Some mathematical models from population genetics 1: Some classical models

Alison Etheridge

University of Oxford

Kingman's Coalescent

Kingman (1982)
Neutral (haploid) population of constant size N
Wright-Fisher model: new generation determined by multinomial sampling with equal weights

Kingman's Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial sampling with equal weights

- Equivalently offspring choose their parent at random

Kingman's Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial sampling with equal weights

- Equivalently offspring choose their parent at random
- Time in units of population size and let $N \rightarrow \infty$

Kingman's Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial sampling with equal weights

- Equivalently offspring choose their parent at random

Coalescence rate $\binom{k}{2}$

Some simple extensions

Variable population size $N \rho_{t}$.

Some simple extensions

Variable population size $N \rho_{t}$.

Time change Kingman's coalescent.

Some simple extensions

Variable population size $N \rho_{t}$.

Time change Kingman's coalescent.

Genetic structure:

Some simple extensions

Variable population size $N \rho_{t}$.

Time change Kingman's coalescent.

Genetic structure:

e.g. 2 populations of sizes $N \rho_{1}, N \rho_{2}$ with migration between. Add mutation step to Wright-Fisher: after reproduction a (small) fixed proportion $\bar{\mu}_{i}$ of individuals migrates from population i to population j. $\bar{\mu}_{1} \rho_{1}=\bar{\mu}_{2} \rho_{2}$.

Genetic structure

After reproduction a (small) fixed proportion $\bar{\mu}_{i}$ of individuals migrates from population i to population $j . \bar{\mu}_{1} \rho_{1}=$ $\bar{\mu}_{2} \rho_{2}$.

Genetic structure

After reproduction a (small) fixed proportion $\bar{\mu}_{i}$ of individuals migrates from population i to population $j . \bar{\mu}_{1} \rho_{1}=$ $\bar{\mu}_{2} \rho_{2}$.

- Time in units of size $N, \bar{\mu}_{i}=\frac{\mu_{i}}{N}$ and let $N \rightarrow \infty$

Genetic structure

After reproduction a (small) fixed proportion $\bar{\mu}_{i}$ of individuals migrates from population i to population $j . \bar{\mu}_{1} \rho_{1}=$ $\bar{\mu}_{2} \rho_{2}$.

- Time in units of size $N, \bar{\mu}_{i}=\frac{\mu_{i}}{N}$ and let $N \rightarrow \infty$

Genetic structure

After reproduction a (small) fixed proportion $\bar{\mu}_{i}$ of individuals migrates from population i to population $j . \bar{\mu}_{1} \rho_{1}=$ $\bar{\mu}_{2} \rho_{2}$.

- Time in units of size $N, \bar{\mu}_{i}=\frac{\mu_{i}}{N}$ and let $N \rightarrow \infty$

The structured coalescent: within populations coalescence at rate $\frac{1}{\rho_{i}}\binom{n_{i}}{2}$. Each lineage migrates $1 \mapsto 2$ at rate $\mu_{2} \frac{\rho_{2}}{\rho_{1}}$ and $2 \mapsto 1$ at rate $\mu_{1} \frac{\rho_{1}}{\rho_{2}}$.

The Moran model

The neutral Wright-Fisher model:

A population of N genes evolves in discrete generations. Generation
($k+1$) is formed from generation k by choosing N genes at random with replacement.

The Moran model

The neutral Wright-Fisher model:

A population of N genes evolves in discrete generations. Generation
$(k+1)$ is formed from generation k by choosing N genes at random with replacement.

The neutral Moran model:

A population of N genes evolves in overlapping generations. At exponential rate $\binom{N}{2}$ a pair of genes is sampled (with replacement) from the population, one dies and the other splits in two.

The Moran model

The neutral Wright-Fisher model:

A population of N genes evolves in discrete generations. Generation
($k+1$) is formed from generation k by choosing N genes at random with replacement.

The neutral Moran model:

A population of N genes evolves in overlapping generations. At exponential rate $\binom{N}{2}$ a pair of genes is sampled (with replacement) from the population, one dies and the other splits in two.

- In the Moran model each individual has zero or two offspring.
- The Moran model is already in ‘diffusion’ timescale.

Graphical representation

For each pair of indices (i, j) Poiss(1) process of arrows pointing left or right with equal probability.

Graphical representation

Graphical representation

Genealogy given by Kingman's coalescent (independent of N).

The infinite population limit

Suppose that the gene in question has two alleles, a, A.
Write p_{t} for the proportion of a-alleles at time t.

The infinite population limit

Suppose that the gene in question has two alleles, a, A.
Write p_{t} for the proportion of a-alleles at time t.

For a 'nice' function f on $[0,1]$, the infinitesimal generator of p is

$$
\begin{aligned}
\mathcal{L} f(p) \equiv & \left.\frac{d}{d t} \mathbb{E}\left[f\left(p_{t}\right) \mid p_{0}=p\right]\right|_{t=0} \\
= & \binom{N}{2} p(1-p)\left(f\left(p+\frac{1}{N}\right)-f(p)\right) \\
& +\binom{N}{2} p(1-p)\left(f\left(p-\frac{1}{N}\right)-f(p)\right) .
\end{aligned}
$$

The infinite population limit

Suppose that the gene in question has two alleles, a, A.
Write p_{t} for the proportion of a-alleles at time t.

For a 'nice' function f on $[0,1]$, the infinitesimal generator of p is

$$
\begin{aligned}
\mathcal{L} f(p) \equiv & \left.\frac{d}{d t} \mathbb{E}\left[f\left(p_{t}\right) \mid p_{0}=p\right]\right|_{t=0} \\
= & \binom{N}{2} p(1-p)\left(f\left(p+\frac{1}{N}\right)-f(p)\right) \\
& +\binom{N}{2} p(1-p)\left(f\left(p-\frac{1}{N}\right)-f(p)\right) .
\end{aligned}
$$

To see what happens as $N \rightarrow \infty$, perform a Taylor expansion ...

. . a Taylor expansion

$$
\begin{aligned}
\mathcal{L} f(p)= & \binom{N}{2} p(1-p)\left(f\left(p+\frac{1}{N}\right)-f(p)\right) \\
& +\binom{N}{2} p(1-p)\left(f\left(p-\frac{1}{N}\right)-f(p)\right) \\
= & \binom{N}{2} p(1-p)\left(f(p)+\frac{1}{N} f^{\prime}(p)+\frac{1}{2 N^{2}} f^{\prime \prime}(p)+\mathcal{O}\left(\frac{1}{N^{3}}\right)-f(p)\right. \\
& \left.+f(p)-\frac{1}{N} f^{\prime}(p)+\frac{1}{2 N^{2}} f^{\prime \prime}(p)+\mathcal{O}\left(\frac{1}{N^{3}}\right)-f(p)\right) \\
= & \frac{1}{2} p(1-p) f^{\prime \prime}(p)+\mathcal{O}\left(\frac{1}{N}\right) .
\end{aligned}
$$

The diffusion limit

It is reasonable to guess then that for the infinite population limit,

$$
\left.\frac{d}{d t} \mathbb{E}\left[f\left(p_{t}\right) \mid p_{0}=p\right]\right|_{t=0}=\frac{1}{2} p(1-p) f^{\prime \prime}(p) .
$$

The diffusion limit

It is reasonable to guess then that for the infinite population limit,

$$
\begin{gathered}
\left.\frac{d}{d t} \mathbb{E}\left[f\left(p_{t}\right) \mid p_{0}=p\right]\right|_{t=0}=\frac{1}{2} p(1-p) f^{\prime \prime}(p) . \\
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t},
\end{gathered}
$$

where W_{t} is Brownian motion.

Differential reproductive success

Wright-Fisher model:

Generation $k+1$ is formed from generation k by multinomial sampling with relative weights $1+\sigma$ and 1 on type a and A individuals resp.

Differential reproductive success

Wright-Fisher model:

Generation $k+1$ is formed from generation k by multinomial sampling with relative weights $1+\sigma$ and 1 on type a and A individuals resp.

Moran model:

At a resampling event involving individuals of both types, with probability $\frac{1+\sigma}{2}$ it is the type a individual that reproduces.

Differential reproductive success

Wright-Fisher model:

Generation $k+1$ is formed from generation k by multinomial sampling with relative weights $1+\sigma$ and 1 on type a and A individuals resp.

Moran model:

At a resampling event involving individuals of both types, with probability $\frac{1+\sigma}{2}$ it is the type a individual that reproduces.

Diffusion limit:

For $N \sigma \rightarrow s$, let $N \rightarrow \infty$ (and in WF model measure time in units of size N) to obtain

$$
d p_{t}=s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t} .
$$

Another route

Population, initial size N, follows GW process, Poisson offspring distribution.

Another route

Population, initial size N, follows GW process, Poisson offspring distribution.
Condition size of first generation to be N.

Another route

Population, initial size N, follows GW process, Poisson offspring distribution.
Condition size of first generation to be N.
Write Z_{i} for the number of offspring of the i th individual in initial population,

$$
\mathbb{P}\left[\left(Z_{1}, \ldots Z_{N}\right)=\left(m_{1}, \ldots, m_{N}\right) \mid \sum_{i=1}^{N} Z_{i}=N\right]=\frac{N!}{m_{1}!\cdots m_{N}!} \frac{1}{N^{N}}
$$

Another route

Population, initial size N, follows GW process, Poisson offspring distribution.
Condition size of first generation to be N.
Write Z_{i} for the number of offspring of the i th individual in initial population,

$$
\mathbb{P}\left[\left(Z_{1}, \ldots Z_{N}\right)=\left(m_{1}, \ldots, m_{N}\right) \mid \sum_{i=1}^{N} Z_{i}=N\right]=\frac{N!}{m_{1}!\cdots m_{N}!} \frac{1}{N^{N}} .
$$

... just as for the Wright-Fisher model.

Feller's diffusion approximation

Offspring $\sim \operatorname{Poiss}\left(1+\frac{a}{N}\right)$, generation times $\frac{k}{N}$ and $X_{t}^{(N)}=\frac{1}{N} Z_{t}^{(N)}$.

Feller's diffusion approximation

Offspring $\sim \operatorname{Poiss}\left(1+\frac{a}{N}\right)$, generation times $\frac{k}{N}$ and $X_{t}^{(N)}=\frac{1}{N} Z_{t}^{(N)}$.

$$
\begin{aligned}
\left.\frac{d}{d t} \mathbb{E}_{x}\left[s^{X_{t}}\right]\right|_{t=0} & \approx N\left\{\mathbb{E}_{x}\left[s^{X_{1 / N}^{(N)}}\right]-s^{x}\right\} \\
& =N\left\{e^{N x\left(1+\frac{a}{N}\right)\left(s^{1 / N}-1\right)}-s^{x}\right\} \\
& \approx \frac{1}{2} x(\log s)^{2} s^{x}+a x(\log s) s^{x} \\
& =\frac{1}{2} x \frac{d^{2} f}{d x^{2}}+a x \frac{d f}{d x} .
\end{aligned}
$$

Feller's diffusion approximation

Offspring $\sim \operatorname{Poiss}\left(1+\frac{a}{N}\right)$, generation times $\frac{k}{N}$ and $X_{t}^{(N)}=\frac{1}{N} Z_{t}^{(N)}$.

$$
\begin{aligned}
\left.\frac{d}{d t} \mathbb{E}_{x}\left[s^{X_{t}}\right]\right|_{t=0} & \approx N\left\{\mathbb{E}_{x}\left[s^{X_{1 / N}^{(N)}}\right]-s^{x}\right\} \\
& =N\left\{e^{N x\left(1+\frac{a}{N}\right)\left(s^{1 / N}-1\right)}-s^{x}\right\} \\
& \approx \frac{1}{2} x(\log s)^{2} s^{x}+a x(\log s) s^{x} \\
& =\frac{1}{2} x \frac{d^{2} f}{d x^{2}}+a x \frac{d f}{d x} \\
d X_{t} & =a X_{t} d t+\sqrt{X_{t}} d B_{t}
\end{aligned}
$$

Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by $i \in I$.

Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by $i \in I$.

$$
d X_{i}(t)=a_{1} X_{i}(t) d t+\sqrt{\sigma X_{i}(t)} d B_{i}(t)+\sum_{j} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t
$$

Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by $i \in I$.

$$
\begin{array}{r}
d X_{i}(t)=a_{1} X_{i}(t) d t+\sqrt{\sigma X_{i}(t)} d B_{i}(t)+\sum_{j} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t \\
m_{j i}=m_{i j}
\end{array}
$$

Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by $i \in I$.

$$
\begin{array}{r}
d X_{i}(t)=a_{1} X_{i}(t) d t+\sqrt{\sigma X_{i}(t)} d B_{i}(t)+\sum_{j} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t \\
m_{j i}=m_{i j} \\
d Y_{i}(t)=a_{2} Y_{i}(t) d t+\sqrt{\sigma Y_{i}(t)} d \tilde{B}_{i}(t)+\sum_{j} m_{i j}\left(Y_{j}(t)-Y_{i}(t)\right) d t
\end{array}
$$

Spatially structured populations

Population (with two alleles) subdivided into demes, labelled by $i \in I$.

$$
\begin{aligned}
& d X_{i}(t)=a_{1} X_{i}(t) d t+\sqrt{\sigma X_{i}(t)} d B_{i}(t)+\sum_{j} m_{i j}\left(X_{j}(t)-X_{i}(t)\right) d t \\
& m_{j i}=m_{i j} \\
& d Y_{i}(t)=a_{2} Y_{i}(t) d t+\sqrt{\sigma Y_{i}(t)} d \tilde{B}_{i}(t)+\sum_{j} m_{i j}\left(Y_{j}(t)-Y_{i}(t)\right) d t \\
& N_{i}(t)=X_{i}(t)+Y_{i}(t)
\end{aligned}
$$

$$
p_{i}(t)=\frac{X_{i}(t)}{X_{i}(t)+Y_{i}(t)}
$$

The proportion of type a

$$
\begin{aligned}
d p_{i}(t)=\left(a_{1}-a_{2}\right) p_{i}(t)\left(1-p_{i}(t)\right) d t & +\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& +\sqrt{\frac{\sigma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t) .
\end{aligned}
$$

The proportion of type a

$$
\begin{aligned}
d p_{i}(t)=\left(a_{1}-a_{2}\right) p_{i}(t)\left(1-p_{i}(t)\right) d t & +\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& +\sqrt{\frac{\sigma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

Condition on $N_{i} \equiv$ constant, to arrive at

The proportion of type a

$$
\begin{aligned}
d p_{i}(t)=\left(a_{1}-a_{2}\right) p_{i}(t)\left(1-p_{i}(t)\right) d t & +\sum_{j} \frac{N_{j}}{N_{i}} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
& +\sqrt{\frac{\sigma}{N_{i}} p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

Condition on $N_{i} \equiv$ constant, to arrive at
The stepping stone model

$$
\begin{aligned}
d p_{i}(t) & =s p_{i}(t)\left(1-p_{i}(t)\right) d t+\sum_{j} m_{i j}\left(p_{j}(t)-p_{i}(t)\right) d t \\
s & =\left(a_{1}-a_{2}\right), \quad \gamma=\frac{\sigma}{N} \quad+\sqrt{\gamma p_{i}(t)\left(1-p_{i}(t)\right)} d W_{i}(t)
\end{aligned}
$$

Aim: Express distribution of \underline{p} in terms of another (simpler) random variable \underline{n}.

Aim: Express distribution of \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{equation*}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t . \tag{*}
\end{equation*}
$$

Aim: Express distribution of \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{equation*}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t \tag{*}
\end{equation*}
$$

$n_{i} \in \mathbb{Z}_{+}, \underline{n}=\left(n_{i}\right)_{i \in I}, \underline{e}_{j}=\left(\delta_{i j}\right)_{i \in I}, \underline{p^{n}}=\prod_{i} p_{i}^{n_{i}}$.

Duality

Aim: Express distribution of \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{gathered}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t . \\
n_{i} \in \mathbb{Z}_{+}, \underline{n}=\left(n_{i}\right)_{i \in I}, \underline{e}_{j}=\left(\delta_{i j}\right)_{i \in I}, \underline{p} \underline{\underline{n}}=\prod_{i} p_{i}^{n_{i}} .
\end{gathered}
$$

Strategy: Calculate $d\left(\underline{p}^{\underline{n}}\right)$ for \underline{n} fixed. Choose the process \underline{n} in such a way that equation (*) is satisfied.

Itô's formula gives

$$
\begin{aligned}
& d\left(\underline{p}^{\underline{n}}\right)=\sum_{i} n_{i} \underline{\underline{p}}^{\underline{n}-\underline{e}_{i}}\left[s p_{i}\left(1-p_{i}\right)+\sum_{j} m_{i j}\left(p_{j}-p_{i}\right)\right] d t \\
&+\sum_{i} \gamma \frac{1}{2} n_{i}\left(n_{i}-1\right) \underline{p}^{\underline{n}-2 \underline{e}_{i}} p_{i}\left(1-p_{i}\right) d t+\sum_{i}(\ldots) d B_{i}
\end{aligned}
$$

Rearranging,

$$
\begin{aligned}
d(\underline{p} \underline{n})=\sum_{i} n_{i} s & \left(\underline{p}^{\underline{n}}-\underline{p} \underline{\underline{n}}+\underline{e}_{i}\right) d t \\
& +\sum_{i} n_{i} \sum_{j} m_{i j}\left(\underline{p}^{\underline{n}}+\underline{e}_{j}-\underline{e}_{i}-\underline{p}^{\underline{n}}\right) d t \\
& +\sum_{i} \gamma \frac{1}{2} n_{i}\left(n_{i}-1\right)\left(\underline{p}^{\underline{n}-\underline{e}_{i}}-\underline{p}^{\underline{n}}\right) d t
\end{aligned}
$$

$$
+\sum_{i}(\ldots) d B_{i}
$$

Rearranging,

$$
\begin{aligned}
d(\underline{p} \underline{n})=\sum_{i} n_{i} s & \left(\underline{p} \underline{n}-\underline{p} \underline{n}+\underline{e}_{i}\right) d t \quad(s \leq 0) \\
& +\sum_{i} n_{i} \sum_{j} m_{i j}\left(\underline{p}^{\underline{n}}+\underline{e}_{j}-\underline{e}_{i}-\underline{p}^{\underline{n}}\right) d t \\
& +\sum_{i} \gamma \frac{1}{2} n_{i}\left(n_{i}-1\right)\left(\underline{p}^{\underline{n}-\underline{e}_{i}}-\underline{p}^{\underline{n}}\right) d t
\end{aligned}
$$

$$
+\sum_{i}(\ldots) d B_{i}
$$

Rearranging,

$$
\begin{aligned}
& d(\underline{p} \underline{n})=\sum_{i} n_{i} s\left(\underline{p} \underline{\underline{n}}-\underline{p}^{\underline{n}+\underline{e}_{i}}\right) d t \quad(s \leq 0) \\
& \underline{n} \mapsto \underline{n}+\underline{e}_{i} \text { at rate }-n_{i} s \\
&+\sum_{i} n_{i} \sum_{j} m_{i j}\left(\underline{p}^{\underline{n}+\underline{e}_{j}-\underline{e}_{i}}-\underline{p}^{\underline{n}}\right) d t \\
&+\sum_{i} \gamma \frac{1}{2} n_{i}\left(n_{i}-1\right)\left(\underline{p}^{\underline{n}-\underline{e}_{i}}-\underline{p}^{\underline{n}}\right) d t
\end{aligned}
$$

$$
+\sum_{i}(\ldots) d B_{i}
$$

Rearranging,

$$
\begin{aligned}
& d(\underline{p} \underline{n})=\sum_{i} n_{i} s\left(\underline{p}^{\underline{n}}-\underline{p}^{\underline{n}+e_{i}}\right) d t \quad(s \leq 0) \\
& \underline{n} \longmapsto \underline{n}+\underline{e}_{i} \text { at rate }-n_{i} s \\
&+\sum_{i} n_{i} \sum_{j} m_{i j}\left(\underline{p}^{\left.\underline{n}+\underline{e}_{j}-\underline{e}_{i}-\underline{p} \underline{n}\right) d t}\right. \\
& \underline{n} \longmapsto \underline{n}+\underline{e}_{j}-\underline{e}_{i} \text { at rate } n_{i} m_{i j} \\
&+\sum_{i} \gamma \frac{1}{2} n_{i}\left(n_{i}-1\right)\left(\underline{p}^{\underline{n}}-\underline{e}_{i}-\underline{p} \underline{n}\right) d t
\end{aligned}
$$

$$
+\sum_{i}(\ldots) d B_{i}
$$

Rearranging,

$$
\begin{aligned}
d\left(\underline{p}^{\underline{n}}\right)=\sum_{i} n_{i} s\left(\underline{p}^{\underline{n}}-\underline{p}^{\underline{n}+\underline{e}_{i}}\right) d t \quad(s \leq 0) \\
\underline{n} \mapsto \underline{n}+\underline{e}_{i} \text { at rate }-n_{i} s \\
+\sum_{i} n_{i} \sum_{j} m_{i j}\left(\underline{p}^{\underline{n}+\underline{e}_{j}-\underline{e}_{i}}-\underline{p}^{\underline{n}}\right) d t \\
\underline{n} \mapsto \underline{n}+\underline{e}_{j}-\underline{e}_{i} \text { at rate } n_{i} m_{i j} \\
+\sum_{i} \gamma \frac{1}{2} n_{i}\left(n_{i}-1\right)\left(\underline{p}^{\underline{n}-\underline{e}_{i}}-\underline{p}^{\underline{n}}\right) d t \\
\underline{n} \mapsto \underline{n}-\underline{e}_{i} \text { at rate } \frac{\gamma}{2} n_{i}\left(n_{i}-1\right)
\end{aligned}
$$

$$
+\sum_{i}(\ldots) d B_{i} .
$$

The 'coalescent' dual

The dual process \underline{n} evolves as follows:

- $n_{i} \mapsto n_{i}+1$ at rate $-s n_{i}$
- $\left\{\begin{array}{l}n_{i} \mapsto n_{i}-1 \\ n_{j} \mapsto n_{j}+1\end{array}\right.$ at rate $n_{i} m_{i j}$
- $n_{i} \mapsto n_{i}-1$ at rate $\frac{1}{2} \gamma n_{i}\left(n_{i}-1\right)$

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] .
$$

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\left.\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}}\right]\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

$\underline{p}_{t} \rightarrow \underline{0}$.

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

$\underline{p}_{t} \rightarrow \underline{0}$. The whole population is type A.

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

$\underline{p}_{t} \rightarrow \underline{0}$. The whole population is type A.

- $s=0$

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}}\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

$\underline{p}_{t} \rightarrow \underline{0}$. The whole population is type A.

- $s=0 \ln d \leq 2, \underline{n} \rightarrow$ 'single random walker'.

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

$\underline{p}_{t} \rightarrow \underline{0}$. The whole population is type A.

- $s=0 \ln d \leq 2, \underline{n} \rightarrow$ 'single random walker'.

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow \bar{p} \quad \text { as } t \rightarrow \infty .
$$

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

$\underline{p}_{t} \rightarrow \underline{0}$. The whole population is type A.

- $s=0 \ln d \leq 2, \underline{n} \rightarrow$ 'single random walker'.

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow \bar{p} \quad \text { as } t \rightarrow \infty .
$$

$$
\underline{p}_{t} \rightarrow \begin{cases}\underline{1} & \text { probability } \bar{p} \\ \underline{0} & \text { probability } 1-\bar{p}\end{cases}
$$

Long-time behaviour

Suppose that $I=\mathbb{Z}^{d}$ and $m_{i j}$ simple random walk.

- $s<0$ (selective advantage for A)

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

$\underline{p}_{t} \rightarrow \underline{0}$. The whole population is type A.

- $s=0 \ln d \leq 2, \underline{n} \rightarrow$ 'single random walker'.

$$
\mathbb{E}\left[\underline{p}_{t}^{\underline{n}_{0}}\right]=\mathbb{E}\left[\underline{p}_{0}^{\underline{n}_{t}}\right] \rightarrow \bar{p} \quad \text { as } t \rightarrow \infty .
$$

$$
\underline{p}_{t} \rightarrow \begin{cases}\underline{1} & \text { probability } \bar{p} \\ \underline{0} & \text { probability } 1-\bar{p}\end{cases}
$$

