
1 Selection

We have defined nucleotide diversity, denoted by π, as the proportion of nucleotides that
differ between two randomly chosen sequences. We have shown that E [π] = θ = 4Neµ,
where µ can be estimated directly. Therefore, there is a means of estimating Ne. For ex-
ample, it appears that diversity in the population of Drosophila is about ten times greater
than diversity in human population.
Abundant species have more genetic diversity than less abundant species but the relation-
ship is not linear. Therefore, we have to consider other phenomena :

• Population bottleneck : dramatic reduction of population size followed by rapid ex-
pansion,

• Natural selection.

1.1 Wright-Fisher Model with selection

Definition 1.1. The fitness of an individual is the number of offsprings it leaves. The
fitness of a gene is the number of copies it leaves. The fitness of an allele is the average
fitness of genes of that allelic type.

Definition 1.2 ((Wright-Fisher Model with selection)). In a panmictic, haploïd population
of constant size N , where individuals are of types a and A, if generation at time t consists of
k individuals of type a and N−k of type A then, according to the Wright-Fisher Model with
selection, the generation at time t+1 is formed by sampling independantly with replacement
with,

P(a sampled) =
k(1 + s)

k(1 + s) +N − k
. (1)

s is called selection coefficient. We say that a,A have relative fitness 1 + s : 1.

• If s > 0 : a is said to be beneficial,

• If s < 0 : a is said to be deterious.

Biologists think of an infinite pool of potential offsrings (from which new generation
are sampled, proportions being dictated by (1)).

The next step is to add mutations to this model : a proportion µ1 of the pool of a
gametes mutate to A. Conversely, a proportion µ2 of A gametes mutate to a. This leads
to the following definition :

Definition 1.3 ((Wright-Fisher Model with selection and mutation)). If there are k indi-
viduals of type a among parents (and N − k individuals of type A), then proportion of the
potential offspring that are of type a after selection and mutation is

ψk =
k(1 + s)(1 − µ1)

k(1 + s) +N − k
+

(N − k)µ2

k(1 + s) +N − k
. (2)

Number of offsprings is then ∼ Bin(N,ψk).

In order to get a more manageable model, we have to pass to a diffusion approximation.
To obtain a non-trivial limit, we suppose that α = Ns, ν1 = Nµ1, ν2 = Nµ2 and we count
in units of size N .
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Lemma 1.1. As N → ∞, rescaled Wright-Fisher with selection and mutation converges
to a one-dimensional diffusion with drift µ(p) = αp(1− p)− ν1p+ ν2(1− p), and variance
σ2(p) = p(1 − p).

Proof. Let δt = 1
N be the time between two generations (in rescaled time). As in neutral

case, for all k ≥ 3, E((p1/N − p)k|p) = O( 1
N2 ). If current proportion of a alleles is p, the

the actual number is k ≡ Np. We have then : E((p1/N − p)|p) = 1
N (Nψk − k). But,

Nψk − k =
Nk(1 + α

N )(1 − ν1

N )

N + αk
N

+
(N − k)ν2

N + αk
N

− k,

=
1

N + αk
N

(

Nk(1 +
α

N
)(1 −

ν1

N
) + (N − k)ν2 − kN −

αk2

N

)

,

=
N

N + αk
N

(

αk

N
−
ν1k

N
+ ν2 −

ν2k

N
− α

k2

N2
− α

ν1k

N2

)

,

= αp− ν1p+ ν2 − ν2p− αp2 + o

(

1

N

)

,

= αp(1 − p) − ν1p− ν2(1 − p) + o

(

1

N

)

.

Since ψk = k
N +O

(

1
N

)

,

E
(

(p1/N − p)2|p
)

=
1

N2
Nψk(1 − ψk) +O

(

1

N2

)

,

=
1

N
p(1 − p) +O

(

1

N2

)

.

Now, for u : [0, 1] −→ R sufficiently differentiable, we have by Taylor’s Theorem :

d

dt
E [u(pt)|p0 = p]|t=0 ≈ N

(

E
[

u(p1/N ) − u(p)|p0 = p
])

,

= N

{

u′(p)E
[

(p1/N − p)|p0 = p
]

+
1

2
u′′(p)E

[

(p1/N − p)2|p0 = p
]

+O

(

1

N2

)}

,

= u′(p) (αp(1 − p) − ν1p+ ν2(1 − p)) +
1

2
u′′(p)p(1 − p) +O

(

1

N

)

.

The last term converges , as N −→ ∞ to u′(p) (αp(1 − p) − ν1p+ ν2(1 − p))+ 1
2u

′′(p)p(1−
p).

Definition 1.4. We call this diffusion the weak solution limit.

Lemma 1.2. Suppose there is no mutation (ν1 = ν2 = 0). If initial proportion of alleles
is p, the probability pfix that a eventually fixes in the population is,

pfix =

{

1−exp(−2α)
1−exp(−2α) if α 6= 0,

p if α = 0.
(3)

Proof. We have previously seen that

pfix =
S(p) − S(0)

S(1) − S(0)
,
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where S is the scale function corresponding to the diffusion found in lemma 1.1 :

S(x) =

∫ x

x0

exp

(

−

∫ y

η

2µ(z)

σ2(z)
dz

)

dy, (4)

and µ(z) = αz(1 − z), σ2(z) = z(1 − z). That leads us to :

S(x) = C1(exp(−2αx) − C2),

for some constants C1 and C2 independant of x. The result follows.

Special cases :

• Deterious alleles : s < 0. If |s| << 1 and N |s| >> 1, pfix ≈ 2|s| exp(−2N |s|).

• Beneficial alleles : s > 0, s << 1, Ns >> 1, then pfix ≈ 2s, almost independant of
population size.

• Nearly neutral alleles : if N |s| << 1, then a is nearly neutral and pfix ≈ 1
N .

Summary :

• Most alleles (beneficial or deterious) are lost,

• deterious mutations are more likely to fix in small populations,

• fitness differences that are too small to be measured in a laboratory (|s| << 1) can
still have evolutionnary impact if (N |s| >> 1).

We have here concentrated on genic selection. More generally in diploïd populations,
different forms of selection can lead to µ(p) = sp(1 − p)(1 − 2p).

1.2 The ancestral selection graph

To understand how it works, we use here the Moran model.

Definition 1.5. In the Moran model for a haploïd population of size N , a rate

(

N
2

)

,

a pair of individuals selected at random, one dies, the other reproduces. To incorporate

selection, at additional rate s

(

N
2

)

, a another pair is chosen ; if both are the same,

nothing happens ; if one is a and the other is A, A dies and a split in two. s plays the role
of selection coefficient. Mutations are added as a Poisson process along the lineages.

Lemma 1.3. As N → ∞, rescaled Moran model with selection converges to the same
diffusion as in the Wright-Fisher model with selection and mutation.

Proof. For a fixed N , the corresponding generator of Moran model with selection is given
by :

LNf(x) =

(

N
2

)

p(1 − p)

(

f(p+
1

N
) − f(p)

)

+

(

N
2

)

p(1 − p)

(

f(p−
1

N
) − f(p)

)

+ Nν1p

(

f(p−
1

N
) − f(p)

)

+Nν2(1 − p)

(

f(p+
1

N
) − f(p)

)

+ 2s

(

N
2

)

p(1 − p)

(

f(p+
1

N
) − f(p)

)

. (5)
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That is to say, the generator corresponding to the neutral Moran model plus an extra
term corresponding to the selection. We take f to be twice continuously differentiable. By
Taylor’s theorem, the last term of the right hand side of (5) is equal to αp(1 − p)f ′(p) +
O
(

1
N

)

. As N −→ ∞, LNf(x) converges to Lf(x) where :

Lf(x) =
1

2
p(1 − p)f ′′(p) + (ν2 − (ν1 + ν2)p)f

′(p) + αp(1 − p)f ′(p). (6)

To construct ancestry of sample, we trace back neutral arrows affecting two individuals
in ancestry result in coalescences as we have seen before. Potential selective events hitting
individuals in ancestry lead to a bench in the ancestry.

Each individual are in N − 1 pairs, each a hit by a potential selective event at rate

s = α
N . So, if there is currently k ancestral lineages, we go from k to k − 1 at rate

(

k
2

)

,

and we go from k to k + 1 at rate αk.

Definition 1.6. The system of branching and coalescing lineages described here is called
the ancestral selection graph.

Lemma 1.4. There is, with probability 1, a finite random time when the number of lineages
is 1 for the first time.

Remark 1.1. The corresponding individual is called the ultimate ancestor.

Proof. If we denote by Xt the number of lineages at time t, the corresponding embed-
ded Markov Chain Yn has a transition matrix P given by : P (1, 1) = 1, P (k, k + 1) =

2α
2α+k−1 , P (k, k−1) = k−1

2α+k−1 ,∀k ≥ 2. For k ∈ N−{0}, let Tk := inf {n ∈ N, Yn = k}. We
want to prove that Pk(T1 < ∞) = 1, for all k ≥ 1. We have Pk(T1 < ∞) = Pk(

⋃

N{T1 <
TN}) = limN−→∞ Pk(T1 < TN ). For fixed N ∈ N − {0}, denoting uk = Pk(T1 < TN ) and
applying Markov property, we have :

uk =
k − 1

2α+ k − 1
uk−1 +

2α

2α+ k − 1
uk+1, for 2 ≤ k ≤ N − 1,

and
u1 = 1, uN = 0.

Then for all k ≥ 2, uk = βk . . . β2, where β is given by uN−l = βN−luN−l−1, 1 ≤ l ≤
N − 2. It is clear that βk −→ 1 as N −→ ∞. So, uk −→ 1, as N −→ ∞.

If mutation rates ν1, ν2 are strictly positive, then diffusion describing allele frequencies
has a stationnary distribution. Indeed, in this particular case, the density m of the speed
measure is given by :

m(x) = Ce2αxx2ν2−1(1 − x)2ν1−1.

In particular,
∫ 1

0
m(x)dx <∞.

Therefore,

ψ(x)dx :=
m(x)

∫ 1
0 m(y)dy

dx,

is a stationary measure for the diffusion.
In order to resolve the potential solution events, we sample the type of the ultimate ancestor
from the stationnary distribution and work back through the ancestral selection graph.
Following Neuhauser and Krone, we assume that mutations rates are equal : ν1 = ν2.
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Figure 1: An example of an ancestral selection graph assuming the UA is of type a.
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Figure 2: An example of an ancestral selection graph assuming the UA is of type A.
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1.3 Adding structure to the coalescent.

In the Kingman’s Coalescent, we want to discard the assumption that population size is
constant. Two things led to Kingman’s coalescent :

• the probability that two individuals have a common parent is 1
N ,

• for large N , the probability that two distinct pairs of individuals having commion
parents and the probability that three or more individuals having common parents
are both O( 1

N2 ).

We suppose now that the size of the population, t generation in the past, is N(t). Then
the chance p that two lineages have not coalesced by time t is such that :

p =
t
∏

s=1

(

1 −
1

N(s)

)

,

= exp

(

t
∑

s=1

log

(

1 −
1

N(s)

)

)

,

≈ exp

(

−
t
∑

s=1

1

N(s)

)

, for N(s) large.

We suppose that N(s) is large and that we measure it in unit of size N (for example
M = N(0)), and that 1

MN(Ms) −→M→∞ ρ(s), for some nice continuous function ρ. Then,
the probability q that two lineages have not coalesced by Mt is :

q = exp

(

−
Mt
∑

s=1

1

N(s)

)

,

≈ exp

(

−
Mt
∑

s=1

1

Mρ(s/M)

)

,

≈ exp

(

−

∫ t

0

1

ρ(s)
ds

)

.

Exactly as in derivation of Kingman’s coalescent, we don’t see two lineages coalescing
in single generation as M → ∞. So, the genealogy when population change with time in
units of size M is exactly like Kingman’s coalescent, except that each pair coalesces not at
rate 1 but at instantaneous rate 1

ρ(s) , i.e. we get a time change of Kingman’s coalescent.
Secondly, we want to discard the assumption that population is panmictic. We suppose

here that population is subdivided into two allelic types a, A with mutations between
both. We recall here the Wright-Fisher model with mutation : if there are currently a
proportion p of a alleles, then the next generation is sampled from an infinite pool of
potential offsprings of which proportion p(1−µ1)+ (1− p)µ2 are of type a and (1− p)(1−
µ2) + pµ1 are of type A. We now suppose, that we sample n1 individuals of type a and n2

individuals of type A. The chance that two of the n1 a individuals have a common parent

is ≈

(

n1

2

)

1
N(p(1−µ1)+µ2(1−p)) =

(

n1

2

)

1
Np + O

(

1
N2

)

. In the same way, the chance of

coalescence of two of the n2 individuals of type A is 1
N(1−p) +O( 1

N2 ). Of the type a gametes

a proportion µ2(1−p)
p(1−µ1)+µ2(1−p) = ν2(1−p)

N(1−p) +O( 1
N2 ) arises through mutation from A gametes.
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Similarly a proportion ν1p
N(1−p) + O( 1

N2 ) of type A gametes arises through mutation from

type a. Following a single lineage of type a, we trace back random time (which in units of

size N is approximately exponential with instantaneous rate ν2(1−p)
p ) until the ancestor’s

type change to A. The probability that there is mutation and coalescence of ancestral
lineages in a single generation is O( 1

N2 ). So we do not see this event in limit as N −→ ∞.
The process ρ(t) that determines the frequency of a individuals as we trace back in time
under rhe coalescent rescaling converges to time reversal of the Wright-Fisher diffusion.
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