# Some mathematical models from population genetics

#### 2: Recombination

Alison Etheridge

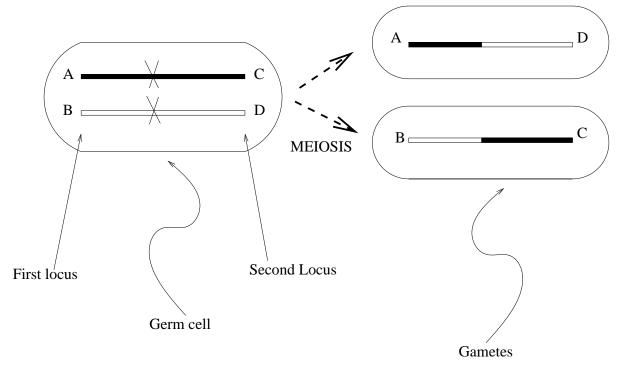
University of Oxford joint work with Stuart Baird (Montpellier) and Nick Barton (Edinburgh)

#### What is recombination?

In a diploid population, chromosomes are carried in pairs, one inherited from the mother, one from the father. But the chromosomes are not faithful copies of the parental chromosomes. One reason is recombination.

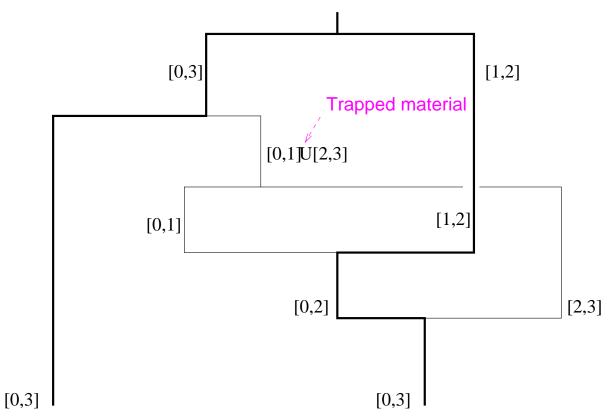
#### What is recombination?

In a diploid population, chromosomes are carried in pairs, one inherited from the mother, one from the father. But the chromosomes are not faithful copies of the parental chromosomes. One reason is recombination.



### The ancestral recombination graph

At a recombination event, we must trace *two* ancestral lineages: we see branches as well as coalescences in the genealogy.

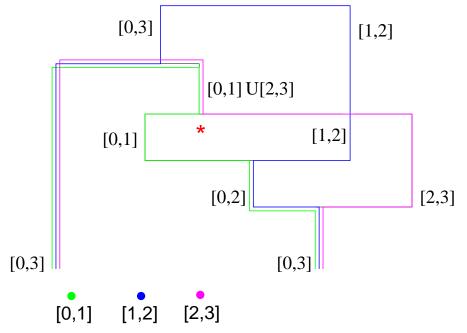


Ancestry of the block denoted [0,3] for a sample of size two.

#### Local trees

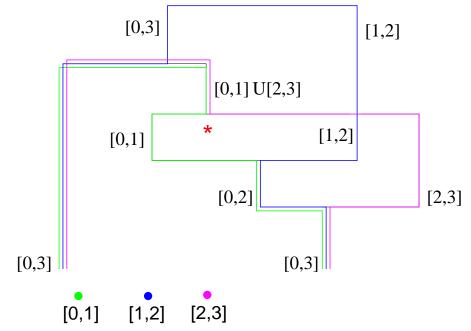
•

Wiuf and Hein scan along the genome and study the process of 'local trees'.



#### Local trees

Wiuf and Hein scan along the genome and study the process of 'local trees'.



Knowing only the local tree for [1, 2], would not see the coalescence \*. Local trees do not form a Markov process.



## To trace the ancestry of a block of genome we must trace the joint location of multiple blocks.

### A diversion

To trace the ancestry of a block of genome we must trace the joint location of multiple blocks.

Analytic results are hard to find. We consider a simpler process: the descent of a block of genome *forwards* in time.

Each individual mates with an unrelated individual to produce a Poiss(2(1+s)) number of offspring.  $0 \le s \ll 1$ .

Each individual mates with an unrelated individual to produce a Poiss(2(1+s)) number of offspring.  $0 \le s \ll 1$ .

Genome of map length  $y \le 1$ . With probability y there is one crossover at a uniformly distributed point on the block.

Each individual mates with an unrelated individual to produce a Poiss(2(1+s)) number of offspring.  $0 \le s \ll 1$ .

Genome of map length  $y \le 1$ . With probability y there is one crossover at a uniformly distributed point on the block.

Descendant of genome inherits:

| Block length | probability        |
|--------------|--------------------|
| 0            | $\frac{1}{2}(1-y)$ |
| y            | $\frac{1}{2}(1-y)$ |
| U(0,y)       | y                  |

Each individual mates with an unrelated individual to produce a Poiss(2(1+s)) number of offspring.  $0 \le s \ll 1$ .

Genome of map length  $y \le 1$ . With probability y there is one crossover at a uniformly distributed point on the block.

Descendant of genome inherits:

| Block length | probability        |
|--------------|--------------------|
| 0            | $\frac{1}{2}(1-y)$ |
| y            | $\frac{1}{2}(1-y)$ |
| U(0,y)       | y                  |

*Note:* If s = 0, the expected total block length is conserved.

۲

• How long does the ancestral genome persist?

- How long does the ancestral genome persist?
- What is the distribution of surviving blocks at time t?

- How long does the ancestral genome persist?
- What is the distribution of surviving blocks at time t?

Application: statistical framework for interpreting data arising from sporadic hybridisation.

- How long does the ancestral genome persist?
- What is the distribution of surviving blocks at time t?

Application: statistical framework for interpreting data arising from sporadic hybridisation.

Notation:  $Q_t(y) =$  probability total loss by time *t* of ancestral block of length *y*.  $P_t(y) = 1 - Q_t(y)$ .

•

Condition on number of offspring of ancestral genome:

Condition on number of offspring of ancestral genome:

$$Q_{t+1}(y) = \Phi\left[\frac{1-y}{2} + \frac{1-y}{2}Q_t(y) + \int_0^y Q_t(z)dz\right], \quad Q_0(y) = 0.$$

Condition on number of offspring of ancestral genome:

$$Q_{t+1}(y) = \Phi\left[\frac{1-y}{2} + \frac{1-y}{2}Q_t(y) + \int_0^y Q_t(z)dz\right], \quad Q_0(y) = 0.$$

Substituting for  $\Phi$ ,

$$Q_{t+1}(y) = \exp\left[-2(1+s)\left(\frac{1-y}{2}P_t(y) + \int_0^y P_t(z)dz\right)\right],$$

Condition on number of offspring of ancestral genome:

$$Q_{t+1}(y) = \Phi\left[\frac{1-y}{2} + \frac{1-y}{2}Q_t(y) + \int_0^y Q_t(z)dz\right], \quad Q_0(y) = 0.$$

Substituting for  $\Phi$ ,

$$Q_{t+1}(y) = \exp\left[-2(1+s)\left(\frac{1-y}{2}P_t(y) + \int_0^y P_t(z)dz\right)\right],$$

or, in differential form,

$$\frac{d}{dy}P_{t+1}(y) = (1+s)\left(1 - P_{t+1}(y)\right)\left(P_t(y) + (1-y)\frac{d}{dy}P_t(y)\right).$$

New York, Sept.  $07 - p_{1}$ 

$$\frac{d\tilde{P}}{dy}(y) = (1+s)\tilde{Q}(y)\left(\tilde{P}(y) + (1-y)\frac{d\tilde{P}}{dy}(y)\right).$$

$$\frac{d\tilde{P}}{dy}(y) = (1+s)\tilde{Q}(y)\left(\tilde{P}(y) + (1-y)\frac{d\tilde{P}}{dy}(y)\right).$$

General solution

•

$$\tilde{P}_C = \frac{y^*}{y^* + \pi \left( Cy^* e^{-y^*} \right)}, \quad y^* = y - s(1-y),$$

where the *product log function*,  $\pi$ , is defined by  $z = \pi(z)e^{\pi(z)}$ .

$$\frac{d\tilde{P}}{dy}(y) = (1+s)\tilde{Q}(y)\left(\tilde{P}(y) + (1-y)\frac{d\tilde{P}}{dy}(y)\right).$$

General solution

$$\tilde{P}_C = \frac{y^*}{y^* + \pi \left( Cy^* e^{-y^*} \right)}, \quad y^* = y - s(1-y),$$

where the *product log function*,  $\pi$ , is defined by  $z = \pi(z)e^{\pi(z)}$ .  $\tilde{P}(0)$  is survival probability of a branching process with Poiss(1 + s) offspring distribution:

$$\frac{d\tilde{P}}{dy}(y) = (1+s)\tilde{Q}(y)\left(\tilde{P}(y) + (1-y)\frac{d\tilde{P}}{dy}(y)\right).$$

General solution

$$\tilde{P}_C = \frac{y^*}{y^* + \pi \left( Cy^* e^{-y^*} \right)}, \quad y^* = y - s(1-y),$$

where the *product log function*,  $\pi$ , is defined by  $z = \pi(z)e^{\pi(z)}$ .  $\tilde{P}(0)$  is survival probability of a branching process with Poiss(1 + s) offspring distribution: (using  $\pi(z) \sim z$  as  $z \downarrow 0$ )

$$\tilde{P}(y) = \frac{y^*}{y^* + \pi \left(\frac{\tilde{Q}(0)}{\tilde{P}(0)}y^*e^{-y^*}\right)}.$$

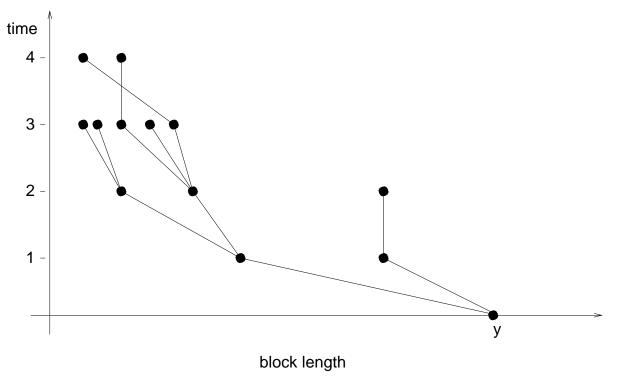
New York, Sept. 07 – p.

•

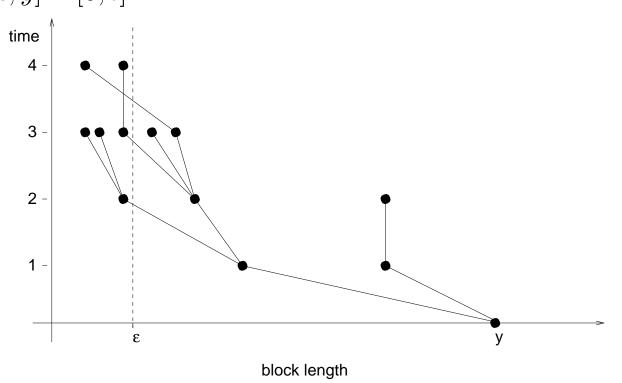
•

Think of process as branching random walk.

Think of process as branching random walk.

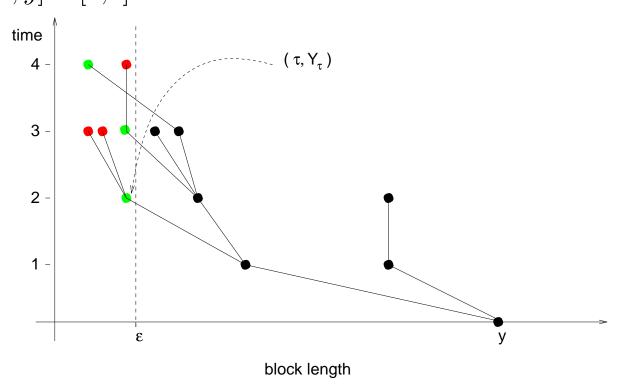


Think of process as branching random walk. *Freeze* individuals on exit from  $[\epsilon, y] \times [0, t]$ .



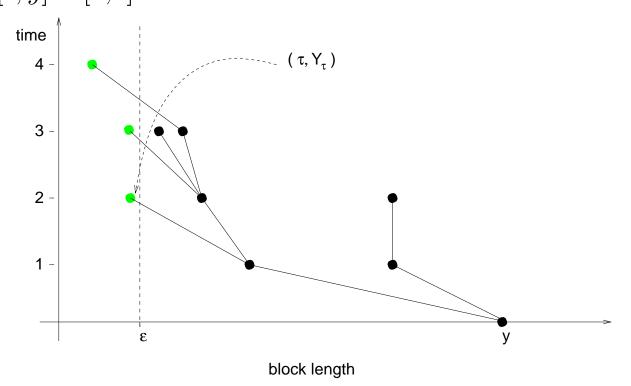
۲

Think of process as branching random walk. *Freeze* individuals on exit from  $[\epsilon, y] \times [0, t]$ .



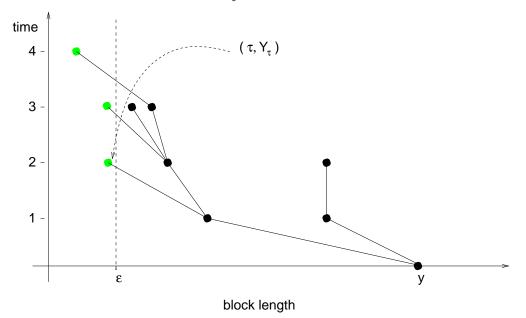
۲

Think of process as branching random walk. *Freeze* individuals on exit from  $[\epsilon, y] \times [0, t]$ .



### **A Special Markov property**

Notation:  $N_{\tau}$  = number of individuals in new process at time t.  $\tau_i$  = time of freezing of *i*th particle.  $Y_{\tau_i}$  = corresponding block length.



$$Q_t(y) = \mathbb{E}\left[\prod_{i=1}^{N_\tau} Q_{t-\tau_i}(Y_{\tau_i})\right]$$

$$Q_t(y) = \mathbb{E}\left[\prod_{i=1}^{N_\tau} Q_{t-\tau_i}(Y_{\tau_i})\right].$$

•

Suppose  $\epsilon \ll 1$  and  $\max_i \tau_i \ll t$  then can approximate  $Q_{t-\tau_i}(Y_{\tau_i})$  by  $Q_t(0)$ . When is this valid?

$$Q_t(y) = \mathbb{E}\left[\prod_{i=1}^{N_\tau} Q_{t-\tau_i}(Y_{\tau_i})\right].$$

۲

Suppose  $\epsilon \ll 1$  and  $\max_i \tau_i \ll t$  then can approximate  $Q_{t-\tau_i}(Y_{\tau_i})$  by  $Q_t(0)$ . When is this valid? Crude bound:

 $\mathbb{P}\left[\max_{i} \tau_{i} > t_{0}\right] \leq \mathbb{E}\left[\#\left\{\text{individuals carrying block length} \geq \epsilon \text{ at time } t_{0}\right\}\right]$ 

• •

•

$$Q_t(y) = \mathbb{E}\left[\prod_{i=1}^{N_\tau} Q_{t-\tau_i}(Y_{\tau_i})\right].$$

۲

Suppose  $\epsilon \ll 1$  and  $\max_i \tau_i \ll t$  then can approximate  $Q_{t-\tau_i}(Y_{\tau_i})$  by  $Q_t(0)$ . When is this valid? Crude bound:

 $\mathbb{P}\left[\max_{i} \tau_{i} > t_{0}\right] \leq \mathbb{E}\left[\#\left\{\text{individuals carrying block length} \geq \epsilon \text{ at time } t_{0}\right\}\right]$ 

To estimate the right-hand side we superimpose recombinations on a *pedigree*.

• • • • • •

#### **Recombination on a pedigree**

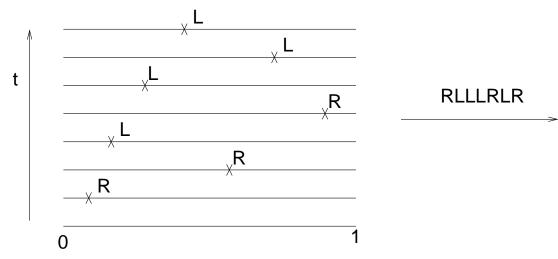
The *pedigree* is the tree of *all* descendants of the ancestor. *Take initial block length* y = 1.

Consider one line of descent through the pedigree:

#### **Recombination on a pedigree**

The *pedigree* is the tree of *all* descendants of the ancestor. *Take initial block length* y = 1.

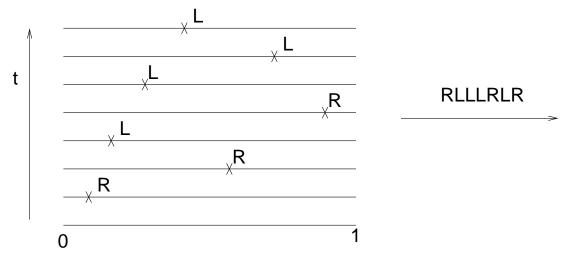
Consider one line of descent through the pedigree:



# **Recombination on a pedigree**

The *pedigree* is the tree of *all* descendants of the ancestor. *Take initial block length* y = 1.

Consider one line of descent through the pedigree:

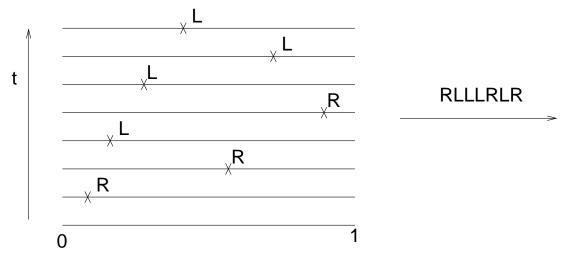


If an 'L' mark is followed by an 'R' mark, all ancestral genome is lost.

# **Recombination on a pedigree**

The *pedigree* is the tree of *all* descendants of the ancestor. *Take initial block length* y = 1.

Consider one line of descent through the pedigree:



If an 'L' mark is followed by an 'R' mark, all ancestral genome is lost. Survival requires  $\underbrace{RR \ldots R}_{m} \underbrace{LL \ldots L}_{m}$  for some  $m \in \{0, 1, \ldots, t_0\}$ .

Probability of any block being passed down =  $\frac{t_0+1}{2^{t_0}}$ .

Probability of any block being passed down =  $\frac{t_0+1}{2^{t_0}}$ . Probability such a block has length  $\geq \epsilon$  is at most  $(1 - \epsilon)^{t_0}$ .

Probability of any block being passed down  $=\frac{t_0+1}{2^{t_0}}$ . Probability such a block has length  $\geq \epsilon$  is at most  $(1-\epsilon)^{t_0}$ . Combining the above,

$$\mathbb{P}\left[\max_{i} \tau_{i} > t_{0}\right] \leq \left[(1+s)(1-\epsilon)\right]^{t_{0}} (t_{0}+1).$$

Probability of any block being passed down  $=\frac{t_0+1}{2^{t_0}}$ . Probability such a block has length  $\geq \epsilon$  is at most  $(1-\epsilon)^{t_0}$ . Combining the above,

$$\mathbb{P}\left[\max_{i} \tau_{i} > t_{0}\right] \leq \left[(1+s)(1-\epsilon)\right]^{t_{0}} (t_{0}+1).$$

Choose  $\epsilon > \frac{s}{1+s}$  for this to decay rapidly. Then

 $Q_t(y) \approx \mathbb{E}\left[Q_t(0)^{N_\tau}\right].$ 

Probability of any block being passed down  $=\frac{t_0+1}{2^{t_0}}$ . Probability such a block has length  $\geq \epsilon$  is at most  $(1-\epsilon)^{t_0}$ . Combining the above,

$$\mathbb{P}\left[\max_{i} \tau_{i} > t_{0}\right] \leq \left[(1+s)(1-\epsilon)\right]^{t_{0}} (t_{0}+1).$$

Choose  $\epsilon > \frac{s}{1+s}$  for this to decay rapidly. Then

This gives 
$$Q_t(y) \approx \mathbb{E}\left[Q_t(0)^{N_\tau}\right].$$
$$P_t(y) \approx \frac{y^*}{y^* + \pi\left(\frac{Q_t(0)}{P_t(0)}y^*e^{-y^*}\right)}$$

Probability of any block being passed down  $=\frac{t_0+1}{2^{t_0}}$ . Probability such a block has length  $\geq \epsilon$  is at most  $(1-\epsilon)^{t_0}$ . Combining the above,

$$\mathbb{P}\left[\max_{i} \tau_{i} > t_{0}\right] \leq \left[(1+s)(1-\epsilon)\right]^{t_{0}} (t_{0}+1).$$

Choose  $\epsilon > \frac{s}{1+s}$  for this to decay rapidly. Then

This gives 
$$Q_t(y) \approx \mathbb{E}\left[Q_t(0)^{N_\tau}\right].$$
$$P_t(y) \approx \frac{y^*}{y^* + \pi\left(\frac{Q_t(0)}{P_t(0)}y^*e^{-y^*}\right)}$$

Approximate  $P_t(0)$  e.g. via Feller's diffusion.

•

# An example

Suppose s = 0 (so  $y^* = y$ ) and  $yt \gg 1$ , since  $\pi(z) \sim \log z$  as  $z \to \infty$ ,

$$P_t(y) \sim \frac{y}{\log(yt/2)}$$

Survival until time *t* declines like  $1/\log t$ . Compare to 1/t for a single locus.

# An example

Suppose s = 0 (so  $y^* = y$ ) and  $yt \gg 1$ , since  $\pi(z) \sim \log z$  as  $z \to \infty$ ,

$$P_t(y) \sim \frac{y}{\log(yt/2)}$$

Survival until time t declines like  $1/\log t$ .

Compare to 1/t for a single locus.

Recombination rapidly breaks the ancestral genome into small blocks, but these can persist for a very long time.

# Long genomes

What about long genomes?

Crossovers according to a Poisson process of rate one.

# Long genomes

What about long genomes?

Crossovers according to a Poisson process of rate one.

What is the mean number of individuals to inherit some ancestral material at time t?

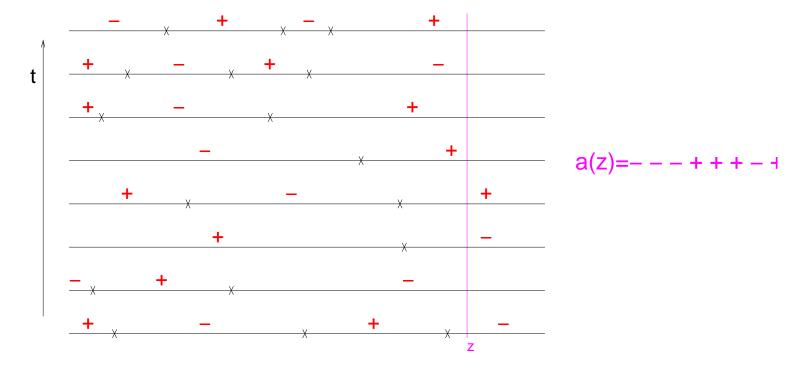
# Long genomes

What about long genomes?

Crossovers according to a Poisson process of rate one.

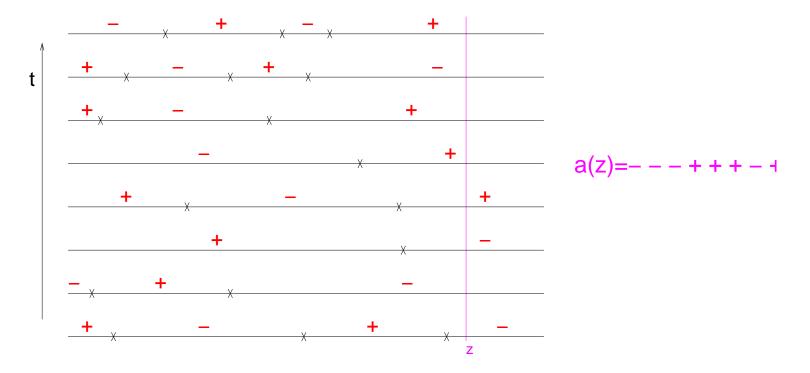
What is the mean number of individuals to inherit some ancestral material at time t?

Again consider a single line of descent



Label  $z \in [0, y]$  by  $\underline{a}(z) = (a_1(z), a_2(z), \dots, a_t(z)) \in \{-, +\}^t$ .

٠



Label  $z \in [0, y]$  by  $\underline{a}(z) = (a_1(z), a_2(z), \dots, a_t(z)) \in \{-, +\}^t$ . A point z is in a block that is passed down iff  $\underline{a}(z) = (+, +, \dots, +)$ .

•

# A change of perspective

Define continuous time Markov chain  $\{X_z\}_{z \in [0,y]}$  by

$$X_z = \#\{i \in \{1, 2, \dots, t\} : a_i(z) = -\}.$$

We seek  $\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]]$ .

## A change of perspective

Define continuous time Markov chain  $\{X_z\}_{z \in [0,y]}$  by

$$X_z = \#\{i \in \{1, 2, \dots, t\} : a_i(z) = -\}.$$

We seek  $\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]]$ . Transitions of  $X_z$  occur at rate t.

$$P_{ij} = \begin{cases} \frac{i}{t} & j = i - 1\\ \frac{t - i}{t} & j = i + 1\\ 0 & \text{otherwise} \end{cases}$$

# A change of perspective

Define continuous time Markov chain  $\{X_z\}_{z \in [0,y]}$  by

$$X_z = \#\{i \in \{1, 2, \dots, t\} : a_i(z) = -\}.$$

We seek  $\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]]$ . Transitions of  $X_z$  occur at rate t.

$$P_{ij} = \begin{cases} \frac{i}{t} & j = i - 1\\ \frac{t - i}{t} & j = i + 1\\ 0 & \text{otherwise} \end{cases}$$

Continuous time version of the *Ehrenfest model*. P & T Ehrenfest (1907).

From Bellman & Harris (1951) we deduce

$$\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]] \approx \frac{1}{2^t}(1 + ty).$$

From Bellman & Harris (1951) we deduce

$$\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]] \approx \frac{1}{2^t}(1 + ty).$$

• Mean number of individuals carrying any ancestral material  $\approx (1+s)^t (ty+1)$ .

From Bellman & Harris (1951) we deduce

$$\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]] \approx \frac{1}{2^t}(1 + ty).$$

- Mean number of individuals carrying any ancestral material  $\approx (1+s)^t (ty+1)$ .
- The length of an inherited block is distributed approx as Exp(t).

From Bellman & Harris (1951) we deduce

$$\mathbb{P}[X_z = 0, \text{ for some } z \in [0, y]] \approx \frac{1}{2^t}(1 + ty).$$

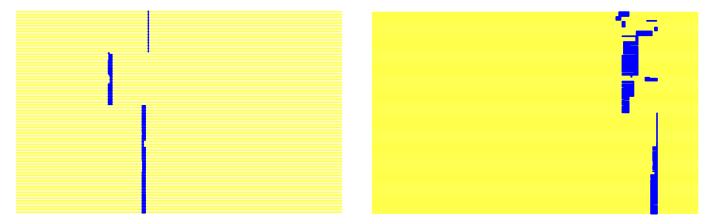
- Mean number of individuals carrying any ancestral material  $\approx (1+s)^t (ty+1)$ .
- The length of an inherited block is distributed approx as Exp(t).
- For a single line of descent, the probability of inheriting multiple blocks is at most

 $\mathbb{P}[A \text{ single block survives}] \times \mathbb{P}[X_z = 0 \text{ for some } z \in [0, y] | X_0 = 1]$ 

 $\approx \frac{(ty+1)}{2^t} \frac{ty}{2^t}$ 

For example, if s = 0, y = 1 and t = 10, this suggests that there is a < 1% chance of seeing multiple blocks.

We expect some portion of introgressed genome to persist for a long time, but the effect will be highly variable along the genome.



50 generations, y = 1.