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Lessons learned so far

The key message of our balancing selection example is that if we want
to study the genealogy of a sample from a structured population, then
fluctuations in background frequencies matter.

A central question then is how should we model fluctuations of
spatially distributed populations.
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Reminder: Feller’s rescaling

Galton Watson process, offspring generating function Φ(s). Assume
Φ′′(1) < ∞.

Large population, long timescales, measured in units of size N .
Write Zn for the population size after n generations.

If Φ′(1) = 1 + a, then E[ZN ] = (1 + a)NZ0, so for non-trivial limit
assume a = a

N .

If
{

Z0

N

}

N≥1
converges, so does

{ZbNtc

N

}

N≥1
.

Limit process: dXt = aXtdt +
√

γXtdBt.
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Spatially distributed populations

Populations dispersed in R
d or Z

d,

Galton-Watson branching process branching Brownian motion/
branching random walk.

Offspring born where parent died.

Feller rescaling: individual represented by atom of mass 1
N , time in units

of size N .
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The limiting processes

The Dawson-Watanabe superprocess:
For positive, twice differentiable test functions φ,

〈φ, Xt〉 − 〈φ, X0〉 −
∫ t

0

〈D∆φ, Xs〉ds −
∫ t

0

〈aφ, Xs〉ds

is a martingale with quadratic variation
∫ t

0
〈γφ2, Xs〉ds.

Super-random walk:

dXi(t) =
∑

j

mij (Xj(t) − Xi(t)) dt+aXi(t)dt+
√

γXi(t)dWi(t), i ∈ Z
d,

where {Wi(t), t ≥ 0}i∈Zd is a collection of independent Brownian mo-

tions and Xi(t) is the size of the population in deme i at time t.
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Clumping and extinction.

E [〈φ, Xt〉] = eat〈Ttφ, X0〉,

Take a = 0.

var (〈φ, Xt〉) =

∫ t

0

〈γTt−s

(

(Tsφ)2
)

, X0〉ds.

In one and two dimensions grows without bound.
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Controlling the population

Exogenously specify total population size Fleming-Viot superprocess.

As we saw in the first lecture, in Z
d can specify the population size

locally The Classical Stepping Stone Model.

Populations should be regulated by local rules.

Individuals living in locally crowded regions will have a lower reproduc-

tive success than those living in sparsely populated regions.
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Locally regulated populations

a(s, x) = α
(

M − 〈h(x, y), Xs(dy)〉
)

.

For simplicity h(x, y) = h(‖x − y‖).

For infinite initial measures, to
prevent immediate catastrophe,

∫ ∞

0
h(r)rd−1dr < ∞.

The stepping-stone version of the Bolker-Pacala model: In the
super-random walk setting the corresponding model is

dXt(i) =
∑

j

mij (Xt(j) − Xt(i)) dt + α



M −
∑

j

λijXt(j)



Xt(i)dt

+
√

γXt(i)dB
(i)
t .

Note that moment equations not closed.
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Survival and Extinction

Theorem
For each fixed interaction kernel h and γ, K > 0 there exists
α0 = α0(K, γ, h) such that for α > α0, the superprocess version of the
Bolker-Pacala model with parameters (h, K/α, α, γ) started from any
finite initial measure dies out in finite time. If h also satisfies
∫

h(r)rd−1dr < ∞, then when started from any tempered initial
measure (with p > d) the process with these parameters suffers local
extinction.
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Let α > 0 be fixed.

• If r2−δh(r) is unbounded for some δ > 0, then for each fixed
γ > 0, there is an M0 > 0 such that for M < M0 the
superprocess version of the Bolker-Pacala model with
parameters (h, M, α, γ) started from any finite initial measure
dies out in finite time. If also

∫

h(r)rd−1dr < ∞, so that in
particular d = 1, then when started from any tempered initial
measure (with p > 1) the process with these parameters suffers
local extinction.

New York, Sept. 07 – p.10



• Suppose that the population {Xt(i)}i∈Zd,t≥0 evolves according to
the stepping stone version of the Bolker-Pacala model, then if
mij > cλij , for some c > 0, then there exists M1 > 0 such that for
M > M1 the process survives for all time with (strictly) positive
probability (started from any non-trivial initial condition).

Hutzenthaler & Wakolbinger prove an ergodic theorem and also show

that if M is too small, the process dies out.

New York, Sept. 07 – p.11



• Suppose that the population {Xt(i)}i∈Zd,t≥0 evolves according to
the stepping stone version of the Bolker-Pacala model, then if
mij > cλij , for some c > 0, then there exists M1 > 0 such that for
M > M1 the process survives for all time with (strictly) positive
probability (started from any non-trivial initial condition).

Hutzenthaler & Wakolbinger prove an ergodic theorem and also show

that if M is too small, the process dies out.

New York, Sept. 07 – p.11



Rescaling:

Take d = 2. Define Xθ by

〈φ, Xθ
t 〉 =

〈

1

θ2
φ

(x

θ

)

, Xθ2t(dx)

〉

.

Notation hθ(r) = θ2h(θr).

〈φ, Xθ
t 〉 − 〈φ, Xθ

0 〉 −
∫ t

0

〈D∆φ, Xθ
s 〉ds

−
∫ t

0

〈

θ2α
(

M − 〈hθ(‖x − y‖), Xθ
s (dy)〉

)

φ(x), Xθ
s (dx)

〉

ds

a martingale with quadratic variation

∫ t

0

〈γφ2, Xθ
s 〉ds.
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Notes:

If r2h(r) → ∞ as r → ∞, then hθ grows without bound as θ → ∞,
suggesting extinction.

In d = 2, for classical Dawson-Watanabe superprocess, if x is typical
point in support of Xt, then

lim
r↓0

E
(x)

[ 〈χB(x,r), Xt〉
r2 log(1/r)

]

= k

for a constant k (independent of x and t).

〈hθ(‖x − y‖), Xs(dy)〉 ∼ log θ.

Survival in two dimensions reflects successful eradication of clumping.
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Competing species

Strategies for survival:

• colonise relatively unpopulated areas quickly,

• quickly exploit resources in those areas,

• tolerate local competition.
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Model I

dXi(t) =
∑

j∈Zd

mij (Xj(t) − Xi(t)) dt

+ α



M −
∑

j∈Zd

λijXj(t) −
∑

j∈Zd

γijYj(t)



 Xi(t)dt +
√

Xi(t)dBi(t),

dYi(t) =
∑

j∈Zd

m′
ij (Yj(t) − Yi(t)) dt

+ α′



M ′ −
∑

j∈Zd

λ′
ijYj(t) −

∑

j∈Zd

γ′
ijXj(t)



Yi(t)dt +
√

Yi(t)dB̃i(t).
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Model II

Simplify our previous model:

• competition is only within-site

• migration mechanism is the same for both populations

• total population size in each site is fixed

Write

pi(t) =
Xi(t)

(Xi(t) + Yi(t))
=

Xi(t)

N
.
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dpi(t) =
∑

j∈Zd

mij (pj(t) − pi(t)) dt

+ spi(t) (1 − pi(t)) (1 − µpi(t)) dt +

√

1

N
pi(t) (1 − pi(t)) dWi(t),

where
s = αM − α′M ′ + (α′λ′

ii − αγii) N,

µ =
(α′λ′

ii − αγii) N + (αλii − α′γ′
ii) N

αM − α′M ′ + (α′λ′
ii − αγii) N

‘Selection in favour of heterozygosity’ when µ > 1, s > 0,

(αλii − α′γ′
ii)N > αM − α′M ′, and (α′λ′

ii − αγii) N > α′M ′ − αM.

New York, Sept. 07 – p.17



dpi(t) =
∑

j∈Zd

mij (pj(t) − pi(t)) dt

+ spi(t) (1 − pi(t)) (1 − µpi(t)) dt +

√

1

N
pi(t) (1 − pi(t)) dWi(t),

where
s = αM − α′M ′ + (α′λ′

ii − αγii) N,

µ =
(α′λ′

ii − αγii) N + (αλii − α′γ′
ii) N

αM − α′M ′ + (α′λ′
ii − αγii) N

‘Selection in favour of heterozygosity’ when µ > 1, s > 0,

(αλii − α′γ′
ii)N > αM − α′M ′, and (α′λ′

ii − αγii) N > α′M ′ − αM.

New York, Sept. 07 – p.17



The symmetric case

In the case when the two populations evolve symmetrically, Model II
reduces to

dpi(t) =
∑

j

mij (pj(t) − pi(t)) dt

+ spi(t) (1 − pi(t)) (1 − 2pi(t)) dt +

√

1

N
pi(t) (1 − pi(t)) dWi(t),

For general s there is no convenient moment dual, but we find an al-

ternative duality with a system of branching annihilating random walks.
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Branching annihilating random walk

The Markov process {ni(t), i ∈ Z
d}t≥0, in which ni(t) ∈ Z+, with

dynamics






ni 7→ ni − 1,

nj 7→ nj + 1
at rate nimij

ni 7→ ni + m at rate sni

ni 7→ ni − 2 at rate 1
2ni(ni − 1)

is called a branching annihilating random walk with offspring number m

and branching rate s.

Duality: Set wi = 1 − 2pi and let nt be branching annihilating random
walk with offspring number two, then for s > 0

E

[

w(t)n(0)
]

= E

[

w(0)n(t)
]

.
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Conjectures for Model II

Based on results of Cardy and Täuber, we conjecture:

For Model II with µ = 2

• In d = 1, there is a critical value s0 > 0 such that the populations
will both persist for all time with positive probability if and only if
s > s0,

• In d = 2, there is positive probability that both populations will
persist for all time if and only if s > 0,

• In d ≥ 3, this probability is positive if and only if s ≥ 0.

It would be odd if the case µ = 2 were pathological.
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Conjectures for Model I

Let mij = m′
ij , α = α′, M = M ′ fixed, and λij = λ′

ij , γij = γ′
ij .

Parameters such that each population can survive in absence of the
other.

1. If λij < γij for all j, then eventually only one population will be
present.

2. If λij > γij for all j, then if d ≥ 2, with positive probability both
populations will exihibit longterm coexistence.
In one dimension the same result will hold true provided that
λij − γij is sufficiently large.

3. If λij = γij and d ≥ 3 positive probability coexistence.
If d ≤ 2 then with probability one, one population will die out.
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Heteromyopia

Does space promote coexistence?

Murrell & Law 2003: asymmetry in
interaction.

• Overall strength of interspecific and intraspecific competition is
the same (

∑

j λij =
∑

j γij) but distance over which sense
heterospecific neighbours (competitors) is shorter than that over
which sense conspecific neighbours.

• Analogue in our setting: symmetric version of Model I with
λij = λ (‖i − j‖), γij = γ (‖i − j‖), where the functions λ and γ

are monotone decreasing and
∑

j λij =
∑

j γij , but the range of
λij is greater than that of γij .

Small scales homozygous advantage.

Larger scales heterozygous advantage.
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λij = λ (‖i − j‖), γij = γ (‖i − j‖), where the functions λ and γ

are monotone decreasing and
∑

j λij =
∑

j γij , but the range of
λij is greater than that of γij .

Small scales homozygous advantage.

Larger scales heterozygous advantage.
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What about genetics?

Recall from 1st lecture that for a neutral subdivided population with
allelic types a, A, the proportion of type a alleles is

dpi(t) =
∑

j

Nj

Ni
mij (pj(t) − pi(t)) dt +

√

γ

Ni
pi(t) (1 − pi(t))dWi(t).

The genealogy of a sample from the population is given by a system
of coalescing random walks in a random environment. What do we
need to know about {Ni} (or its continuous counterpart) to make good
approximations to the genealogy?

Hidden assumption: the population size in each deme is large.
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An approach of Malécot

Discrete time:
Infinite alleles model, write F (y) for the probability of identity in state of
two genes separated by y.

• Ancestral lineages follow independent Brownian motions,

• local population density, δ, a constant,

• probability two lineages currently at separation y (a vector in R
2

in the most interesting setting) have a common ancestor in the
previous generation is 1

δ

∫

g1(y − z)g1(z)dz, where g1 is a
Gaussian density.
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A recursion for identity

Writing k for the mutation probability

F (y) = (1 − k)2
(1 − F (0)

δ

∫

g1(y − z)g1(z)dz

+

∫

g1(x)g1(x
′)F (y + x′ − x)dxdx′

)

.

Continuous time
Many authors: lineages currently at separation y coalesce at
instantaneous rate γgα(y).
Problem: There is no consistent forwards in time population model.

• No sampling consistency
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Fourier transform

F (y) = (1 − k)2
(1 − F (0)

δ

∫

g1(y − z)g1(z)dz

+

∫

g1(x)g1(x
′)F (y + x′ − x)dxdx′.

Writing f(y) = 1−F (0)
δ

∫

g1(y − z)g1(z)dz,

F̃ (ỹ) =
1

2π

∫

eiy.ỹF (y)dy.

F̃ (ỹ) = (1 − k)2
(

f̃(ỹ) + (2π)2g̃1(−ỹ)g̃1(ỹ)F̃ (ỹ)
)
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Rearranging,

F̃ (ỹ) =
(1 − k)2f̃(ỹ)

1 − (1 − k)2(2π)2g̃1(ỹ)g̃1(−ỹ)
.

For y 6= 0

F (y) =
(1 − F (0)

δ

∫ ∞

0

1

4πσ2t
(1 − k)2te−‖y‖2/(4σ2t)dt,

where σ2 is the variance of the dispersal distribution g1.
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Write (1 − k) = e−µ. Since

∫ ∞

0

e−pttν−1e−
α

4t dt = 2

(

1

4

α

p

)ν/2

Kν(
√

αp), Reα > 0, Rep > 0,

F (y) =
(1 − F (0))

δ2πσ2
K0

(‖y‖
σ

√

2µ

)

.

Now assume a local scale κ over which F (κ) ≈ F (0). Using
K0(z) ∼ log(1/z) as z → 0

F (y) ≈ 1

N + log(σ/κ
√

2µ)
K0(

√

2µ‖y‖/σ), ‖y‖ > κ.

N = 2πδσ2 is Wright’s neighbourhood size.
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Extending Malécot’s formula

Over sufficiently large scales populations may look approximately
homogeneous.

Assumptions:

• For large timesteps, temporal correlations are negligible.

• For well separated lineages:
• the chances of coancestry are negligible,
• movements of lineages uncorrelated,

Then over all but small scales, Malécot’s formula remains valid if param-

eters replaced by effective parameters (dispersal rate, neighbourhood

size and local scale).
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Some comments

Effective parameters may be hard to find.

0

5

10

15

20

0 5 10 15 20
x 1

x 2

No explicit models for which we can calculate the parameters.
No extension to a sample of size n > 2.

. . . but anyway in a spatial continuum, neighbourhood size could be

small and then pairwise coalescences may not dominate.
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