Evolution in a spatial continuum Drift, draft and structure

Alison Etheridge

University of Oxford
Joint work with Nick Barton (Edinburgh) and Tom Kurtz (Wisconsin)

Kingman's Coalescent

Kingman (1982)
Neutral (haploid) population of constant size N
Wright-Fisher model: new generation determined by multinomial sampling with equal weights

Kingman's Coalescent

Kingman (1982)
Neutral (haploid) population of constant size N
Wright-Fisher model: new generation determined by multinomial sampling with equal weights

- Equivalently offspring choose their parent at random

Kingman's Coalescent

Kingman (1982)
Neutral (haploid) population of constant size N
Wright-Fisher model: new generation determined by multinomial sampling with equal weights

- Equivalently offspring choose their parent at random
- Time in units of population size and let $N \rightarrow \infty$

Kingman's Coalescent

Kingman (1982)

Neutral (haploid) population of constant size N

Wright-Fisher model: new generation determined by multinomial sampling with equal weights

- Equivalently offspring choose their parent at random
- Time in units of population size and let $N \rightarrow \infty$

Coalescence rate $\binom{k}{2}$

Forwards in time

- Two types a and A.
- $p(t)=$ proportion of type a.

Forwards in time

- Two types a and A.
- $p(t)=$ proportion of type a.

Forwards in time,

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=\delta t p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{3}\right]=O(\delta t)^{2}$

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Forwards in time

- Two types a and A.
- $p(t)=$ proportion of type a.

Forwards in time,

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=\delta t p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{3}\right]=O(\delta t)^{2}$

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Forwards in time

- Two types a and A.
- $p(t)=$ proportion of type a.

Backwards in time
Forwards in time,

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=\delta t p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{3}\right]=O(\delta t)^{2}$
$d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}$
$d p_{\tau}=\sqrt{\frac{1}{N} p_{\tau}\left(1-p_{\tau}\right)} d W_{\tau}, \quad$ Coalescence rate $\frac{1}{N}\binom{k}{2}$

Basic observation

Genetic diversity is orders of magnitude lower than expected from census numbers and genetic drift.

Something else is going on...

Genetic hitchhiking

When a selectively advantageous allele arises, it is either lost or it sweeps to fixation What about a neutral allele on the same chromosome?

Genetic hitchhiking

When a selectively advantageous allele arises, it is either lost or it sweeps to fixation What about a neutral allele on the same chromosome?

... genetic drafit

Gillespie (2000)
The frequency of the neutral allele
linked to the new mutation will be boosted

.. genetic draft

Gillespie (2000)
The frequency of the neutral allele linked to the new mutation will be boosted

- Probability $p, p \mapsto u+p(1-u)$
- Probability $1-p, p \mapsto p(1-u)$

.. genetic draft

Gillespie (2000)
The frequency of the neutral allele
linked to the new mutation will be boosted

- Probability $p, p \mapsto u+p(1-u)$
- Probability $1-p, p \mapsto p(1-u)$

$$
\mathbb{E}[\Delta p]=0, \quad \mathbb{E}\left[(\Delta p)^{2}\right]=p(1-p) \mathbb{E}\left[u^{2}\right]
$$

genetic draft

Gillespie (2000)
The frequency of the neutral allele linked to the new mutation will be boosted

- Probability $p, p \mapsto u+p(1-u)$
- Probability $1-p, p \mapsto p(1-u)$

$$
\mathbb{E}[\Delta p]=0, \quad \mathbb{E}\left[(\Delta p)^{2}\right]=p(1-p) \mathbb{E}\left[u^{2}\right]
$$

$\mathbb{E}\left[(\Delta p)^{3}\right]=O(1) \Longrightarrow$ multiple coalescences

Λ-coalescents

Pitman (1999), Sagitov (1999)
If there are currently p ancestral lineages, each transition involving j of them merging happens at rate

$$
\beta_{p, j}=\int_{0}^{1} u^{j-2}(1-u)^{p-j} \Lambda(d u)
$$

- Λ a fi nite measure on $[0,1]$
- Kingman's coalescent, $\Lambda=\delta_{0}$

Forwards in time

Bertoin \& Le Gall (2003)

The Λ-coalescent describes the genealogy of a sample from a population evolving according to a Λ-Fleming-Viot process.

- Poisson point process intensity $d t \otimes u^{-2} \Lambda(d u)$
- individual sampled at random from population
- proportion u of population replaced by offspring of chosen individual

Spatial structure

Kimura's stepping stone model

$$
d p_{i}=\sum_{j} m_{i j}\left(p_{j}-p_{i}\right) d t+\sqrt{\frac{1}{N_{e}} p_{i}\left(1-p_{i}\right)} d W_{i}
$$

System of interacting Wright-Fisher dif-
 fusions

Spatial structure

Kimura's stepping stone model

$$
d p_{i}=\sum_{j} m_{i j}\left(p_{j}-p_{i}\right) d t+\sqrt{\frac{1}{N_{e}} p_{i}\left(1-p_{i}\right)} d W_{i}
$$

System of interacting Wright-Fisher dif-
 fusions

Genealogy described by system of coalescing random walks

Evolution in a spatial continuum?

For many biological populations it is more natural to consider a spatial continuum
Can we replace the stepping stone model by a stochastic pde?

Evolution in a spatial continuum?

For many biological populations it is more natural to consider a spatial continuum
Can we replace the stepping stone model by a stochastic pde?

$$
d p=\frac{1}{2} \Delta p d t+\sqrt{p(1-p)} d W
$$

W a space-time white noise

Evolution in a spatial continuum?

For many biological populations it is more natural to consider a spatial continuum

Can we replace the stepping stone model by a stochastic pde?

$$
d p=\frac{1}{2} \Delta p d t+\sqrt{p(1-p)} d W
$$

W a space-time white noise

- In two dimensions the equation has no solution
- Diffusive rescaling leads to the heat equation
- But anyway local populations are finite

Another basic observation

Real populations experience large scale fluctuations in which the movement and reproductive success of many individuals are correlated

An individual based model

- Start with Poisson point process intensity $\lambda d x$

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.
- Each individual in region dies with probability u

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.
- Each individual in region dies with probability u
- New individuals born according to a Poisson $\lambda u d x$

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.
- Each individual in region dies with probability u
- New individuals born according to a Poisson $\lambda u d x$

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.
- Each individual in region dies with probability u
- New individuals born according to a Poisson $\lambda u d x$

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.
- Each individual in region dies with probability u
- New individuals born according to a Poisson $\lambda u d x$

An individual based model

- Start with Poisson point process intensity $\lambda d x$
- At rate $\mu(d r) \otimes d x \otimes d t$ throw down ball centre x, radius r.
- Each individual in region dies with probability u
- New individuals born according to a Poisson $\lambda u d x$

Two limits

- Let the local population density $\lambda \rightarrow \infty$

Two limits

- Let the local population density $\lambda \rightarrow \infty$
- Rescale space and time to investigate large scale effects

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$.

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$.

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$. For each $r>0, \nu_{r}(d u) \in \mathcal{M}_{1}([0,1])$.

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$. For each $r>0, \nu_{r}(d u) \in \mathcal{M}_{1}([0,1])$.
Dynamics: for each $(t, x, r) \in \pi$,

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$. For each $r>0, \nu_{r}(d u) \in \mathcal{M}_{1}([0,1])$.
Dynamics: for each $(t, x, r) \in \pi$,

- $u \sim \nu_{r}(d u)$

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$. For each $r>0, \nu_{r}(d u) \in \mathcal{M}_{1}([0,1])$.
Dynamics: for each $(t, x, r) \in \pi$,

- $u \sim \nu_{r}(d u)$
- $z \sim U\left(B_{r}(x)\right)$

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$. For each $r>0, \nu_{r}(d u) \in \mathcal{M}_{1}([0,1])$.
Dynamics: for each $(t, x, r) \in \pi$,

- $u \sim \nu_{r}(d u)$
- $z \sim U\left(B_{r}(x)\right)$
- $k \sim \rho(t-, z, \cdot)$.

The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. π Poisson point process rate $\mu(d r) \otimes d x \otimes d t$. For each $r>0, \nu_{r}(d u) \in \mathcal{M}_{1}([0,1])$.
Dynamics: for each $(t, x, r) \in \pi$,

- $u \sim \nu_{r}(d u)$
- $z \sim U\left(B_{r}(x)\right)$
- $k \sim \rho(t-, z, \cdot)$.

For all $y \in B_{r}(x)$,

$$
\rho(t, y, \cdot)=(1-u) \rho(t-, y, \cdot)+u \delta_{k}
$$

Conditions (1)

$\rho(t, x, \cdot)$ experiences jump of size $u \in A \subseteq[0,1]$ at rate

$$
\int_{(0, \infty]} \int_{A} \pi r^{2} \nu_{r}(u) \mu(d r) .
$$

Conditions (1)

$\rho(t, x, \cdot)$ experiences jump of size $u \in A \subseteq[0,1]$ at rate

$$
\begin{gathered}
\int_{(0, \infty]} \int_{A} \pi r^{2} \nu_{r}(u) \mu(d r) . \\
\tilde{\Lambda}(d u)=\int_{(0, \infty)} u^{2} r^{2} \nu_{r}(d u) \mu(d r) \in \mathcal{M}_{F}([0,1])
\end{gathered}
$$

Conditions (1)

$\rho(t, x, \cdot)$ experiences jump of size $u \in A \subseteq[0,1]$ at rate

$$
\begin{gathered}
\int_{(0, \infty]} \int_{A} \pi r^{2} \nu_{r}(u) \mu(d r) . \\
\tilde{\Lambda}(d u)=\int_{(0, \infty)} u^{2} r^{2} \nu_{r}(d u) \mu(d r) \in \mathcal{M}_{F}([0,1])
\end{gathered}
$$

A single ancestral lineage evolves in series of jumps with intensity

$$
d t \otimes \int_{(|x| / 2, \infty)} \int_{[0,1]} \frac{L_{r}(x)}{\pi r^{2}} u \nu_{r}(d u) \mu(d r) d x
$$

on $\mathbb{R}_{+} \times \mathbb{R}^{2}$ where $L_{r}(x)=\left|B_{r}(0) \cap B_{r}(x)\right|$.

Conditions (2)

$$
\int_{\mathbb{R}^{2}}\left(1 \wedge|x|^{2}\right)\left(\int_{(|x| / 2, \infty)} \int_{[0,1]} \frac{L_{r}(x)}{\pi r^{2}} u \nu_{r}(d u) \mu(d r)\right) d x<\infty .
$$

Conditions (2)

$$
\int_{\mathbb{R}^{2}}\left(1 \wedge|x|^{2}\right)\left(\int_{(|x| / 2, \infty)} \int_{[0,1]} \frac{L_{r}(x)}{\pi r^{2}} u \nu_{r}(d u) \mu(d r)\right) d x<\infty .
$$

Two lineages currently at separation $y \in \mathbb{R}^{2}$ coalesce at instantaneous rate

$$
\int_{(|y| / 2, \infty)} L_{r}(y)\left(\int_{[0,1]} u^{2} \nu_{r}(d u)\right) \mu(d r) .
$$

Generalisations

- Replace \mathbb{R}^{2} by an arbitrary Polish space

Generalisations

- Replace \mathbb{R}^{2} by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event

Generalisations

- Replace \mathbb{R}^{2} by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.

Generalisations

- Replace \mathbb{R}^{2} by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.

Generalisations

- Replace \mathbb{R}^{2} by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.
- Instead of replacing a portion u of individuals from a ball centred on x, replace individuals sampled according to some distribution (e.g. Gaussian) centred on x.

Generalisations

- Replace \mathbb{R}^{2} by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.
- Instead of replacing a portion u of individuals from a ball centred on x, replace individuals sampled according to some distribution (e.g. Gaussian) centred on x.
- ... and many more.

