(f ◦ S)(S−1(x))

=
1

2
σ2(S−1(x))

{
(S′(S−1(x)))2d

2f

dx2
(x) + S′′(S−1(x))

df

dx
(x)

}
+µ(S−1(x))S′(S−1(x))

df

dx
(x)

=
1

2
σ2(S−1(x))S′(S−1(x))2d

2f

dx2
(x) + LS(S−1(x))

df

dx
(x). (40)

Now if we can find a strictly increasing function S that satisfies LS ≡ 0, then the drift term in (40)
will vanish and so Zt will just be a time change of Brownian motion on the interval (S(a), S(b)). Such
an S is provided by the scale function of the diffusion.

Definition 6.1 (Scale function). For a diffusion Xt on (a, b) with drift µ and variance σ2, the scale
function is defined by

S(x) =

∫ x

x0

exp

(
−
∫ y

η

2µ(z)

σ2(z)
dz

)
dy,

where x0, η are points fixed (arbitrarily) in (a, b).

Definition 6.2 (Natural scale). We shall say that a diffusion is in natural scale if S(x) can be taken
to be linear.

The scale change Xt 7→ S(Xt) resulted in a timechanged Brownian motion on (S(a), S(b)). The
change of time required to transform this into standard Brownian motion is dictated by the speed
measure.

Definition 6.3 (Speed measure). The function m(ξ) = 1
σ2(ξ)S′(ξ) is the density of the speed measure

or just the speed density of the process Xt. We write

M(x) =

∫ x

x0

m(ξ)dξ.

Remark 6.4. The function m plays the rôle of β before. Naively, looking at equation (40), we might
expect to timechange via β(ξ) = 1/(σ2(ξ)S′(ξ)2). However, notice that∫ x

x0

m(ξ)dξ =

∫ S(x)

S(x0)
m(S−1(y))

1

S′(S−1(y))
dy =

∫ S(x)

S(x0)

1

σ2(S−1(y))
(
S′(S−1(y))

)2dy.
The additional S′(y) in the generator (40) has been absorbed in the change of coordinates since our
time change is applied to S(Xt) on (S(a), S(b)), not to Xt itself.

In summary, we have the following.
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Lemma 6.5. Denoting the scale function and the speed measure by S and M respectively we have

Lf =
1

2

1

dM/dS

d2f

dS2
=

1

2

d

dM

(
df

dS

)
.

Proof

1

2

d

dM

(
df

dS

)
=

1

2

1

dM/dx

d

dx

(
1

dS/dx

df

dx

)
(41)

=
1

2
σ2(x)S′(x)

d

dx

(
1

S′(x)

df

dx

)
=

1

2
σ2(x)

d2f

dx2
− 1

2
σ2(x)S′(x)

S′′(x)

(S′(x))2

df

dx

=
1

2
σ2(x)

d2f

dx2
+ µ(x)

df

dx

(since S solves LS = 0) as required. 2

6.2 Hitting probabilities and Feller’s boundary classification

Before going further, let’s see how we might apply this. Recall that the Wright-Fisher diffusion on (0, 1)
is used to model evolution of gene frequencies. Suppose that Xt represents the frequency of a-alleles in
a population and that zero and one are traps for the process. (The different forms a gene can take are
called alleles.) One question that we should like to answer is “What is the probability that the a-allele
is eventually lost from the population?” In other words, what is the probability that the diffusion hits
zero before one? To prove a general result we need first to be able to answer this question for Brownian
motion.

Lemma 6.6. Let {Wt}t≥0 be standard Brownian motion on the line. For each y ∈ R, let Ty denote
the random time at which it hits y for the first time. Then for a < x < b,

P[Ta < Tb|W0 = x] =
b− x
b− a

.

Sketch of Proof
Let u(x) = P[Ta < Tb|W0 = x] and assume that P[Ta ∧ Tb < h|W0 = x] = o(h) as h → 0. If we

suppose that u is sufficiently smooth, then, using the Markov property,

u(x) = E [u(Wh)|W0 = x] + o(h)

= E
[
u(x) + (Wh − x)u′(x) +

1

2
(Wh − x)2u′′(x)

]
+ o(h)

= u(x) +
1

2
hu′′(x) + o(h).

Subtracting u(x) from each side, dividing by h and letting h tend to zero, we obtain u′′(x) = 0. We
also have the boundary conditions u(a) = 1 and u(b) = 0. This is easily solved to give

u(x) =
b− x
b− a

,

as required. 2
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Of course this reflects the corresponding result for simple random walk that you prove in elementary
probability courses. In general we can reduce the corresponding question for {Xt}t≥0 to solution of
the equation Lu(x) = 0 with u(a) = 1 and u(b) = 0, but in fact we have already done all the work we
need. We have the following result.

Lemma 6.7 (Hitting probabilities). Let {Xt}t≥0 be a one-dimensional diffusion on (a, b) with infinites-
imal drift µ(x) and variance σ2(x) satisfying the conditions above. If a < a0 < x < b0 < b then writing
Ty for the first time at which Xt = y,

P[Ta0 < Tb0 |X0 = x] =
S(b0)− S(x)

S(b0)− S(a0)
, (42)

where S is the scale function for the diffusion.

Remark 6.8. Our definition of the scale function, S, depended upon arbitrary choices of η and x0,
but η cancels in the ratio and x0 in the difference, so that the expression on the right hand side of (42)
is well-defined.

Proof of Lemma 6.7
Evidently it is enough to consider the corresponding hitting probabilities for the process Zt = S(Xt),

where S is the scale function. The process {Zt}t≥0 is a time changed Brownian motion, but since we only
care about where not when the process exits the interval (S(a0), S(b0)), then we need only determine
the hitting probabilities for Brownian motion and the result follows immediately from Lemma 6.6. 2

Before continuing to calculate quantities of interest, we fill in a gap left earlier, when we failed
to completely specify the domain of the generators of our one-dimensional diffusions. Whether or not
functions in the domain must satisfy boundary conditions at a and b is determined by the nature of those
boundaries from the perspective of the diffusion. More precisely, we have the following classification.

Definition 6.9 (Feller’s boundary classification). For a one-dimensional diffusion on the interval with
endpoints a, b (with a < b), define

u(x) =

∫ x

x0

MdS, v(x) =

∫ x

x0

SdM,

where S is the scale function of Definition 6.1 and M the speed measure of Definition 6.3. The boundary
b is said to be

regular if u(b) <∞ and v(b) <∞
exit if u(b) <∞ and v(b) =∞
entrance if u(b) =∞ and v(b) <∞
natural if u(b) =∞ and v(b) =∞

with symmetric definitions at a.
Regular and exit boundaries are said to be accessible while entrance and natural boundaries are

called inaccessible.

Theorem 6.10. If neither a nor b is regular, the domain of the generator (39) is the continuous
functions f on [a, b] which are twice continuously differentiable on the interior and for which

(i) if a and b are inaccessible there are no further conditions,
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(ii) if b (resp. a) is an exit boundary, then

lim
x→b
Lf(x) = 0(

resp. lim
x→a
Lf(x) = 0

)
.

If b (resp. a) is a regular boundary, then for each fixed q ∈ [0, 1] there is a Feller semigroup corre-
sponding to the generator (39) with domain as above plus the additional condition

q lim
x→b
Lf(x) = −(1− q) lim

x→b

1

S′(x)
f ′(x) (43)

(
resp. q lim

x→a
Lf(x) = (1− q) lim

x→a

1

S′(x)
f ′(x)

)
.

For a more careful discussion see Ethier & Kurtz (1986), Chapter 8.

6.3 Green’s functions

Lemma 6.7 tells us the probability that we exit (a, b) for the first time through a, but can we glean
some information about how long we must wait for {Xt}t≥0 to exit the interval (a, b) (either through
a or b) or, more generally, writing T ∗ for the first exit time of (a, b), can we say anything about

E[
∫ T ∗

0 g(Xs)ds|X0 = x]? (Putting g = 1 gives the mean exit time.) Let us write

w(x) = E

[∫ T ∗

0
g(Xs)ds|X0 = x

]
and we’ll derive the differential equation satisfied by w.

Suppose for simplicity that g is Lipschitz continuous on (a, b) with Lipschitz constant K. First
note that w(a) = w(b) = 0. Now consider a small interval of time of length h. We’re going to split the
integral into the contribution up to time h and after time h. Because {Xt}t≥0 is a Markov process,

E

[∫ T ∗

h
g(Xs)ds|Xh = z

]
= E

[∫ T ∗

0
g(Xs)ds|X0 = z

]
= w(z)

and so for a < x < b

w(x) ≈ E
[∫ h

0
g(Xs)ds|X0 = x

]
+ E [w(Xh)|X0 = x] . (44)

The ‘≈’ here is because we have ignored the possibility that h > T ∗. Since g is Lipschitz continuous,
we have the approximation∣∣∣∣E [∫ h

0
g(Xs)ds

∣∣∣∣X0 = x

]
− h g(x)

∣∣∣∣ = E
[∣∣ ∫ h

0
g(Xs)ds− hg(x)

∣∣∣∣∣∣X0 = x

]
≤ E

[∫ h

0
K|Xs − x|ds

∣∣∣∣X0 = x

]
≤ K

∫ h

0

√
E [ |Xs − x|2|X0 = x]ds = O(h3/2).

Now substitute this estimate in (44), subtract w(x) from both sides, divide by h and let h ↓ 0 to obtain

µ(x)w′(x) +
1

2
σ2(x)w′′(x) = −g(x), w(a) = 0 = w(b). (45)

45



Let us now turn to solving this equation. Using (41) from the proof of Lemma 6.5 with w = f ,

Lw(x) =
1

2

1

m(x)

d

dx

(
1

S′(x)
w′(x)

)
and so we have

d

dx

(
1

S′(x)
w′(x)

)
= −2g(x)m(x),

whence
1

S′(x)
w′(x) = −2

∫ x

a
g(ξ)m(ξ)dξ + β

where β is a constant. Multiplying by S′(x) and integrating gives

w(x) = −2

∫ x

a
S′(ξ)

∫ ξ

a
g(η)m(η)dηdξ + β(S(x)− S(a)) + α

for constants α, β. Since w(a) = 0, we immediately have that α = 0. Reversing the order of integration,

w(x) = −2

∫ x

a

∫ x

η
S′(ξ)dξg(η)m(η)dη + β(S(x)− S(a))

= −2

∫ x

a
(S(x)− S(η))g(η)m(η)dη + β(S(x)− S(a))

and w(b) = 0 now gives

β =
2

S(b)− S(a)

∫ b

a
(S(b)− S(η))g(η)m(η)dη.

Finally then

w(x) =
2

S(b)− S(a)

{
(S(x)− S(a))

∫ b

a
(S(b)− S(η))g(η)m(η)dη

− (S(b)− S(a))

∫ x

a
(S(x)− S(η))g(η)m(η)dη

}
=

2

S(b)− S(a)

{
(S(x)− S(a))

∫ b

x
(S(b)− S(η))g(η)m(η)dη

+ (S(b)− S(x))

∫ x

a
(S(η)− S(a))g(η)m(η)dη

}
where the last line is obtained by splitting the first integral into

∫ b
a =

∫ b
x +

∫ x
a .

Theorem 6.11. For a continuous function g,

E
[∫ T∗

0
g(Xs)ds|X0 = x

]
=

∫ b

a
G(x, ξ)g(ξ)dξ,

where for a < x < b we have

G(x, ξ) =

{
2 (S(x)−S(a))

(S(b)−S(a)) (S(b)− S(ξ))m(ξ), for x < ξ < b

2 (S(b)−S(x))
(S(b)−S(a)) (S(ξ)− S(a))m(ξ), for a < ξ < x,

with S the scale function given in Definition 6.1 and m(ξ) = 1
σ2(ξ)S′(ξ) , the density of the speed measure.
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Definition 6.12. The function G(x, ξ) is called the Green’s function of the process {Xt}t≥0.

Of course, the Green’s function is familiar from the elementary theory of differential equations,
but now we have a probabilistic interpretation. By taking g to approximate 1(x1,x2) we see that∫ x2
x1
G(x, ξ)dξ is the mean time spent by the process in (x1, x2) before exiting (a, b) if initially X0 = x.

Sometimes, the Green’s function is called the sojourn density.

Example 6.13. Consider the Wright-Fisher diffusion with generator

Lf(p) =
1

2
p(1− p)f ′′(p).

Notice that since it has no drift term (µ = 0) it is already in natural scale, S(p) = p (up to an arbitrary
additive constant). What about E[T ∗]?

Using Theorem 6.11 with g = 1 we have

Ep[T ∗] = E
[∫ T∗

0
1ds|X0 = p

]
=

∫ 1

0
G(p, ξ)dξ

= 2

∫ 1

p
p(1− ξ) 1

ξ(1− ξ)
dξ + 2

∫ p

0
(1− p)ξ 1

ξ(1− ξ)
dξ

= 2p

∫ 1

p

1

ξ
dξ + 2(1− p)

∫ p

0

1

1− ξ
dξ

= −2 {p log p+ (1− p) log(1− p)} .

2

On the problem sheet you show that the Wright-Fisher diffusion arises as a diffusion approximation
both to the (continuous time) Moran model and the (discrete time) Wright-Fisher model. Example 6.13
suggests that in our Moran model, at least if the population is large, if the current proportion of a-
alleles is p, the time until either the a-allele or the A-allele is fixed in the population should have mean
approximately

−2 {p log p+ (1− p) log(1− p)} . (46)

In fact by conditioning on whether the proportion of a-alleles increases or decreases at the first re-
production event, one obtains a recurrence relation for the number of jumps until the Moran process
first hits either zero or one. This recurrence relation can be solved explicitly and since jumps occur at
independent exponentially distributed times with mean 1/

(
N
2

)
, it is easy to verify that (46) is indeed

a good approximation. For the Wright-Fisher model, in its original timescale, there is no explicit ex-
pression for the expected time to fixation, t(p). However, since changes in p over a single generation
are typically small, one can expand t(p) in a Taylor series, and thus verify that for a large population,

p(1− p)t′′(p) = −2N, t(0) = 0 = t(1).

This is readily solved to give

t(p) = −2N {p log p+ (1− p) log(1− p)} ,

as predicted by our diffusion approximation. (The Moran model is already in the diffusive timescale,
whereas the Wright-Fisher model is not, accounting for the extra factor of N .)
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6.4 Stationary distributions and reversibility

Before moving on to stochastic representations of solutions to various pde’s, we consider one last
quantity for our one-dimensional diffusions. First a general definition.

Definition 6.14 (Stationary distribution). Let {Xt}t≥0 be a Markov process on the space E. A sta-
tionary distribution for {Xt}t≥0 is a probability distribution ψ on E such that if X0 has distribution
ψ, then Xt has distribution ψ for all t ≥ 0.

In particular this definition tells us that if ψ is a stationary distribution for {Xt}t≥0, then

d

dt
E [f(Xt)|X0 ∼ ψ] = 0,

where we have used X0 ∼ ψ to indicate that X0 is distributed according to ψ. In other words

d

dt

∫
E
E [f(Xt)|X0 = x]ψ(dx) = 0.

Evaluating the time derivative at t = 0 gives∫
E
Lf(x)ψ(dx) = 0.

Sometimes this allows us to find an explicit expression for ψ(dx). Let {Xt}t≥0 be a one-dimensional
diffusion on (a, b) with generator given by (39). We’re going to suppose that there is a stationary
distribution which is absolutely continuous with respect to Lebesgue measure. Let us abuse notation a
little by using ψ(x) to denote the density of ψ(dx) on (a, b). Then, integrating by parts, we have that
for all f ∈ D(L),

0 =

∫ b

a

{
1

2
σ2(x)

d2f

dx2
(x) + µ(x)

df

dx
(x)

}
ψ(x)dx

=

∫ b

a
f(x)

{
1

2

d2

dx2

(
σ2(x)ψ(x)

)
− d

dx
(µ(x)ψ(x))

}
dx+ boundary terms.

This equation must hold for all f in the domain of L and so, in particular, choosing f and f ′ to vanish
on the boundary,

1

2

d2

dx2

(
σ2(x)ψ(x)

)
− d

dx
(µ(x)ψ(x)) = 0 for x ∈ (a, b). (47)

Integrating once gives
1

2

d

dx

(
σ2(x)ψ(x)

)
− µ(x)ψ(x) = C1,

for some constant C1 and then using S′(x) as an integrating factor we obtain

d

dy

(
S′(y)σ2(y)ψ(y)

)
= C1S

′(y),

from which

ψ(x) = C1
S(x)

S′(x)σ2(x)
+ C2

1

S′(x)σ2(x)
= m(x) [C1S(x) + C2] .

If can arrange constants so that ψ ≥ 0 and ∫ b

a
ψ(ξ)dξ = 1
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then the stationary distribution exists and has density ψ. In particular, if
∫ b
a m(y)dy <∞, then taking

C1 = 0,

ψ(x) =
m(x)∫ b

a m(y)dy
(48)

is the density of a stationary distribution for the diffusion.
We know from the theory of Markov chains that uniqueness of the stationary measure of a chain

requires irreducibility. The corresponding condition here is regularity.

Definition 6.15. For a one dimensional diffusion process on the interval I, let us write

Hy = inf{t > 0 : Xt = y}.

The diffusion is said to be regular if for all x ∈ I0 (the interior of I) and all y ∈ I (including finite
endpoints) Px[Hy <∞] > 0.

Theorem 6.16 (Watanabe & Motoo 1958). A regular diffusion in natural scale with no absorbing
boundary points has a stationary distribution if and only if the speed measure is finite and then it is
given by (48).

Under these conditions there is also an ergodic theorem.

Example 6.17. Recall the generator of the Wright-Fisher diffusion with mutation from the problem
sheet,

Lf(p) =
1

2
p(1− p)d

2f

dp2
+
(
ν2(1− p)− ν1p

)df
dp
.

What is the stationary distribution?

For this diffusion

S′(p) = exp

(
−
∫ p

p0

2µ(z)

σ2(z)
dz

)
= exp

(
−
∫ p

p0

2ν2(1− z)− 2ν1z

z(1− z)
dz

)
= C exp (−2ν2 log p− 2ν1 log(1− p))
= Cp−2ν2(1− p)−2ν1 ,

where the value of the constant C depends on p0. In this case we have

m(p) =
1

σ2(p)S′(p)
= Cp2ν2−1(1− p)2ν1−1.

Now ∫ 1

0
m(p)dp =

∫ 1

0
Cp2ν2−1(1− p)2ν1−1dp = C

Γ(2ν1)Γ(2ν2)

Γ(2(ν1 + ν2))

(where Γ is Euler’s Gamma function) and so the stationary distribution is just

ψ(p) =
Γ(2(ν1 + ν2))

Γ(2ν1)Γ(2ν2)
p2ν2−1(1− p)2ν1−1. (49)

Ethier & Kurtz (1986), Chapter 10, Lemma 2.1 gives a direct proof of uniqueness of this stationary
distribution. 2
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Figure 1: Stationary distribution of the Wright-Fisher diffusion. The graphs plot the density
ψ, given by equation (49) for: 2ν1 = 2ν2 = 0.2 (solid line), 2ν1 = 2ν2 = 1.5 (dashed line), 2ν1 =
0.5, 2ν2 = 1.3 (dotted line) and 2ν1 = 0.7, 2ν2 = 0.2 (alternating dashes and dots).

The stationary distribution gives us some understanding of the longterm balance between the
competing forces of mutation (which maintains genetic diversity) and the stochastic term (confusingly
usually referred to as the genetic drift), which removes variation from the population. Figure 1 shows
the density of the stationary distribution of the Wright-Fisher diffusion with mutation for a variety of
parameters. When 2ν1 and 2ν2 are both bigger than 1, the stationary distribution is peaked around
its mean, but when they are both less than one it has singularities at {0, 1}. Of course, if there is no
mutation, then the process eventually becomes trapped in {0, 1}.

Finally let us demonstrate one very powerful technique that is often applied in settings where the
speed measure is a stationary distribution. The idea is familiar from the study of discrete time and
space Markov chains.

Definition 6.18. A discrete time and space Markov chain with transition probabilities p(i, j) is said
to be reversible with respect to the stationary measure π if it satisfies the detailed balance equation:

π(i)p(i, j) = π(j)p(j, i)

for all i and j in the state space.

For such chains we can say things about events backwards in time by considering the forwards
in time transition probabilities. The analogue of the detailed balance equation for a one-dimensional
diffusion is

ψ(x)p(t, x, y) = ψ(y)p(t, y, x) for all x, y, t.

Now multiplying by arbitrary functions f(x) and g(y) in the domain of the generator of the diffusion
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we obtain ∫
ψ(x)f(x)

(∫
p(t, x, y)g(y)dy

)
dx =

∫
ψ(y)g(y)

(∫
p(t, y, x)f(x)dx

)
dy.

Now observe that the inner integrals are

E[g(Xt)|X0 = x] and E[f(Xt)|X0 = y]

and differentiate with respect to t at t = 0 to obtain∫
f(x)Lg(x)ψ(x)dx =

∫
Lf(y)g(y)ψ(y)dy. (50)

Definition 6.19. If the identity (50) is satisfied for all f and g, then ψ is called a reversible stationary
distribution and we say that the diffusion is reversible with respect to ψ.

Now suppose that the stationary distribution of the diffusion is given by ψ(x) = m(x)/
∫
m(y)dy.

Then choosing f and g to vanish at the boundary of the domain to force the boundary terms to vanish
when we integrate by parts (twice), we obtain∫ b

a
f(x)Lg(x)m(x)dx =

1

2

∫ b

a
f(x)

1

m(x)

d

dx

(
1

S′(x)

dg

dx

)
m(x)dx

=
1

2

∫ b

a

d

dx

(
1

S′(x)

df

dx

)
g(x)dx

=
1

2

∫ b

a

1

m(x)

d

dx

(
1

S′(x)

df

dx

)
g(x)m(x)dx

=

∫ b

a
Lf(x)g(x)m(x)dx,

so this is indeed a reversible stationary distribution.

7 PDEs that can be solved by running a Brownian motion (or a
diffusion)

We now turn to higher dimensions and investigate some of the classes of equation that can be ‘solved’
by running a Brownian motion. We shall take our underlying diffusion to be Brownian motion, but
by replacing it with a diffusion with generator L, we obtain probabilistic representations of the corre-
sponding equations with 1

2∆ replaced by L. Here we shall use the representations to deduce properties
of Brownian motion. In general, where explicit solutions of the pde are not available, one can also use
the diffusion to deduce properties of the solution to the pde. This section owes a great deal to lecture
notes of Peter Mörters.

7.1 The Dirichlet Problem and exit times

Definition 7.1. Let U be an open, bounded domain in Rd and let ∂U be its boundary. Suppose
φ : ∂U → R is a continuous function on its boundary. A function u : U → R, which is twice
continuously differentiable on U and continuous on the closure U is a solution to the Dirichlet problem
with boundary value φ, if

∆u(x) = 0 for all x ∈ U
and u(x) = φ(x) for x ∈ ∂U . Here ∆ is the Laplace operator ∆ =

∑d
i=1Dii and a function with

∆u(x) = 0 for all x ∈ U is said to be harmonic on U .
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This problem was posed by Gauss in 1840. In fact Gauss thought he showed that there is always a
solution, but his reasoning was wrong and Zaremba in 1909 and Lebesgue in 1913 gave counterexamples.
However, if the domain is sufficiently nice there is a solution and in this case the solution can be
represented and simulated using Brownian motion. To understand the connection between Brownian
motion and harmonic functions, we have a closer look at Itô’s formula.

Let B = {B(t) = (B1(t), . . . , Bd(t)) : t ≥ 0} be a d-dimensional Brownian motion started in
x = (x1, . . . , xd), i.e. B1, . . . , Bd are independent standard Brownian motions started in x1, . . . , xd.
Recall that

〈Bk〉t = t and 〈Bk, Bl〉t = 0 for all l 6= k.

With this information Itô’s formula reads

f(B(t))− f(x) =

∫ t

0

d∑
i=1

Dif(B(s)) dBi
s +

1

2

∫ t

0

d∑
i=1

Diif(B(s)) ds,

for f : Rd → R twice continuously differentiable. Noting that the last integrand is just ∆f(B(s)) we
obtain the fundamental relation.

Theorem 7.2. Suppose f : Rd → R is harmonic on U and let T = inf{t ≥ 0 : B(t) 6∈ U}. Then
{f(B(t)) : t ≥ 0} is a local martingale on [0, T ). More precisely, for all t < T ,

f(B(t)) = f(x) +

∫ t

0

d∑
i=1

Dif(B(s)) dBi
s.

Next we prove the probabilistic representation of the solutions of the Dirichlet problem. This
theorem will be the key to several path properties of Brownian motion, which we derive in the sequel.

Theorem 7.3. Suppose U is an open bounded set and suppose that u is a solution of the Dirichlet
problem on U with boundary value φ. Define the stopping time

T = inf{t ≥ 0 : B(t) 6∈ U}.

Then, for every x ∈ U ,
u(x) = Ex [φ(B(T ))] , (51)

where Ex refers to the expectation with respect to the Brownian motion started in x. In particular, the
solution is uniquely determined by the boundary value.

Remark 7.4. (i) We already saw a special case of this result in Lemma 6.6.

(ii) We have assumed differentiability of u in the statement of the result. It is then not hard to check
that u solves the Dirichlet problem. To circumvent this assumption, one can use an alternative
characterisation of harmonic functions, as those functions whose value at each point x ∈ U is
equal to the average of their value over the surface of any sphere centred on x and completely
contained in U . That this is true for the function u defined by (51) is an elementary application
of the strong Markov property and symmetry of Brownian motion.

(iii) The solution u(x) can be simulated using the formula (51), by running many independent Brow-
nian motions, starting in x ∈ U , until they hit the boundary of U and letting u(x) be the average
of the values of φ on the hitting points.
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(iv) It is a straightforward consequence of this representation that the solutions u to the Dirichlet
problem always attain their maximum (and minimum) on the boundary of the domain.

To prove Theorem 7.3 we first show that the stopping time T is almost surely finite (and even has
moments of all orders).

Lemma 7.5. For all 0 < p <∞ we have supx∈U Ex[T p] <∞.

Proof. We start by expressing the moment as a Lebesgue integral and using a change of variable,

Ex[T p] =

∫ ∞
0

Px[T p ≥ t] dt =

∫ ∞
0

psp−1 Px[T ≥ s] ds.

It thus suffices to show that, for some q < 1, Px[T ≥ k] ≤ qk. To prove this, let K = sup{|x − y| :
x, y ∈ U} be the diameter of U . If x ∈ U and |B1 − x| > K, then B1 6∈ U and hence T < 1. Thus

Px[T < 1] ≥ Px[|B1 − x| > K] = P0[|B1| > K] =: p̃ > 0.

Letting q = 1− p̃ we have shown Px[T ≥ 1] ≤ q for all x, which is the start of an induction argument.
Now we can use the Markov property and the inductive hypothesis to infer

Px[T ≥ k] ≤ 1

(2π)d/2

∫
U
e−|x−y|

2/2Py[T ≥ k − 1] dy ≤ qk−1Px[B1 ∈ U ] ≤ qk.

This is what we had to show. �

Proof of Theorem 7.3. As ∆u(x) = 0 for all x ∈ U we see from Itô’s formula that u(B(s)) is a
continuous local martingale on the random interval [0, T ). Now (see the Appendix or recall B8.2/C8.1)
there exists a time change γ : [0,∞) → [0, T ) such that X = {Xt = u(B(γ(t))) : t ≥ 0} is a bounded
martingale with respect to the new filtration defined by G(t) := F(γ(t)). Being a bounded martingale,
X converges, by the Martingale Convergence Theorem, almost surely and in L1 to a limit X∞ with
Xt = Ex[X∞|G(t)]. Because T is almost surely finite and u is continuous on the closure of U , we have
X∞ = u(B(T )). Hence we infer

u(x) = X0 = Ex[X0] = Ex[X∞] = Ex[u(B(T ))].

As B(T ) ∈ ∂U we have that u(B(T )) = φ(B(T )) and we are done. �

We now show a simple application of this result to the problem of recurrence and transience of
Brownian motion in various dimensions.

Definition 7.6 (Recurrence, neighbourhood recurrence, transience). We say that a (Markov) process
X with values in Rd is

(i) recurrent, if for every x ∈ Rd there is a (random) sequence tn ↑ ∞ such that X(tn) = x. We say
that x is visited infinitely often,

(ii) neighbourhood recurrent, if, for every x ∈ Rd and ε > 0, the ball B(x, ε) around x of radius ε is
visited infinitely often. Equivalently, every open set is visited infinitely often.

(iii) transient, if it converges to infinity almost surely.

Theorem 7.7. Brownian motion is

(i) recurrent in dimension d = 1,
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(ii) neighbourhood recurrent, but not recurrent, in d = 2,

(iii) transient in dimension d ≥ 3.

We prove this through a series of lemmas. We begin with d = 1. Recall from the proof of Lemma 6.6
that in d = 1 and for a < x < b, if T := inf{t ≥ 0 : Bt 6∈ (a, b)}, then,

Px[BT = a] =
b− x
b− a

and Px[BT = b] =
x− a
b− a

.

Lemma 7.8. Let Tx := inf{t > 0 : Bt = x}. Then Py[Tx <∞] = 1.

Proof. We may assume that x = 0 and, by reflection, y > 0. Then, by Lemma 6.6 and using that
the exit time from any bounded interval is finite, e.g. by Lemma 7.5,

Py[T0 <∞] ≥ lim
M→∞

Py[T0 < TMy] = lim
M→∞

M − 1

M
= 1.

�
By Lemma 7.8, one dimensional Brownian motion eventually visits every point x. As Tx is a

stopping time, by the strong Markov property, {B(Tx + t) : t ≥ 0} is again a Brownian motion,
which visits every point. We wait until the new motion visits a point y 6= x, say at time Ty. Then
{B(Tx + Ty + t) : t ≥ 0} is a Brownian motion started in y, which visits x again, and so forth. With
a fixed positive probability it takes at least, say, one time unit before the motion started in y visits
x. Because we have infinitely many independent trials for this experiment, there are infinitely many
successes (by the Borel-Cantelli lemma). This proves that we visit x infinitely often, which means that
the process is recurrent in d = 1 and (i) is proved. (Note that the last step was required because our
definition of recurrence requires visits to take place at arbitrarily large times.)

Let us now move to dimensions d ≥ 2. Start the motion at a point x contained in some annulus

x ∈ A := {x ∈ Rd : r ≤ |x| ≤ R} for 0 < r < R <∞.

What is the probability that the Brownian motion hits the inner ring before it hits the outer ring?
In order to copy the proof of the one-dimensional exit problem, we have to find harmonic functions u
(that is functions with ∆u = 0) on the annulus A.

By symmetry, such functions will be radially symmetric and so setting u(x) = ψ(|x|) and writing
the Laplacian in polar coordinates, we find

ψ′′(ρ) +
d− 1

ρ
ψ′(ρ) = 0, ψ(r) = 1, ψ(R) = 0.

This yields, for {|x| 6= 0}, solutions

u(x) = ψ(|x|) =


|x| if d = 1,
2 log |x| if d = 2,
|x|2−d if d ≥ 3.

(52)

Now we can use Theorem 7.3. Define stopping times

Tr = inf{t > 0 : |Bt| = r} for r > 0.

Letting T = Tr ∧ TR be the first exit time of the Brownian motion B from A, we have

u(x) = Ex[u(BT )] = ψ(r)Px[Tr < TR] + ψ(R)(1− Px[Tr < TR]).

Rearranging,

Px[Tr < TR] =
ψ(R)− ψ(|x|)
ψ(R)− ψ(r)

.
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Remark 7.9. Notice by Lemma 6.7 that this is P[Tr < TR] for the one-dimensional diffusion on (r,R)
with generator

1

2

∂2f

∂x2
+
d− 1

2x

∂f

∂x
.

This is the Bessel process of dimension d, which is the modulus of d-dimensional Brownian motion. It
is a (convenient) special property of Brownian motion that its modulus is once again a diffusion.

Lemma 7.10. Suppose B is a Brownian motion in dimension d ≥ 2 started at a point x in the annulus

A := {x ∈ Rd : r ≤ |x| ≤ R},

where 0 < r < R <∞. Then, if d = 2,

Px{Tr < TR} =
logR− log |x|
logR− log r

.

In dimension d ≥ 3,

Px{Tr < TR} =
R2−d − |x|2−d

R2−d − r2−d .

Now consider dimension d = 2, fix r = ε and let R ↑ ∞ in the previous formula. Then we obtain,
for arbitrary x 6∈ B(0, ε),

Px[Tε <∞] = Px
[ ⋃
R>0

{Tε < TR}
]

= lim
R→∞

Px[Tε < TR] = lim
R→∞

logR− log |x|
logR− log ε

= 1.

Hence the motion eventually hits every small ball around 0. Then, of course, it must hit every small
ball eventually and, as before (using the strong Markov property) it hits every small ball infinitely
often. This proves that in d = 2 Brownian motion is neighbourhood recurrent. �

A compact set A ⊆ Rd with the property that

Px[Bt ∈ A for some t > 0] = 0 for all x ∈ Rd

is called a polar set. We show that points are polar sets for Brownian motion in d ≥ 2, which proves
that in these dimensions Brownian motion cannot be recurrent.

Lemma 7.11. For Brownian motion in d ≥ 2 points are polar sets.

Proof. It suffices to consider the point 0. Define

S0 = inf{t > 0 : Bt = 0}.

Fix R > 0 and let r ↓ 0. First let x 6= 0. Then

Px[S0 < TR] ≤ lim
r→0

Px[Tr < TR] = 0.

As this holds for all R and TR → ∞ as R → ∞, by continuity of Brownian motion, we have Px[S0 <
∞] = 0 for all x 6= 0. To extend this to x = 0 we observe that the Markov property implies

P0[Bt = 0 for some t ≥ ε] = E0

[
PBε [T0 <∞]

]
= 0 ,

noting that Bε 6= 0 almost surely. Hence

P0[S0 <∞] = lim
ε↓0

P0[Bt = 0 for some t ≥ ε] = 0.

�
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Remark 7.12. (i) It is clear that for all x and all t > 0 we have P[Bt 6= x] = 1. Our statement
however is that, for all x, P[Bt 6= x for all t] = 1. This is much harder, because uncountable
unions of nullsets usually fail to be nullsets (to see this try to take the quantifier ‘for all x’ inside
the probability).

(ii) The proof in the case d = 2 also shows that in d ≥ 3 line segments are polar sets. This does not
hold in dimension d = 2.

To complete the picture we have to show that Brownian motion is transient in dimensions d ≥ 3.
First observe that the proof of neighbourhood recurrence in dimension d = 2 does not work here,
because in d ≥ 3,

Px[Tr <∞] = lim
R→∞

Px[Tr < TR] =
rd−2

|x|d−2
< 1

for all |x| > r. However, we can use this formula to show transience.

Lemma 7.13. In d ≥ 3, limt→∞Bt =∞.

Proof. Consider the event
An :=

{
|Bt| >

√
n for all t ≥ Tn

}
,

and recall that Tn <∞ almost surely by Lemma 7.5. By the strong Markov property we have

Px[Acn] = Ex
[
PB(Tn)[T√n <∞]

]
= Ex

[
lim
R→∞

PB(Tn)[T√n < TR]
]

=
( 1√

n

)d−2
−→ 0.

Now let A be the event that infinitely many of the events An occur. We have

Px[A] = Px
[ ∞⋂
n=1

∞⋃
k=n

Ak

]
= lim sup

n→∞
Px
[ ∞⋃
k=n

Ak

]
≥ lim sup

n→∞
Px[An] = 1 ,

hence A holds almost surely, which means that, for infinitely many n, the path eventually does not
return inside the ball of radius

√
n, so it must go to infinity almost surely. This concludes the proof of

Theorem 7.7. �

For Brownian motion, exit problems from domains are closely linked to the behaviour of harmonic
functions (and the Laplace operator) on the domain. We conclude this section with one more problem
from this realm.

Suppose we start a d-dimensional Brownian motion at some point x inside an open bounded domain
U . Let

T = inf{t ≥ 0 : B(t) 6∈ U}.

We ask for the distribution of the point B(T ) where the Brownian motion first leaves U . This distri-
bution, on the boundary ∂U , is usually called the harmonic measure on ∂U . Of course it depends on
the starting point x, but by a famous theorem of Harnack all these measures are absolutely continuous
with respect to each other.

We will concentrate on the case of exit distributions from the unit ball

U = {x ∈ Rd : |x| < 1}.

If x = 0 the distribution of B(T ) is (by symmetry) the uniform distribution π, but if x is another point
it is an interesting problem to determine this distribution in terms of a probability density. Since the
solution to the Dirichlet problem can be written as E[g(BT )], it is not surprising that the harmonic
measure is intricately connected with the Dirichlet problem.
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Theorem 7.14 (Poisson’s formula). Suppose that A ⊆ ∂U is a Borel subset of the unit sphere ∂U ⊆ Rd
for d ≥ 2. Then, for all x ∈ U ,

Px[B(T ) ∈ A] =

∫
A

1− |x|2

|x− y|d
dπ(y),

where π denotes the uniform distribution on the unit sphere.

Remark 7.15. The density is of course the Poisson kernel often appearing in courses on complex
analysis and appears frequently in potential theory.

Proof. To prove the theorem we actually show that for every bounded measurable f : Rd → R we
have

Ex[f(B(T ))] =

∫
∂U

1− |x|2

|x− y|d
f(y) dπ(y). (53)

It suffices to consider C∞-functions. By Theorem 7.3, to prove (53) we just have to show that the right
hand side, as a function of x ∈ U , defines a solution to the Dirichlet problem on U with boundary
value f .

To check this, one first checks that 1−|x|2
|x−y|d is harmonic on U , which is just a calculation, and then

argues that it is allowed to differentiate twice under the integral sign. We omit the details, referring
readers to Durrett. To check the boundary condition first look at the case f ≡ 1. Then we have to
show that, for all x ∈ U ,

I(x) :=

∫
∂U

1− |x|2

|x− y|d
π(dy) ≡ 1.

This can be computed as well, but we argue mathematically. Observe that I(0) = 1, I is invariant
under rotation and ∆I = 0 on U . Now let x ∈ U with |x| = r < 1 and let τ := inf{t : |Bt| > r}. By
Theorem 7.3

I(0) = E0[I(Bτ )] = I(x) ,

using rotational invariance in the second step. Hence I ≡ 1. Now we show that the right hand side
of (53) can be extended continuously to all points y ∈ ∂U by f(y). We write D0 for ∂U with a δ-
neighbourhood U(y, δ) removed and D1 = ∂U \D0. We have, using that I ≡ 1, for all x ∈ U(y, δ/2)∩U ,∣∣∣f(y)−

∫
∂U

1− |x|2

|x− z|d
f(z) dπ(z)

∣∣∣
=

∣∣∣ ∫
∂U

1− |x|2

|x− z|d
(f(y)− f(z)) dπ(z)

∣∣∣
≤ 2‖f‖∞

∫
D0

1− |x|2

|x− z|d
dπ(z) + sup

z∈D1

|f(y)− f(z)|.

For fixed δ > 0 the first term goes to 0 as x → y by the Dominated Convergence Theorem, whereas
the second can be made arbitrarily small by choice of δ (since f is continuous). �

The Poisson integral formula of (53) is, of course, very special, whereas our representation of
solutions to the Poisson equation is very general. In fact it extends to highly irregular boundaries
where proofs of existence and uniqueness of solutions to the Dirichlet problem can depend on fine
properties of the Brownian motion.
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7.2 The Poisson problem and occupation times

We now turn to a multidimensional version of the results of Section 6.3 and ask how much time does
a d-dimensional Brownian motion spend in a domain U before it leaves the domain? As before, the
answer can be expressed in terms of solutions to the Poisson problem.

Definition 7.16 (Poisson problem). Let U be an open bounded domain and u : U → R be a continuous
function, which is twice continuously differentiable on U . Let g : U → R be continuous. Then u is said
to be the solution of Poisson’s problem for g if u(x) = 0 for all x ∈ ∂U and

1

2
∆u(x) = −g(x) for all x ∈ U.

The 1/2 in front of the Laplacian is, of course, a probabilistic convention.

Theorem 7.17. Suppose g is bounded and u a bounded solution of Poisson’s problem for g. Then this
solution has the form

u(x) = Ex
[ ∫ T

0
g(Bt) dt

]
for x ∈ U ,

where T := inf{t > 0 : B(t) 6∈ U}. In particular, the solution, if it exists, is always uniquely
determined.

Just as in d = 1, if g ≡ 1, then u(x) = Ex[T ].
Rather than repeating our one-dimensional argument, we mimic our approach to the Dirichlet

problem and use Itô’s formula to find a local martingale.

Lemma 7.18. Let U be a bounded open domain and T := inf{t > 0 : B(t) 6∈ U}. If u is a solution to
Poisson’s problem for g, then M = {Mt : t ≥ 0} defined by

Mt = u(B(t)) +

∫ t

0
g(B(s)) ds

is a local martingale on [0, T ).

Proof. Applying Poisson’s equation and Itô’s formula gives, for all t < T ,

u(B(t)) +

∫ t

0
g(B(s)) ds = u(B(t))− 1

2

∫ t

0
∆u(B(s)) ds

= u(B(0)) +

∫ t

0

d∑
i=1

Diu(B(s)) dBi(s),

which is a local martingale on [0, T ). �

Proof of Theorem 7.17: M is a local martingale on [0, T ) and (c.f. the proof of Theorem 7.3) we
let γ : [0,∞)→ [0, T ) be the time change such that {M(γ(t)) : t ≥ 0} is a martingale. As u and g are
bounded,

sup
t≥0
|M(γ(t))| ≤ ‖u‖∞ + T‖g‖∞.

The right hand side is L2-integrable by Lemma 7.5 and hence we have that {M(γ(t)) : t ≥ 0} is a uni-
formly integrable martingale. The Martingale Convergence Theorem tells us that limt→∞M(γ(t)) =:
M∞ exists almost surely and Ex[M0] = Ex[M∞]. We can now use continuity of u and g to obtain

u(x) = Ex[M0] = Ex[M∞] = Ex
[

lim
t↑T

{
u(Bt) +

∫ t

0
g(Bs) ds

}]
= Ex

[ ∫ T

0
g(Bs) ds

]
,
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as required. �

We now address the following question: given a bounded open domain U ⊆ Rd, does Brownian
motion spend an infinite or a finite amount of time in U? It is not surprising that the answer depends
on the dimension; more interestingly, it depends neither on U , nor on the starting point.

Theorem 7.19. Let U ⊆ Rd be a bounded open domain and x ∈ Rd arbitrary. Then, if d ≤ 2,∫ ∞
0

1U (Bt) dt =∞ Px-almost surely,

and, if d ≥ 3,

Ex
∫ ∞

0
1U (Bt) dt <∞.

Proof. As U is contained in a ball, and contains a ball, it suffices to show this for balls. By shifting,
we can even restrict to balls U = B(0, r) centred in the origin. Let us start with the first claim. We
let d ≤ 2 and let G = B(0, 2r). Let T0 = 0 and, for all k ≥ 1, let

Sk = inf{t > Tk−1 : Bt ∈ U} and Tk = inf{t > Sk : Bt 6∈ G}.

From the strong Markov property and rotational invariance we infer, for k ≥ 1,

Px
[ ∫ Tk

Sk

1U (Bt) dt ≥ s
∣∣∣F(Sk)

]
= PB(Sk)

[ ∫ T1

0
1U (Bt) dt ≥ s

]
= Ex

[
PB(Sk)

[ ∫ T1

0
1U (Bt) dt ≥ s

]]
= Px

[ ∫ Tk

Sk

1U (Bt) dt ≥ s
]
.

The second expression does not depend on k, so that the random variables∫ Tk

Sk

1U (Bt) dt

are independent and identically distributed. As they are not identically zero, but nonnegative, they
have positive expected value and, by the strong law of large numbers,∫ ∞

0
1U (Bt) dt = lim

n→∞

n∑
k=1

∫ Tk

Sk

1U (Bt) dt =∞,

which proves the first claim.
For the second claim, first let f be nonnegative and measurable. Fubini’s Theorem implies

Ex
∫ ∞

0
f(Bt) dt =

∫ ∞
0

Exf(Bt) dt =

∫ ∞
0

∫
pt(x, y)f(y) dy dt

=

∫ ∫ ∞
0

pt(x, y) dt f(y) dy,

where pt(x, y) = (2πt)−d/2 exp(−|x − y|2/2t) is the transition density of Brownian motion. Note that
for large t we have pt(x, y) ∼ (2πt)−d/2, hence

∫∞
0 pt(x, y) dt =∞ if d ≤ 2. In d ≥ 3, however, we can

define, for x 6= y,

G(x, y) :=

∫ ∞
0

pt(x, y) dt <∞ ,
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a quantity called the potential kernel. It can be calculated explicitly, through the change of variables
s = |x− y|2/2t:

G(x, y) =

∫ ∞
0

1

(2πt)−d/2
e−|x−y|

2/2t dt =

∫ 0

∞

( s

π|x− y|2
)d/2

e−s
(
− |x− y|

2

2s2

)
ds

=
|x− y|2−d

2πd/2

∫ ∞
0

s(d/2)−2e−s ds =
Γ(d/2− 1)

2πd/2
|x− y|2−d,

where Γ(x) =
∫∞

0 sx−1e−s ds is the gamma function. We denote the constant in the last term by c(d).
To summarise what we have done so far,

Ex
∫ ∞

0
f(Bt) dt =

∫
G(x, y)f(y) dy = c(d)

∫
f(y)

|x− y|d−2
dy. (54)

To complete the proof, let f = 1B(0,r). If x = 0 we may change to polar coordinates and then, writing
C(d) for a constant depending only on d,

E0

∫ ∞
0

1B(0,r)(Bs) ds =

∫
B(0,r)

G(0, y) dy = C(d)

∫ r

0
sd−1s2−d ds = (C(d)/2)r2 <∞.

To start in an arbitrary x 6= 0 we consider a Brownian motion started in 0 and a stopping time T ,
which is the first hitting time of the sphere ∂B(0, |x|). Using spherical symmetry and the strong Markov
property we obtain

Ex
∫ ∞

0
1B(0,r)(Bs) ds = E0

∫ ∞
T

1B(0,r)(Bs) ds ≤ E0

∫ ∞
0

1B(0,r)(Bs) ds <∞.

�

We shall now study the expected occupation measures of a Brownian motion in a Borel subset A of
some bounded open domain U . These are defined as

Ex
∫ T

0
1A(Bs) ds,

in other words the expected time Brownian motion spends in A before leaving the domain U .

Theorem 7.20. Let d ≥ 3 and U ⊆ Rd a bounded domain, let T be the first exit time from the domain.
Define the potential kernel G(x, y) = c(d)|x−y|2−d where c(d) = Γ(d/2−1)

2πd/2 , for x ∈ U recall the definition
of the harmonic measure

µ(x, dz) = Px{BT ∈ dz}

and define the Green’s function of the domain U as

GU (x, y) = G(x, y)−
∫
∂U
G(z, y)µ(x, dz) for x, y ∈ U with x 6= y.

Then we have, for all x ∈ U and A ⊆ U Borel,

Ex
[ ∫ T

0
1A(Bs) ds

]
=

∫
A
GU (x, y) dy.

Remark 7.21. (i) Probabilistically the Green’s function GU (x, y) is the density of the expected oc-
cupation measure of a Brownian motion started in x and stopped upon leaving U .
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(ii) Note that the theorem also tells us that the bounded solution of the Poisson problem for g is∫
GU (x, y)g(y) dy. This is, of course, the PDE interpretation of the Green’s function.

(iii) Letting g(y) dy in Theorem 7.17 converge to the Dirac measure δy we recover the physical inter-
pretation of the Green’s function GU (x, y) as the electrostatic potential of a unit mass at y with
∂U grounded.

(iv) Although in d = 1, 2 it is not possible to put G(x, y) =
∫∞

0 pt(x, y) dt, it is also possible to define
a potential kernel G such that the Theorem 7.20 holds true. As in d = 3 these potential kernels
are just constant multiples of u(x − y) for the harmonic functions u on the punctured disc, see
(52).

Proof of Theorem 7.20.
Suppose that g is a nonnegative, bounded function with compact support. Then, by Theorem 7.19,

we can define

w(x) := Ex
∫ ∞

0
g(Bs) ds <∞.

By the strong Markov property,

w(x) = Ex
∫ T

0
g(Bs) ds+ Exw(BT ).

We already know that

w(x) =

∫ ∞
0

Ex[g(Bs)] ds =

∫ ∞
0

∫
ps(x, y)g(y) dy ds =

∫
G(x, y) g(y) dy.

Substituting (and partitioning over the possible values of BT ) this gives

Ex
[ ∫ T

0
g(Bs) ds

]
=

∫
G(x, y) g(y) dy − Ex

∫
G(BT , y) g(y) dy =

∫
GU (x, y)g(y) dy,

which is the required formula. �

In the case U = B(0, 1) this can be calculated explicitly, using Theorem 7.17. We have

GU (x, y) = G(x, y)−
∫
∂U

1− |x|2

|x− z|d
G(z, y)π(dz)

=
Γ(d/2− 1)

(2π)d/2

∫
∂U

1− |x|2

|x− z|d
(
|x− y|2−d − |z − y|2−d

)
π(dz).

The latter integral can be evaluated as follows.

Lemma 7.22. Let d ≥ 3 and U ⊆ Rd the unit disc and let T be the first exit time from U . Then,∫
∂U

1− |x|2

|x− z|d
G(z, y)π(dz) = c(d)

|y|d−2

|x|y|2 − y |d−2
for all x, y ∈ U .

Proof. We already know from the proof of Poisson’s formula and the definition of GU that, for every
y ∈ U ,

u(x) := G(x, y)−GU (x, y) =

∫
∂U

1− |x|2

|x− z|d
G(z, y)π(dz)
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can be extended continuously to the boundary of U to give the solution to the Dirichlet problem with
boundary function φ(x) = G(x, y). By uniqueness it suffices to check that

v(x) := c(d)
|y|d−2

|x|y|2 − y |d−2

also has this property, so that v = u and we are done. To see this note that

v(x) = c(d)|y|2−du(x− y/|y|2),

where u(x−y) is defined in (52). Since u is harmonic on any punctured disc, and y/|y|2 6∈ U , we deduce
that v is harmonic on U . Clearly, v is continuous on U . To determine the value on the boundary observe
that, if |x| = 1,

|x|y| − y/|y| |2 = |x|2|y|2 − 2x · y + 1 = |y|2 − 2x · y + |x|2 = |x− y|2.

Therefore, on |x| = 1

v(x) = c(d)
1

|x|y| − y/|y||d−2
=

c(d)

|x− y|d−2
= G(x, y),

as required. �

7.3 The Feynman-Kac formula

For our final example of equations that can be solved by running a Brownian motion, we consider a
parabolic equation.

Definition 7.23 (Heat equation with dissipation). A continuous function u : [0,∞) × Rd → R,
which is twice continuously differentiable, is said to satisfy the heat equation with heat dissipation rate
c : (0,∞)× Rd → R if we have

(i) u is continuous at each point of {0} × Rd and u(0, x) = f(x),

(ii)
∂u

∂t
(t, x) =

1

2
∆u(t, x)− c(t, x)u(t, x) on (0,∞)× Rd.

If c(t, x) ≥ 0 then u(t, x) describes the temperature at time t at x for a heat flow with cooling.
Here the initial temperature distribution is given by f and c(t, x) describes the heat dissipation rate
at point x at time t. As usual, the first step is to find a local martingale.

Lemma 7.24. If u is a solution to the heat equation with dissipation rate c, then M = {Ms : s ≥ 0}
with

Ms := u(t− s,Bs) exp
(
−
∫ s

0
c(t− r,Br) dr

)
is a local martingale on [0, t).

Proof. Let us write cts = −
∫ s

0 c(t − r,Br) dr. We apply Itô’s formula (with the semimartingales
X0
s = t− s, Xi

s = Bi
s for 1 ≤ i ≤ d and Xd+1

s = cts).

u(t− s,Bs) exp(cts)− u(t, B0)

=

∫ s

0
−∂u
∂t

(t− r,Br) exp(ctr) dr +
d∑
j=1

∫ s

0
exp(ctr)

∂u

∂xj
(t− r,Br) dBj

r

+

∫ s

0
u(t− r,Br) exp(ctr) dc

t
r +

1

2

∫ s

0
∆u(t− r,Br) exp(ctr) dr,
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since we have

〈Xi, Xj〉t =

{
t if 1 ≤ i = j ≤ d
0 otherwise.

Using dctr = −c(t− r,Br) dr and rearranging, the right hand side is

=

∫ s

0

(
− ∂u

∂t
− cu+

1

2
∆u
)

(t− r,Br) exp(ctr) dr +
d∑
j=1

∫ s

0
exp(ctr)

∂u

∂xj
(t− r,Br) dBj

r .

This proves the claim, because −∂u
∂t − cu+ 1

2∆u = 0 and the second term is a local martingale. �

The resulting representation theorem for the solutions of our heat equation with dissipation term
is called the Feynman-Kac formula.

Theorem 7.25 (Feynman-Kac formula). Suppose that the dissipation rate c is bounded and u is a
solution of the heat equation with dissipation rate c, which is bounded on every set [0, t]× Rd. Then u
is uniquely determined and satisfies

u(t, x) = Ex
[
f(Bt) exp

(
−
∫ t

0
c(t− r,Br) dr

)]
.

Proof. Under our assumptions on c and u, M is a bounded martingale on [0, t) and Mt = lims↑tMs =
f(Bt) exp(ctt). Since M is uniformly integrable we deduce that

Ex
[
f(Bt) exp

(
−
∫ t

0
c(t− r,Br) dr

)]
= Ex[Mt] = Ex[M0] = u(t, x).

�

Example 7.26 (Brownian motion in a soft potential). Imagine that the bounded function c : Rd →
[0,∞) defines a potential landscape, so that it is hard for a particle to go through the hills of c and
easier to go through the valleys. To model this, suppose for example, that for a particle following the
path {B(t) : t ≥ 0}, the probability of survival up to time T is

exp
(
−
∫ T

0
c(Br) dr

)
.

It is possible to construct such a process {X(t) : t ≥ 0} with values in Rd∪{†}, called a killed Brownian
motion. If u1 : [0,∞) × Rd → R is a solution of our problem with dissipation rate c and initial value
f ≡ 1, which is bounded on the set [0, T ]× Rd, then the probability that a path {X(t) : t ≥ 0} started
in x survives up to time T is

u1(T, x) := Ex
[

exp
(
−
∫ T

0
c(Br) dr

)]
.

Suppose now f is a bounded function and we are interested in the expected value of f(X(T )) for the
killed Brownian motion X conditioned on survival up to time T . First note that we do not expect
the result to be the same as with ordinary Brownian motion, as killed Brownian motion conditioned
on survival up to time T is intuitively more likely to go through the valleys of c than over the hills.
Suppose that u2 : [0,∞) × Rd → R is a solution of our problem with initial value f , which is bounded
on [0, T ]× Rd, then

Ex[f(X(T )) |X(T ) 6= †] =
Ex
[
f(BT ) exp

(
−
∫ T

0 c(Br) dr
)]

Ex
[

exp
(
−
∫ T

0 c(Br) dr
)] =

u2(T, x)

u1(T, x)
.
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The process X conditioned on survival up to time T , i.e. on {X(T ) 6= †}, is called Brownian motion
in the soft potential c and, if we denote it by Y = {Yt : t ∈ [0, T ]}, its marginal distributions at the
endpoint are given by the Feynman-Kac formula as

E[f(Y (T ))] =
u2(T, x)

u1(T, x)
.

Often, especially in mathematical finance, the Feynman-Kac formula is expressed in ‘backwards
time’. It can be thought of as providing a solution to a PDE subject to a terminal condition. To
alleviate notation we present this in one dimension and set c = 0, but this time we replace Brownian
motion by a more general diffusion.

Theorem 7.27 (Another Feynman-Kac stochastic representation). Assume that the function F solves
the boundary value problem

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x) = 0 0 ≤ t ≤ T,

F (T, x) = Φ(x).

(55)

Define {Xt}0≤t≤T to be the solution of the stochastic differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T,

where {Wt}t≥0 is standard Brownian motion under the measure P. If∫ T

0
E

[(
σ(t,Xt)

∂F

∂x
(t,Xt)

)2
]
ds <∞, (56)

then
F (t, x) = EP [Φ(XT )|Xt = x] .

Proof: We apply Itô’s formula to {F (s,Xs)}t≤s≤T .

F (T,XT )

= F (t,Xt) +

∫ T

t

{
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,Xs)

∂2F

∂x2
(s,Xs)

}
ds

+

∫ T

t
σ(s,Xs)

∂F

∂x
(s,Xs)dWs. (57)

Now using assumption (56), which is enough to ensure that the Itô integral exists and defines a mean
zero local martingale,

E
[∫ T

t
σ(s,Xs)

∂F

∂x
(s,Xs)dWs

∣∣∣∣Xt = x

]
= 0.

Moreover, since F satisfies (55), the deterministic integral on the right hand side of (57) vanishes, so,
taking expectations,

E [F (T,XT )|Xt = x] = F (t, x)

and substituting F (T,XT ) = Φ(XT ) gives the required result. 2
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Exercise 7.28. Convince yourself that the solution to the boundary value problem

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x)− V (x, t)F (x, t) + f(x, t) = 0 0 ≤ t ≤ T,

F (T, x) = Φ(x).

can be written as

F (t, x) = EP
[∫ T

t
e−

∫ r
t V (Xu,u)duf(Xr, r)dr + e−

∫ T
t V (Xu,u)duΦ(XT )

∣∣∣∣Xt = x

]
.

Example 7.29. Solve

∂F

∂t
+

1

2

∂2F

∂x2
= 0,

F (T, x) = Φ(x).

(58)

Solution: The corresponding stochastic differential equation is

dXt = dWt

so, by the Feynman-Kac representation,

F (t, x) = E [Φ(WT )|Wt = x] .

In fact we knew this already. The transition density of Brownian motion is

p(t, x, y) =
1√
2πt

exp

(
−(x− y)2

2t

)
. (59)

This gives

E [Φ(WT )|Wt = x] =

∫
p (T − t, x, y) Φ(y)dy.

To check that this really is the solution, differentiate and use the fact that p(t, x, y) given by (59) is
the fundamental solution to the equation

∂u

∂t
=

1

2

∂2u

∂x2
,

to obtain (58). 2

7.4 Semilinear equations and branching processes

All the examples we have seen so far have been stochastic representations of solutions to linear partial
differential equations. The theory does not end there. In this short section, we see a beautiful repre-
sentation of solutions to certain semilinear equations in terms of an object called branching Brownian
motion.

Branching Brownian motion is most easily described as a simple model of an evolving population. As
the name suggests, during their lifetimes, individuals are assumed to follow Brownian motion in space.
They reproduce according to a continuous time Galton Watson branching process. More formally, we
have the following definition.

Definition 7.30. Branching Brownian motion has three ingredients:
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(i) The spatial motion: During her lifetime, each individual in the population moves around in
Rd (independently of all other individuals) according to a Brownian motion.

(ii) The branching rate, V : Each individual has an exponentially distributed lifetime with param-
eter V . That is, given that she is alive at time t, the probability that she dies in the time interval
[t, t+ δt) is V δt+ o(δt).

(iii) The branching mechanism, Φ: When she dies, an individual leaves behind (at the loca-
tion where she died) a random number of offspring with probability generating function Φ(s) =∑∞

k=0 pks
k. Conditional on their time and place of birth, offspring evolve independently of each

other (in the same way as their parent).

Remark 7.31. There is nothing special about Brownian motion on Rd here. It could be replaced by a
Markov process on any Polish space without extra work. Of course, the lifetimes of individuals must be
exponentially distributed if we want the branching Brownian motion to be a Markov process.

It is often convenient to think of the branching Brownian motion as a measure-valued process. It
will take values among purely atomic measures on Rd. We represent an individual at the point x ∈ Rd
by δx, a unit point mass at x. In this section, we write Y i

t for the position of the ith member of the
population at time t. The symbol ξt will denote the measure representing the whole population at time
t. That is

ξt =
∑

δY i
t
,

where the sum is over all individuals alive at time t.
If the initial population is the (purely atomic) measure ν, then we write Pν(·) for the distribution

of the process and Pt(·, ν) for the corresponding transition probability.
Two immediate consequences of the definition will be of particular importance to us in what follows:

(i) The Markov property. Since the exponential lifetime of each individual and the Brownian
motion that determines her spatial movement are both Markov processes, the branching Brownian
motion inherits this property.

(ii) The branching property. Since the evolution of the descendants of different individuals in the
population are independent,

Pt(·, ν1 + ν2) = Pt(·, ν1) ∗ Pt(·, ν2),

where ∗ denotes convolution. In words, the distribution of the process with initial value ν1 + ν2

is equal to that of the sum of two independent copies of the process with initial values ν1, ν2

respectively.

We exploit these properties in characterising the distribution of branching Brownian motion in terms
of a semilinear heat equation. This result is usually attributed to McKean (1975), but is also implicit
in the work of Skorohod (1964).

Before stating the result, we need some notation. We use 〈φ, µ〉 to denote the integral
∫
φdµ.

Theorem 7.32 (Characterisation via a pde). The distribution of branching Brownian motion can be
characterised as follows: For ψ ∈ C+

b (Rd) ∩ D(∆) with 0 ≤ ψ(x) ≤ 1 for x ∈ Rd,

Eδx
[∏

ψ(Y i
t )
]

= v(t, x), (60)
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where the product is over all individuals alive at time t, and v solves
∂v
∂t = 1

2∆v + V (Φ(v)− v) ,

v(0, x) = ψ(x).

(61)

Equivalently, if the initial state of the population is represented by the (purely atomic) measure ν, and
its state at time t is the measure ξt,

Eν [exp (〈logψ(x), ξt(dx)〉)] = exp (〈log v(t, x), ν(dx)〉) . (62)

Remark 7.33. The function of the assumption that 0 ≤ ψ ≤ 1 is to ensure that the function v, defined
by equation (60), is finite. The representation is actually somewhat more general than this.

Proof.
If we define v to be the expression on the left hand side of equation ( 60), then it is evident that

v(0, x) = ψ(x). We must evaluate the time derivative of v, to check that it solves the differential
equation.

We assume that at time t, v is twice continuously differentiable with respect to the space variable,
x. If we can show that, under this assumption, the function satisfies the differential equation, then
standard regularity theory for the heat semigroup tells us that, in fact, the function v is smooth as a
function of x at all later times. (More pedantic readers might prefer to work with the integrated form
of the equation.)

Suppose then that we wish to evaluate v(t + δt, x). The idea is to condition on the behaviour of
the original ancestor in the first δt of time. One of two things can have happened to her: either she
died before time δt, leaving behind a random number of offspring, or she is still alive at time δt.

We need some notation. For each non-negative integer k, we write Ak for the event that the
original ancestor dies in the first δt of time leaving behind exactly k offspring, and we denote by Ac

the complementary event (that she survived until time δt). Then evidently

Eδx
[∏

ψ(Y i
t+δt)

]
=
∑∞

k=0
Eδx

[∏
ψ(Y i

t+δt)|Ak
]
P[Ak] + Eδx

[∏
ψ(Y i

t+δt)|Ac
]
P[Ac].

We now estimate each term on the right hand side of this equation. Since we are interested in calculating
the first (time) derivative, we only care about terms up to order δt.

Consider first the event Ak. In the notation of Definition 7.30, the probability of Ak is pkV δt+o(δt).
Conditional on Ak, our original ancestor left behind exactly k offspring at the location where she died.
The probability that any of these descendants have, themselves, died by time δt is of order δt and so
we may ignore that possibility. Moreover, the branching property tells us that conditional on their
location at time δt, the evolution of the descendants of each of these k first generation individuals over
the time interval [δt, t+ δt] is independent of that of the descendants of her siblings.

Consider then the family tree of descendants of a single individual who is located at the point y at
time δt. By the Markov property of branching Brownian motion, the distribution of this subpopulation
at time t + δt is exactly the same as if we had started from a single individual at y at time zero, and
allowed the population to evolve until time t.

Evidently at time δt, the k first generation individuals have travelled no further than if they had
followed Brownian motions from time zero, and so combining the observations above with continuity
of the function v(t, ·), we have

Eδx
[∏

ψ(Y i
t+δt)|Ak

]
= v(t, x)k + o(1).
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Under Ac, we condition further on the position, Bδt, of the ancestor at time δt to obtain (in the
notation of equation (60)),

v(t+ δt, x) = V δt
∞∑
k=0

pkv(t, x)k + Ex [v (t, Bδt)] (1− V δt) + o(δt),

where Ex denotes expectation for a Brownian motion started at the point x at time zero. Finally,
subtracting v(t, x) from both sides, dividing by δt, and letting δt ↓ 0, we see that, since the infinitesimal
generator of Brownian motion is 1

2∆, v defined by (60) does, indeed, satisfy (61). �

McKean was interested in the special case in which Φ(v) = v2 (so that when an individual dies, she
leaves behind exactly two offspring). Equation (61) is then the celebrated Fisher KPP equation. (KPP
are Kolmogorov, Petrovskii and Piscunov.) This equation arises in population genetics, and McKean
used the representation of solutions in terms of branching Brownian motion to study travelling wave
solutions. A considerable industry has grown out of extending McKean’s work to other semilinear
partial differential equations.

A Definition and examples of local martingales

This appendix is copied almost verbatim from lecture notes of Peter Mörters. It is intended to provide
an easy reference for the relationship between local martingales and martingales. Local martingales
are an extension of the idea of martingales. The essential idea is that we require that certain properties
of a process (like the martingale property) need only hold locally.

Definition A.1 (Stopped process, local martingale, reducing sequence). Let {X(t) : t ≥ 0} be an
adapted process and T a stopping time with respect to the filtration {F(t) : t ≥ 0}. Define the stopped
process {XT (t) : t ≥ 0} by XT (t) = X(T ∧ t). The process {X(t) : t ≥ 0} is called a local martingale
with respect to {F(t) : t ≥ 0} if there exists a sequence

0 = T0 ≤ T1 ≤ . . . ≤ Tn ↑ ∞

of stopping times such that {XTn(t) : t ≥ 0} is a martingale. We say that {Tn} is a reducing sequence
of stopping times.

Remark A.2. Every martingale is a local martingale, because every sequence of stopping times, which
increases to infinity is reducing. In the definition we can equivalently require that {XTn(t) : t ≥ 0} is
a martingale with respect to {F(t ∧ Tn) : t ≥ 0} instead of {F(t) : t ≥ 0}. Show this as an exercise.

Example A.3. We construct a local martingale {X(t) : t ≥ 0}, which is not a martingale. Although
we will not prove all the details, I hope you get the flavour.

We let a particle perform a symmetric random walk, but in continuous time and the waiting times
between the jumps are random times. Fix a probability distribution on the integers by denoting the
weight at the integer n by pn > 0. We will assume that

∞∑
n=−∞

n2pn <∞ ,

which means that the pn are decreasing rather rapidly at both ends of the sequence. Now the process
starts in 0 and stays there for an exponentially distributed time T0 with expectation p0, i.e. X(t) = 0
for all t ∈ [0, T0). Then we flip a coin and move to Y1 = ±1 with equal probability, and wait again for
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an exponential time T1, which is independent of T0 and has expectation pY1. In other words X(t) = Y1

for t ∈ [T0, T0 + T1).
Suppose now we have just jumped to a level n and it was our kth jump. Then we stay there for

an (independent) exponentially distributed time Tk with expectation pn, before making the next jump of
height ±1, chosen independently and with equal probability. This means, heuristically, that we spend a
long time when we jump to levels near 0 and only a short time at levels away from 0.

Because the symmetric random walk returns to 0 infinitely often and the times spent there are an
independent, identically distributed sequence of times with positive expectation, the total time spent in
0 is infinite (by the strong law of large numbers) and hence we have defined the process on the whole
time axis. The process is indeed a local martingale, to see this formally let

Sk = T0 + · · ·+ Tk−1

be the time of the kth jump. Then {Sk} is a sequence of stopping times increasing to infinity. Moreover
if Y1, Y2, . . . is the i.i.d. sequence of jump heights, then

X(t ∧ Sk) =

k∑
i=1

Yi1{Si≤t} .

For s < t and F ∈ F(s) (the natural filtration), the event F ∩ {s < Si ≤ t} is independent of Yi. Thus∫
F

{
X(t ∧ Sk)−X(s ∧ Sk)

}
dP =

k∑
i=1

E
[
Yi1{s<Si≤t}∩F

]
= 0 ,

hence E[X(t ∧ Sk) |F(s)] = X(s ∧ Sk), proving the martingale property of XSk . We give a heuristic
argument why {X(t)} is not a martingale: Let s < t and suppose we are given the information that
X(s) has a very large value. If the process were a martingale, then this large value would be the expected
value of X(t). But it is not, because we know that the process spends only a small amount of time at
the high values and, in fact, most of the time is spent near zero, so that the expected value for X(t)
given the unusual information about X(s) is below the value of X(s). A rigourous argument (using
Markov chain theory) can be found in (4.2.6) in v. Weizsäcker/Winkler.

The examples of local martingales might not convince you that this class contains natural examples
which fail to be martingales, but the next theorem shows a remarkable advantage of working with
local martingales: If we look at continuous local martingales, we get uniform integrability for free. For
example, it is worth considering Brownian motion as a local martingale and using a reducing sequence,
such that the stopped Brownian motions are uniformly integrable martingales.

Theorem A.4. Suppose {X(t) : t ≥ 0} is a continuous local martingale. Then the sequence

Tn = inf{t ≥ 0 : |X(t)| > n}

is always reducing. In particular, we can find a sequence, which reduces {X(t)} to a bounded (or
uniformly integrable) martingale.

Proof. Suppose 0 < s < t. If {Sn} is a reducing sequence, then we apply the optional stopping
theorem to {XSn(t)} at times s ∧ Tm and t ∧ Tm and obtain, using the first remark of this section,

E[X(t ∧ Tm ∧ Sn)|F(s ∧ Tm ∧ Sn)] = X(s ∧ Tm ∧ Sn).
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Multiplying by 1{Tm>0,Sn>0} ∈ F(s ∧ Tm ∧ Sn) we obtain

E[X(t ∧ Tm ∧ Sn)1{Sn>0,Tm>0}|F(s ∧ Tm ∧ Sn)] = X(s ∧ Tm ∧ Sn)1{Sn>0,Tm>0}.

As n→∞, F(s ∧ Tm ∧ Sn) ↑ F(s ∧ Tm) and

X(r ∧ Tm ∧ Sn)1{Sn>0,Tm>0} → X(r ∧ Tm)1{Tm>0},

for all r > 0. Because the sequence is dominated by m we find for the conditional expectations, using
Dominated Convergence,

E
[
X(t ∧ Tm)1{Tm>0}

∣∣∣F(s ∧ Tm)
]

= X(s ∧ Tm)1{Tm>0} almost surely,

which proves the statement. �

Remark: The proof also works for every sequence Sn of stopping times, which increases to infinity,
but is smaller than Tn.

One more advantage of local martingales in comparison to martingales is that they can be defined
easily on random time intervals [0, τ). Whereas the concept of martingale on [0, τ) is meaningless,
because for large t the random variable X(t) is not defined on the whole space Ω, the following
definition of a local martingale on [0, τ) is very natural:

Definition A.5 (local martingale). Suppose τ is a random time. The process {X(t) : t ∈ [0, τ)} is
a local martingale if there exists a sequence Tn ↑ τ of stopping times such that {XTn(t) : t ≥ 0} is a
martingale.

Let us now explore the relationship between local martingales and martingales. We show that
we can change the time of a local martingale to obtain a martingale. Recall our example, which is
constructed by taking a martingale (symmetric random walk) and distorting the time scale, so that
the martingale property is violated, but the local martingale property still holds.

Theorem A.6. Suppose {X(t) : t ∈ [0, τ)} is a continuous local martingale on an arbitrary, possibly
random, time interval. Then there exists a time change γ : [0,∞) → [0, τ) such that each γ(t) is a
stopping time and the process {X(γ(t)) : t ≥ 0} is a martingale with respect to the filtration {F(γ(t))}.

Proof. If Tn are the reducing stopping times as in Theorem A.4, then define γ : [0,∞)→ [0, τ) by

γ(t) =

{
t− (k − 1) if Tk−1 + (k − 1) ≤ t ≤ Tk + (k − 1)
Tk if Tk + (k − 1) ≤ t ≤ Tk + k.

Now optional stopping comes into play. Let n = [t] + 1. As γ(t) ≤ Tn ∧ t we have X(γ(t)) =
E[X(Tn ∧ n)|F(γ(t))] and hence

E[X(γ(t))|F(γ(s))] = E
[
X(Tn ∧ n)|F(γ(s))

]
= X(γ(s)) almost surely,

as desired. �
One hopes that integrability conditions ensure that local martingales are martingales. The following

is a positive result in this direction.

Theorem A.7. Suppose {X(t) : t ≥ 0} is a local martingale and, for every t > 0,

E
[

sup
0≤s≤t

|X(s)|
]
<∞ ,

then {X(t) : t ≥ 0} is a martingale.
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Proof. Clearly, E|X(t)| <∞. Now, if {Tn} is a reducing sequence,

E
[
XTn(t)

∣∣∣F(s ∧ Tn)
]

= XTn(s) almost surely.

By our assumption we can let n → ∞ and use Dominated Convergence, observing that our condition
makes sure that XTn(t) is dominated by an integrable function. The limiting equation is the martingale
property of {X(t)}. �

From this we easily deduce the following important corollary.

Corollary A.8. A bounded local martingale is a martingale.
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