Some mathematical models from population genetics 4: Spatial models

Alison Etheridge

University of Oxford
joint work with Jochen Blath (TU Berlin), Mark Meredith (Oxford)
Nick Barton (Edinburgh), Frantz Depaulis (Paris VI)

Lessons learned so far

The key message of our balancing selection example is that if we want to study the genealogy of a sample from a structured population, then fluctuations in background frequencies matter.

A central question then is how should we model fluctuations of spatially distributed populations.

Reminder: Feller's rescaling

Galton Watson process, offspring generating function $\Phi(s)$. Assume $\Phi^{\prime \prime}(1)<\infty$.

Reminder: Feller's rescaling

Galton Watson process, offspring generating function $\Phi(s)$. Assume $\Phi^{\prime \prime}(1)<\infty$.
Large population, long timescales, measured in units of size N. Write Z_{n} for the population size after n generations.

Reminder: Feller's rescaling

Galton Watson process, offspring generating function $\Phi(s)$. Assume $\Phi^{\prime \prime}(1)<\infty$.
Large population, long timescales, measured in units of size N.
Write Z_{n} for the population size after n generations.

If $\Phi^{\prime}(1)=1+\bar{a}$, then $\mathbb{E}\left[Z_{N}\right]=(1+\bar{a})^{N} Z_{0}$, so for non-trivial limit assume $\bar{a}=\frac{a}{N}$.

Reminder: Feller's rescaling

Galton Watson process, offspring generating function $\Phi(s)$. Assume $\Phi^{\prime \prime}(1)<\infty$.
Large population, long timescales, measured in units of size N.
Write Z_{n} for the population size after n generations.

If $\Phi^{\prime}(1)=1+\bar{a}$, then $\mathbb{E}\left[Z_{N}\right]=(1+\bar{a})^{N} Z_{0}$, so for non-trivial limit assume $\bar{a}=\frac{a}{N}$.

If $\left\{\frac{Z_{0}}{N}\right\}_{N \geq 1}$ converges, so does $\left\{\frac{Z_{\lfloor N t\rfloor}}{N}\right\}_{N \geq 1}$.

Limit process:

$$
d X_{t}=a X_{t} d t+\sqrt{\gamma X_{t}} d B_{t} .
$$

Spatially distributed populations

Populations dispersed in \mathbb{R}^{d} or \mathbb{Z}^{d},

Spatially distributed populations

Populations dispersed in \mathbb{R}^{d} or \mathbb{Z}^{d},

Galton-Watson branching process \rightsquigarrow branching Brownian motion/ branching random walk.

Offspring born where parent died.

Spatially distributed populations

Populations dispersed in \mathbb{R}^{d} or \mathbb{Z}^{d},

Galton-Watson branching process \rightsquigarrow branching Brownian motion/ branching random walk.

Offspring born where parent died.

Feller rescaling: individual represented by atom of mass $\frac{1}{N}$, time in units of size N.

The limiting processes

The Dawson-Watanabe superprocess:
For positive, twice differentiable test functions ϕ,

$$
\left\langle\phi, X_{t}\right\rangle-\left\langle\phi, X_{0}\right\rangle-\int_{0}^{t}\left\langle D \Delta \phi, X_{s}\right\rangle d s-\int_{0}^{t}\left\langle a \phi, X_{s}\right\rangle d s
$$

is a martingale with quadratic variation $\int_{0}^{t}\left\langle\gamma \phi^{2}, X_{s}\right\rangle d s$.

The limiting processes

The Dawson-Watanabe superprocess:
For positive, twice differentiable test functions ϕ,

$$
\left\langle\phi, X_{t}\right\rangle-\left\langle\phi, X_{0}\right\rangle-\int_{0}^{t}\left\langle D \Delta \phi, X_{s}\right\rangle d s-\int_{0}^{t}\left\langle a \phi, X_{s}\right\rangle d s
$$

is a martingale with quadratic variation $\int_{0}^{t}\left\langle\gamma \phi^{2}, X_{s}\right\rangle d s$.
Super-random walk:
$d X_{i}(t)=\sum_{j} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t+a X_{i}(t) d t+\sqrt{\gamma X_{i}(t)} d W_{i}(t), \quad i \in \mathbb{Z}^{d}$,
where $\left\{W_{i}(t), t \geq 0\right\}_{i \in \mathbb{Z}^{d}}$ is a collection of independent Brownian motions and $X_{i}(t)$ is the size of the population in deme i at time t.

Clumping and extinction.

$$
\mathbb{E}\left[\left\langle\phi, X_{t}\right\rangle\right]=e^{a t}\left\langle T_{t} \phi, X_{0}\right\rangle
$$

Take $a=0$.

$$
\operatorname{var}\left(\left\langle\phi, X_{t}\right\rangle\right)=\int_{0}^{t}\left\langle\gamma T_{t-s}\left(\left(T_{s} \phi\right)^{2}\right), X_{0}\right\rangle d s
$$

In one and two dimensions grows without bound.

Controlling the population

Exogenously specify total population size \rightsquigarrow Fleming-Viot superprocess.

Controlling the population

Exogenously specify total population size \rightsquigarrow Fleming-Viot superprocess.

As we saw in the first lecture, in \mathbb{Z}^{d} can specify the population size locally \rightsquigarrow The Classical Stepping Stone Model.

Controlling the population

Exogenously specify total population size \rightsquigarrow Fleming-Viot superprocess.

As we saw in the first lecture, in \mathbb{Z}^{d} can specify the population size locally \rightsquigarrow The Classical Stepping Stone Model.

Populations should be regulated by local rules.

Controlling the population

Exogenously specify total population size \rightsquigarrow Fleming-Viot superprocess.

As we saw in the first lecture, in \mathbb{Z}^{d} can specify the population size locally \rightsquigarrow The Classical Stepping Stone Model.

Populations should be regulated by local rules.

Individuals living in locally crowded regions will have a lower reproductive success than those living in sparsely populated regions.

Locally regulated populations

$$
a(s, x)=\alpha\left(M-\left\langle h(x, y), X_{s}(d y)\right\rangle\right)
$$

For simplicity $h(x, y)=h(\|x-y\|)$.

Locally regulated populations

$$
a(s, x)=\alpha\left(M-\left\langle h(x, y), X_{s}(d y)\right\rangle\right)
$$

For simplicity $h(x, y)=h(\|x-y\|)$. For infinite initial measures, to prevent immediate catastrophe, $\int_{0}^{\infty} h(r) r^{d-1} d r<\infty$.

Locally regulated populations

$$
a(s, x)=\alpha\left(M-\left\langle h(x, y), X_{s}(d y)\right\rangle\right)
$$

For simplicity $h(x, y)=h(\|x-y\|)$. For infinite initial measures, to prevent immediate catastrophe, $\int_{0}^{\infty} h(r) r^{d-1} d r<\infty$.

The stepping-stone version of the Bolker-Pacala model: In the super-random walk setting the corresponding model is

$$
\begin{array}{r}
d X_{t}(i)=\sum_{j} m_{i j}\left(X_{t}(j)-X_{t}(i)\right) d t+\alpha\left(M-\sum_{j} \lambda_{i j} X_{t}(j)\right) X_{t}(i) d t \\
+\sqrt{\gamma X_{t}(i)} d B_{t}^{(i)}
\end{array}
$$

Locally regulated populations

$$
a(s, x)=\alpha\left(M-\left\langle h(x, y), X_{s}(d y)\right\rangle\right)
$$

For simplicity $h(x, y)=h(\|x-y\|)$. For infinite initial measures, to prevent immediate catastrophe, $\int_{0}^{\infty} h(r) r^{d-1} d r<\infty$.

The stepping-stone version of the Bolker-Pacala model: In the super-random walk setting the corresponding model is

$$
\begin{array}{r}
d X_{t}(i)=\sum_{j} m_{i j}\left(X_{t}(j)-X_{t}(i)\right) d t+\alpha\left(M-\sum_{j} \lambda_{i j} X_{t}(j)\right) X_{t}(i) d t \\
+\sqrt{\gamma X_{t}(i)} d B_{t}^{(i)}
\end{array}
$$

Note that moment equations not closed.

Survival and Extinction

Theorem

For each fixed interaction kernel h and $\gamma, K>0$ there exists $\alpha_{0}=\alpha_{0}(K, \gamma, h)$ such that for $\alpha>\alpha_{0}$, the superprocess version of the Bolker-Pacala model with parameters $(h, K / \alpha, \alpha, \gamma)$ started from any finite initial measure dies out in finite time. If h also satisfies $\int h(r) r^{d-1} d r<\infty$, then when started from any tempered initial measure (with $p>d$) the process with these parameters suffers local extinction.

Let $\alpha>0$ be fixed.

- If $r^{2-\delta} h(r)$ is unbounded for some $\delta>0$, then for each fixed $\gamma>0$, there is an $M_{0}>0$ such that for $M<M_{0}$ the superprocess version of the Bolker-Pacala model with parameters (h, M, α, γ) started from any finite initial measure dies out in finite time. If also $\int h(r) r^{d-1} d r<\infty$, so that in particular $d=1$, then when started from any tempered initial measure (with $p>1$) the process with these parameters suffers local extinction.
- Suppose that the population $\left\{X_{t}(i)\right\}_{i \in \mathbb{Z}^{d}, t \geq 0}$ evolves according to the stepping stone version of the Bolker-Pacala model, then if $m_{i j}>c \lambda_{i j}$, for some $c>0$, then there exists $M_{1}>0$ such that for $M>M_{1}$ the process survives for all time with (strictly) positive probability (started from any non-trivial initial condition).
- Suppose that the population $\left\{X_{t}(i)\right\}_{i \in \mathbb{Z}^{d}, t \geq 0}$ evolves according to the stepping stone version of the Bolker-Pacala model, then if $m_{i j}>c \lambda_{i j}$, for some $c>0$, then there exists $M_{1}>0$ such that for $M>M_{1}$ the process survives for all time with (strictly) positive probability (started from any non-trivial initial condition).

Hutzenthaler \& Wakolbinger prove an ergodic theorem and also show that if M is too small, the process dies out.

Rescaling:

Take $d=2$. Define X^{θ} by

$$
\left\langle\phi, X_{t}^{\theta}\right\rangle=\left\langle\frac{1}{\theta^{2}} \phi\left(\frac{x}{\theta}\right), X_{\theta^{2} t}(d x)\right\rangle .
$$

Notation $h^{\theta}(r)=\theta^{2} h(\theta r)$.

Rescaling:

Take $d=2$. Define X^{θ} by

$$
\left\langle\phi, X_{t}^{\theta}\right\rangle=\left\langle\frac{1}{\theta^{2}} \phi\left(\frac{x}{\theta}\right), X_{\theta^{2} t}(d x)\right\rangle .
$$

Notation $h^{\theta}(r)=\theta^{2} h(\theta r)$.

$$
\begin{aligned}
\left\langle\phi, X_{t}^{\theta}\right\rangle- & \left\langle\phi, X_{0}^{\theta}\right\rangle-\int_{0}^{t}\left\langle D \Delta \phi, X_{s}^{\theta}\right\rangle d s \\
& -\int_{0}^{t}\left\langle\theta^{2} \alpha\left(M-\left\langle h^{\theta}(\|x-y\|), X_{s}^{\theta}(d y)\right\rangle\right) \phi(x), X_{s}^{\theta}(d x)\right\rangle d s
\end{aligned}
$$

a martingale with quadratic variation

$$
\int_{0}^{t}\left\langle\gamma \phi_{o}^{2}, X_{s}^{\theta}\right\rangle d s
$$

If $r^{2} h(r) \rightarrow \infty$ as $r \rightarrow \infty$, then h^{θ} grows without bound as $\theta \rightarrow \infty$, suggesting extinction.

Notes:

If $r^{2} h(r) \rightarrow \infty$ as $r \rightarrow \infty$, then h^{θ} grows without bound as $\theta \rightarrow \infty$, suggesting extinction.
In $d=2$, for classical Dawson-Watanabe superprocess, if x is typical point in support of X_{t}, then

$$
\lim _{r \downarrow 0} \mathbb{E}^{(x)}\left[\frac{\left\langle\chi_{B(x, r)}, X_{t}\right\rangle}{r^{2} \log (1 / r)}\right]=k
$$

for a constant k (independent of x and t).

Notes:

If $r^{2} h(r) \rightarrow \infty$ as $r \rightarrow \infty$, then h^{θ} grows without bound as $\theta \rightarrow \infty$, suggesting extinction.
In $d=2$, for classical Dawson-Watanabe superprocess, if x is typical point in support of X_{t}, then

$$
\lim _{r \downarrow 0} \mathbb{E}^{(x)}\left[\frac{\left\langle\chi_{B(x, r)}, X_{t}\right\rangle}{r^{2} \log (1 / r)}\right]=k
$$

for a constant k (independent of x and t).

$$
\left\langle h^{\theta}(\|x-y\|), X_{s}(d y)\right\rangle \sim \log \theta .
$$

Survival in two dimensions reflects successful eradication of clumping.

Competing species

Strategies for survival:

Competing species

Strategies for survival:

- colonise relatively unpopulated areas quickly,

Competing species

Strategies for survival:

- colonise relatively unpopulated areas quickly,
- quickly exploit resources in those areas,

Competing species

Strategies for survival:

- colonise relatively unpopulated areas quickly,
- quickly exploit resources in those areas,
- tolerate local competition.

Model I

$$
\begin{aligned}
& d X_{i}(t)=\sum_{j \in \mathbb{Z}^{d}} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t \\
& +\alpha\left(M-\sum_{j \in \mathbb{Z}^{d}} \lambda_{i j} X_{j}(t)-\sum_{j \in \mathbb{Z}^{d}} \gamma_{i j} Y_{j}(t)\right) X_{i}(t) d t+\sqrt{X_{i}(t)} d B_{i}(t),
\end{aligned}
$$

Model I

$$
\begin{aligned}
& d X_{i}(t)=\sum_{j \in \mathbb{Z}^{d}} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t \\
& +\alpha\left(M-\sum_{j \in \mathbb{Z}^{d}} \lambda_{i j} X_{j}(t)-\sum_{j \in \mathbb{Z}^{d}} \gamma_{i j} Y_{j}(t)\right) X_{i}(t) d t+\sqrt{X_{i}(t)} d B_{i}(t) \\
& d Y_{i}(t)=\sum_{j \in \mathbb{Z}^{d}} m_{i j}^{\prime}\left(Y_{j}(t)-Y_{i}(t)\right) d t \\
& +\alpha^{\prime}\left(M^{\prime}-\sum_{j \in \mathbb{Z}^{d}} \lambda_{i j}^{\prime} Y_{j}(t)-\sum_{j \in \mathbb{Z}^{d}} \gamma_{i j}^{\prime} X_{j}(t)\right) Y_{i}(t) d t+\sqrt{Y_{i}(t)} d \tilde{B}_{i}(t)
\end{aligned}
$$

Model II

Simplify our previous model:

Simplify our previous model:

- competition is only within-site

Simplify our previous model:

- competition is only within-site
- migration mechanism is the same for both populations

Simplify our previous model:

- competition is only within-site
- migration mechanism is the same for both populations
- total population size in each site is fixed

Model II

Simplify our previous model:

- competition is only within-site
- migration mechanism is the same for both populations
- total population size in each site is fixed

Write

$$
p_{i}(t)=\frac{X_{i}(t)}{\left(X_{i}(t)+Y_{i}(t)\right)}=\frac{X_{i}(t)}{N} .
$$

$$
\begin{aligned}
& d p_{i}(t)=\sum_{j \in \mathbb{Z}^{d}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& \quad+s p_{i}(t)\left(1-p_{i}(t)\right)\left(1-\mu p_{i}(t)\right) d t+\sqrt{\frac{1}{N} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

where

$$
\begin{gathered}
s=\alpha M-\alpha^{\prime} M^{\prime}+\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N, \\
\mu=\frac{\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N+\left(\alpha \lambda_{i i}-\alpha^{\prime} \gamma_{i i}^{\prime}\right) N}{\alpha M-\alpha^{\prime} M^{\prime}+\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N}
\end{gathered}
$$

$$
\begin{aligned}
& d p_{i}(t)=\sum_{j \in \mathbb{Z}^{d}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& \quad+s p_{i}(t)\left(1-p_{i}(t)\right)\left(1-\mu p_{i}(t)\right) d t+\sqrt{\frac{1}{N} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

where

$$
\begin{gathered}
s=\alpha M-\alpha^{\prime} M^{\prime}+\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N, \\
\mu=\frac{\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N+\left(\alpha \lambda_{i i}-\alpha^{\prime} \gamma_{i i}^{\prime}\right) N}{\alpha M-\alpha^{\prime} M^{\prime}+\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N}
\end{gathered}
$$

'Selection in favour of heterozygosity' when $\mu>1, s>0$,

$$
\left(\alpha \lambda_{i i}-\alpha^{\prime} \gamma_{i i}^{\prime}\right) N>\alpha M-\alpha^{\prime} M^{\prime}, \text { and }\left(\alpha^{\prime} \lambda_{i i}^{\prime}-\alpha \gamma_{i i}\right) N>\alpha^{\prime} M^{\prime}-\alpha M
$$

The symmetric case

In the case when the two populations evolve symmetrically, Model II reduces to

$$
\begin{aligned}
& d p_{i}(t)=\sum_{j} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& \quad+s p_{i}(t)\left(1-p_{i}(t)\right)\left(1-2 p_{i}(t)\right) d t+\sqrt{\frac{1}{N} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

The symmetric case

In the case when the two populations evolve symmetrically, Model II reduces to

$$
\begin{aligned}
& d p_{i}(t)=\sum_{j} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& \quad+s p_{i}(t)\left(1-p_{i}(t)\right)\left(1-2 p_{i}(t)\right) d t+\sqrt{\frac{1}{N} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

For general s there is no convenient moment dual, but we find an alternative duality with a system of branching annihilating random walks.

Branching annihilating random walk

The Markov process $\left\{n_{i}(t), i \in \mathbb{Z}^{d}\right\}_{t \geq 0}$, in which $n_{i}(t) \in \mathbb{Z}_{+}$, with dynamics

$$
\left.\left.\begin{array}{ll}
\begin{cases}n_{i} \mapsto n_{i}-1, \\
n_{j} \mapsto n_{j}+1\end{cases} & \text { at rate } n_{i} m_{i j}
\end{array}\right\} \begin{array}{ll}
n_{i} \mapsto n_{i}+m & \text { at rate } s n_{i}
\end{array}\right\}
$$

is called a branching annihilating random walk with offspring number m and branching rate s.

Branching annihilating random walk

The Markov process $\left\{n_{i}(t), i \in \mathbb{Z}^{d}\right\}_{t \geq 0}$, in which $n_{i}(t) \in \mathbb{Z}_{+}$, with dynamics

$$
\left.\left.\begin{array}{ll}
\begin{cases}n_{i} \mapsto n_{i}-1, \\
n_{j} \mapsto n_{j}+1\end{cases} & \text { at rate } n_{i} m_{i j}
\end{array}\right\} \begin{array}{ll}
n_{i} \mapsto n_{i}+m & \text { at rate } s n_{i}
\end{array}\right\}
$$

is called a branching annihilating random walk with offspring number m and branching rate s.
Duality: Set $w_{i}=1-2 p_{i}$ and let \underline{n}_{t} be branching annihilating random walk with offspring number two, then for $s>0$

$$
\mathbb{E}\left[\underline{w}(t)^{\underline{n}(0)}\right]=\mathbb{E}\left[\underline{w}(0)^{\underline{n}(t)}\right]
$$

Conjectures for Model II

Based on results of Cardy and Täuber, we conjecture:

For Model II with $\mu=2$

- In $d=1$, there is a critical value $s_{0}>0$ such that the populations will both persist for all time with positive probability if and only if $s>s_{0}$,
- $\operatorname{In} d=2$, there is positive probability that both populations will persist for all time if and only if $s>0$,
- $\ln d \geq 3$, this probability is positive if and only if $s \geq 0$.

It would be odd if the case $\mu=2$ were pathological.

Conjectures for Model I

Let $m_{i j}=m_{i j}^{\prime}, \alpha=\alpha^{\prime}, M=M^{\prime}$ fixed, and $\lambda_{i j}=\lambda_{i j}^{\prime}, \gamma_{i j}=\gamma_{i j}^{\prime}$.
Parameters such that each population can survive in absence of the other.

1. If $\lambda_{i j}<\gamma_{i j}$ for all j, then eventually only one population will be present.
2. If $\lambda_{i j}>\gamma_{i j}$ for all j, then if $d \geq 2$, with positive probability both populations will exihibit longterm coexistence.
In one dimension the same result will hold true provided that $\lambda_{i j}-\gamma_{i j}$ is sufficiently large.
3. If $\lambda_{i j}=\gamma_{i j}$ and $d \geq 3$ positive probability coexistence.

If $d \leq 2$ then with probability one, one population will die out.

Heteromyopia

Does space promote coexistence?

Heteromyopia

Does space promote coexistence? Murrell \& Law 2003: asymmetry in interaction.

- Overall strength of interspecific and intraspecific competition is the same ($\sum_{j} \lambda_{i j}=\sum_{j} \gamma_{i j}$) but distance over which sense heterospecific neighbours (competitors) is shorter than that over which sense conspecific neighbours.

Heteromyopia

Does space promote coexistence? Murrell \& Law 2003: asymmetry in interaction.

- Overall strength of interspecific and intraspecific competition is the same ($\sum_{j} \lambda_{i j}=\sum_{j} \gamma_{i j}$) but distance over which sense heterospecific neighbours (competitors) is shorter than that over which sense conspecific neighbours.
- Analogue in our setting: symmetric version of Model I with $\lambda_{i j}=\lambda(\|i-j\|), \gamma_{i j}=\gamma(\|i-j\|)$, where the functions λ and γ are monotone decreasing and $\sum_{j} \lambda_{i j}=\sum_{j} \gamma_{i j}$, but the range of $\lambda_{i j}$ is greater than that of $\gamma_{i j}$.

Heteromyopia

Does space promote coexistence? Murrell \& Law 2003: asymmetry in interaction.

- Overall strength of interspecific and intraspecific competition is the same ($\sum_{j} \lambda_{i j}=\sum_{j} \gamma_{i j}$) but distance over which sense heterospecific neighbours (competitors) is shorter than that over which sense conspecific neighbours.
- Analogue in our setting: symmetric version of Model I with $\lambda_{i j}=\lambda(\|i-j\|), \gamma_{i j}=\gamma(\|i-j\|)$, where the functions λ and γ are monotone decreasing and $\sum_{j} \lambda_{i j}=\sum_{j} \gamma_{i j}$, but the range of $\lambda_{i j}$ is greater than that of $\gamma_{i j}$.
Small scales \rightsquigarrow homozygous advantage.
Larger scales \rightsquigarrow heterozygous advantage.

What about genetics?

Recall from 1st lecture that for a neutral subdivided population with allelic types a, A, the proportion of type a alleles is

$$
d p_{i}(t)=\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t+\sqrt{\frac{\gamma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t) .
$$

What about genetics?

Recall from 1st lecture that for a neutral subdivided population with allelic types a, A, the proportion of type a alleles is

$$
d p_{i}(t)=\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t+\sqrt{\frac{\gamma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t) .
$$

The genealogy of a sample from the population is given by a system of coalescing random walks in a random environment.

What about genetics?

Recall from 1st lecture that for a neutral subdivided population with allelic types a, A, the proportion of type a alleles is

$$
d p_{i}(t)=\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t+\sqrt{\frac{\gamma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t) .
$$

The genealogy of a sample from the population is given by a system of coalescing random walks in a random environment. What do we need to know about $\left\{N_{i}\right\}$ (or its continuous counterpart) to make good approximations to the genealogy?

What about genetics?

Recall from 1st lecture that for a neutral subdivided population with allelic types a, A, the proportion of type a alleles is

$$
d p_{i}(t)=\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t+\sqrt{\frac{\gamma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t) .
$$

The genealogy of a sample from the population is given by a system of coalescing random walks in a random environment. What do we need to know about $\left\{N_{i}\right\}$ (or its continuous counterpart) to make good approximations to the genealogy?

Hidden assumption: the population size in each deme is large.

An approach of Malécot

Discrete time:

Infinite alleles model, write $F(y)$ for the probability of identity in state of two genes separated by y.

- Ancestral lineages follow independent Brownian motions,
- local population density, δ, a constant,
- probability two lineages currently at separation y (a vector in \mathbb{R}^{2} in the most interesting setting) have a common ancestor in the previous generation is $\frac{1}{\delta} \int g_{1}(y-z) g_{1}(z) d z$, where g_{1} is a Gaussian density.

A recursion for identity

Writing k for the mutation probability

$$
\begin{aligned}
F(y)=(1-k)^{2}\left(\frac{1-F(0)}{\delta} \int\right. & g_{1}(y-z) g_{1}(z) d z \\
& \left.+\int g_{1}(x) g_{1}\left(x^{\prime}\right) F\left(y+x^{\prime}-x\right) d x d x^{\prime}\right)
\end{aligned}
$$

A recursion for identity

Writing k for the mutation probability

$$
\begin{aligned}
F(y)=(1-k)^{2}\left(\frac{1-F(0)}{\delta} \int\right. & g_{1}(y-z) g_{1}(z) d z \\
& \left.+\int g_{1}(x) g_{1}\left(x^{\prime}\right) F\left(y+x^{\prime}-x\right) d x d x^{\prime}\right) .
\end{aligned}
$$

Continuous time

Many authors: lineages currently at separation y coalesce at instantaneous rate $\gamma g_{\alpha}(y)$.

A recursion for identity

Writing k for the mutation probability

$$
\begin{aligned}
F(y)=(1-k)^{2}\left(\frac{1-F(0)}{\delta} \int\right. & g_{1}(y-z) g_{1}(z) d z \\
& \left.+\int g_{1}(x) g_{1}\left(x^{\prime}\right) F\left(y+x^{\prime}-x\right) d x d x^{\prime}\right) .
\end{aligned}
$$

Continuous time

Many authors: lineages currently at separation y coalesce at instantaneous rate $\gamma g_{\alpha}(y)$.
Problem: There is no consistent forwards in time population model.

- No sampling consistency

Fourier transform

$$
\begin{aligned}
F(y)=(1-k)^{2}\left(\frac{1-F(0)}{\delta} \int\right. & g_{1}(y-z) g_{1}(z) d z \\
& +\int g_{1}(x) g_{1}\left(x^{\prime}\right) F\left(y+x^{\prime}-x\right) d x d x^{\prime} .
\end{aligned}
$$

Writing $f(y)=\frac{1-F(0)}{\delta} \int g_{1}(y-z) g_{1}(z) d z$,

$$
\begin{gathered}
\tilde{F}(\tilde{y})=\frac{1}{2 \pi} \int e^{i y \cdot \tilde{y}} F(y) d y \\
\tilde{F}(\tilde{y})=(1-k)^{2}\left(\tilde{f}(\tilde{y})+(2 \pi)^{2} \tilde{g}_{1}(-\tilde{y}) \tilde{g}_{1}(\tilde{y}) \tilde{F}(\tilde{y})\right)
\end{gathered}
$$

Rearranging,

$$
\tilde{F}(\tilde{y})=\frac{(1-k)^{2} \tilde{f}(\tilde{y})}{1-(1-k)^{2}(2 \pi)^{2} \tilde{g}_{1}(\tilde{y}) \tilde{g}_{1}(-\tilde{y})} .
$$

For $y \neq 0$

$$
F(y)=\frac{(1-F(0)}{\delta} \int_{0}^{\infty} \frac{1}{4 \pi \sigma^{2} t}(1-k)^{2 t} e^{-\|y\|^{2} /\left(4 \sigma^{2} t\right)} d t
$$

where σ^{2} is the variance of the dispersal distribution g_{1}.

Write $(1-k)=e^{-\mu}$. Since

$$
\begin{aligned}
\int_{0}^{\infty} e^{-p t} t^{\nu-1} e^{-\frac{\alpha}{4 t}} d t & =2\left(\frac{1}{4} \frac{\alpha}{p}\right)^{\nu / 2} K_{\nu}(\sqrt{\alpha p}), \text { Re } \alpha>0, \text { Rep }>0, \\
F(y) & =\frac{(1-F(0))}{\delta 2 \pi \sigma^{2}} K_{0}\left(\frac{\|y\|}{\sigma} \sqrt{2 \mu}\right) .
\end{aligned}
$$

Now assume a local scale κ over which $F(\kappa) \approx F(0)$. Using
$K_{0}(z) \sim \log (1 / z)$ as $z \rightarrow 0$

$$
F(y) \approx \frac{1}{\mathcal{N}+\log (\sigma / \kappa \sqrt{2 \mu})} K_{0}(\sqrt{2 \mu}\|y\| / \sigma), \quad\|y\|>\kappa
$$

$\mathcal{N}=2 \pi \delta \sigma^{2}$ is Wright's neighbourhood size.

Extending Malécot's formula

Over sufficiently large scales populations may look approximately homogeneous.

Extending Malécot's formula

Over sufficiently large scales populations may look approximately homogeneous. Assumptions:

- For large timesteps, temporal correlations are negligible.
- For well separated lineages:
- the chances of coancestry are negligible,
- movements of lineages uncorrelated,

Extending Malécot's formula

Over sufficiently large scales populations may look approximately homogeneous. Assumptions:

- For large timesteps, temporal correlations are negligible.
- For well separated lineages:
- the chances of coancestry are negligible,
- movements of lineages uncorrelated,

Then over all but small scales, Malécot's formula remains valid if parameters replaced by effective parameters (dispersal rate, neighbourhood size and local scale).

Some comments

Effective parameters may be hard to find.

Some comments

Effective parameters may be hard to find.

No explicit models for which we can calculate the parameters.

Some comments

Effective parameters may be hard to find.

No explicit models for which we can calculate the parameters.
No extension to a sample of size $n>2$.

Some comments

Effective parameters may be hard to find.

No explicit models for which we can calculate the parameters.
No extension to a sample of size $n>2$.
... but anyway in a spatial continuum, neighbourhood size could be small and then pairwise coalescences may not dominate.

