
B10a: Martingales through measure theory

Alison Etheridge

0 Introduction

0.1 Background

In the last fifty years probability theory has emerged both as a core mathematical discipline, sitting
alongside geometry, algebra and analysis, and as a fundamental way of thinking about the world. It
provides the rigorous mathematical framework necessary for modelling and understanding the inherent
randomness in the world around us. It has become an indispensible tool in many disciplines - from
physics to neuroscience, from genetics to communication networks, and, of course, in mathematical
finance. Equally, probabilistic approaches have gained importance in mathematics itself, from number
theory to partial differential equations.

Our aim in this course is to introduce some of the key tools that allow us to unlock this mathematical
framework. We build on the measure theory that we learned in Part A Integration and develop the
mathematical foundations essential for more advanced courses in analysis and probability. We’ll then
introduce the powerful concept of martingales and explore just a few of their remarkable properties.
The nearest thing to a course text is

• David Williams, Probability with Martingales, CUP.

Also highly recommended are:

• S.R.S. Varadhan, Probability Theory, Courant Lecture Notes Vol. 7.

• R. Durrett, Probability: theory and examples, 4th Edition, CUP 2010.

• A. Gut, Probability: a graduate course, Springer 2005.

0.2 The Galton-Watson branching process

We begin with an example that illustrates some of the concepts that lie ahead.
If you did Part A Probability then you’ll have already come across the Galton-Watson branching

process. In spite of earlier work by Bienaymé, it is attributed to the great polymath Sir Frances Galton
and the Revd Henry Watson. Like many Victorians, Galton was worried about the demise of English
family names. He posed a question in the Educational Times of 1873. He wrote

The decay of the families of men who have occupied conspicuous positions in past times
has been a subject of frequent remark, and has given rise to various conjectures. The
instances are very numerous in which surnames that were once common have become scarce
or wholly disappeared. The tendency is universal, and, in explanation of it, the conclusion
has hastily been drawn that a rise in physical comfort and intellectual capacity is necessarily
accompanied by a diminution in ‘fertility’. . .
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He went on to ask “What is the probability that a name dies out by the ‘ordinary law of chances’?”
Watson sent a solution which they published jointly the following year. The first step was to distill

the problem into a workable mathematical model and that model, formulated by Watson, is what we
now call the Galton-Watson branching process. Let’s state it formally:

Definition 0.1 (Galton-Watson branching process). Let {X(m)
r ;m, r ∈ N} be a doubly infinite sequence

of independent identically distributed random variables, each with the same distribution as X, where

P[X = k] = pk, k = 0, 1, 2, . . .

and µ =
∑∞

k=0 kpk < ∞. Write f(θ) =
∑∞

k=0 pkθ
k for the probability generating function of X. Then

the sequence {Zn}n∈N of random variables defined by

1. Z0 = 1,

2. Zn+1 = X
(n+1)
1 + · · · + X

(n+1)
Zn

,

is the Galton-Watson branching branching process (started from a single ancestor) with offspring gen-
erating function f .

The random variable Zn models the number of male descendants of a single male ancestor after n
generations.

Claim 0.2. Let fn(θ) = E[θZn ]. Then fn is the n-fold composition of f with itself (where by convention
a 0-fold composition is the identity).

‘Proof’

We proceed by induction. First note that f0(θ) = θ, so f0 is the identity. Assume that fn = f ◦· · ·◦f
is an n-fold composition of f with itself. To compute fn+1, first note that

E
[
θZn+1

∣∣Zn = k
]

= E

[
θX

(n+1)
1 +···+X

(n+1)
k

]

= E

[
θX

(n+1)
1

]
· · ·E

[
θX

(n+1)
k

]
(independence)

= f(θ)k,

(since X
(n+1)
i has the same distribution as X). Hence

E
[
θZn+1

∣∣Zn

]
= f(θ)Zn . (1)

This is our first example of a conditional expectation. Notice that the right hand side of (1) is a random
variable. Now

E
[
θZn+1

]
= E

[
E
[
θZn+1

∣∣Zn

]]
(2)

= E
[
f(θ)Zn

]

= fn (f(θ)) (inductive hypothesis).

2

In (2) we have used what is called the tower property of conditional expectataions. In this example
you can make all this work with the Partition Theorem of mods (because the events {Zn = k} partition
our space). In the general theory that follows, we’ll see how to replace the Partition Theorem when
the sample space is not so nice.

Watson wanted to establish the extinction probability of the branching process, that is the value of
P[Zn = 0 for some n].
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Claim 0.3. Let q = P[Zn = 0 for some n]. Then q is the smallest root in [0, 1] of the equation θ = f(θ).
In particular,

• if µ = E[X] ≤ 1, then q = 1,

• if µ = E[X] > 1, then q < 1.

‘Proof’

Writing qn = P[Zn = 0], since {Zn = 0} ⊆ {Zn+1 = 0} we see that qn is an increasing function of n
and, intuitively,

q = lim
n→∞

qn = lim
n→∞

fn(0). (3)

A proof will need the Monotone Convergence Theorem. Since fn+1(0) = f(fn(0)), evidently, granted (3),
q solves q = f(q).

Now observe that f is convex and f(1) = 1, so only two things can happen, depending upon the
value µ = f ′(1):

0 1

1

0 1

1

θ θ

θ)θ)f( f(

❑
µ ✑ µ ✑

To see that q must be the smaller root, note that the sequence qn satisfies f(qn) ≥ qn and so {qn}n∈N

is monotone increasing and bounded above by q (since for θ > q we have f(θ) < θ) and by AOL the
limit must be q. 2

In fact, Watson didn’t spot that the extinction probability was given by the smaller root and
concluded that the population (name in this case) would always die out. Galton came up with a
more plausible explanation. ‘Prominent names’ meant people like politicians. To finance their political
ambitions men married heiresses and these women were genetically predisposed to only bear female
children and so the family name was not passed on.

In spite of this inauspicious start, branching processes play a very important rôle in probabilistic
modelling.

It’s not hard to guess the result for µ > 1 and µ < 1, but the case µ = 1 is far from obvious.
The extinction probability is only one statistic that we might care about. For example, we might

ask whether we can say anything about the way in which the population grows or declines. Consider

E [Zn+1|Zn = k] = E

[
X

(n+1)
1 + · · · + X

(n+1)
k

]
= kµ (linearity of expectation). (4)

In other words E[Zn+1|Zn] = µZn (another conditional expectation). Now write

Mn =
Zn

µn
,
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then
E [Mn+1|Mn] = Mn.

In fact, more is true.
E [Mn+1|M0,M1, . . . ,Mn] = Mn.

The process {Mn}n∈N is our first example of a martingale.
It is natural to ask whether Mn has a limit as n → ∞ and, if so, can we say anything about that

limit? We’re going to develop the tools to answer these questions, but for now, notice that for µ ≤ 1
we have ‘proved’ that M∞ = limn→∞ Mn = 0 with probability one, so

0 = E[M∞] 6= lim
n→∞

E[Mn] = 1. (5)

We’re going to have to be careful in passing to limits, just as we discovered in Part A Integration.
Indeed (5) may remind you of Fatou’s Lemma from Part A.

1 Measure spaces

We begin by recalling some definitions that we encountered in Part A Integration (and, less explicitly,
in Mods Probability). The idea was that we wanted to be able to assign a ‘mass’ or ‘size’ to subsets
of a space in a consistent way. In particular, for us these subsets will be ‘events’ or ‘collections of
outcomes’ (subsets of a probability sample space Ω) and the ‘mass’ will be a probability (a measure of
how likely that event is to occur).

Definition 1.1 (Algebras and σ-algebras). Let Ω be a set and F a collection of subsets of Ω.

1. We say that F is an algebra if ∅ ∈ F and for all A,B ∈ F , Ac ∈ F and A ∪ B ∈ F ,

2. We say that F is a σ-algebra if ∅ ∈ F and for all sequences {An}n∈N of elements of F , Ac
1 ∈ F

and ∪n∈NAn ∈ F .

An algebra is closed under finite set operations whereas a σ-algebra is closed under countable set
operations.

Definition 1.2 (Measure space). We say that (Ω,F , µ) is a measure space if Ω is a set, F is a σ-
algebra of subsets of Ω and µ : F → [0,∞] satisfies µ(∅) = 0 and for any sequence {An}n∈N of disjoint
elements of F ,

µ

(
∞⋃

n=1

An

)
=

∞∑

n=1

µ(An). (6)

1. Given a measure space (Ω,F , µ), we say that µ is a finite measure if µ(Ω) < ∞.

2. If there is a sequence {En}n∈N of sets from F with µ(En) < ∞ for all n and ∪n∈NEn = Ω, then
µ is said to be σ-finite.

3. In the special case when µ(Ω) = 1, we say that (Ω,F , µ) is a probability space and we often use
the notation (Ω,F , P) to emphasize this.

There are lots of measure spaces out there, several of which you are already familiar with.
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Example 1.3 (Discrete measure theory). Let Ω be a countable set and F the power set of Ω (that is
the set of all subsets of Ω). A mass function is any function µ̄ : Ω → [0,∞]. We can then define a
measure on Ω by µ({x}) = µ̄(x) and extend to arbitrary subsets of Ω using Property (6).

Equally given a measure on Ω we can define a mass function. So there is a one-to-one correspon-
dence between measures on a countable set Ω and mass functions.

These discrete measure spaces provide a ‘toy’ version of the general theory but in general they are not
enough. Discrete measure theory is essentially the only context in which one can define the measure
explicitly. This is because σ-algebras are not in general amenable to an explicit presentation and it is
not in general the case that for an arbitrary set Ω all subsets of Ω can be assigned a measure - recall
from Part A Integration that we constructed a non-Lebesgue measurable subset of R. Instead one
specifies the values to be taken by the measure on a smaller class of subsets of Ω that ‘generate’ the
σ-algebra (as the singletons did in Example 1.3). This leads to two problems. First one needs to know
that it is possible to extend the measure that we specify to the whole σ-algebra. This construction
problem is often handled with Carathéodory’s Extension Theorem. The second problem is to know that
there is only one measure on the σ-algebra that is consistent with our specification. This uniqueness
problem can often be resolved through a corollary of Dynkin’s π-system Lemma that we state below.
First we need more definitions.

Definition 1.4 (Generated σ-algebras). Let A be a collection of subsets of Ω. Define

σ(A) = {A ⊆ Ω : A ∈ F for all σ-algebras F containing A} .

Then σ(A) is a σ-algebra (exercise) which is called the σ-algebra generated by A. It is the smallest
σ-algebra containing A.

Example 1.5 (Borel σ-algebra, Borel measure, Radon measure). Let Ω be a topological space with
topology (that is open sets) T . Then the Borel σ-algebra of Ω is the σ-algebra generated by the open
sets,

B(Ω) = σ(T ).

A measure µ on (Ω,B(Ω)) is called a Borel measure. If also µ(K) < ∞ for every compact set K ⊆ Ω
then µ is called a Radon measure.

Definition 1.6 (π-system). Let I be a collection of subsets of Ω. We say that I is a π-system if ∅ ∈ I
and for all A,B ∈ I, A ∩ B ∈ I.

Notice that an algebra is automatically a π-system.

Example 1.7. The collection
π(R) = {(−∞, x] : x ∈ R}

form a π-system and σ(π(R)), the σ-algebra generated by π(R) is the Borel subsets of R (exercise).

Here’s why we care about π-systems.

Theorem 1.8 (Uniqueness of extension). Let Ω be a set and let I be a π-system on Ω. Let F = σ(I) be
the σ-algebra generated by I. Suppose that µ1, µ2 are measures on (Ω,F) such that µ1(Ω) = µ2(Ω) < ∞
and µ1 = µ2 on I. Then µ1 = µ2 on F .

In particular, if two probability measures on Ω agree on a π-system, then they agree on the σ-algebra
generated by that π-system.

Exercise 1.9. Find an example where uniqueness fails if I is not a π-system on Ω = {1, 2, 3, 4}.
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That deals with uniqueness, but what about existence?

Definition 1.10 (Set functions). Let A be any set of subsets of Ω containing the emptyset ∅. A set
function is a function µ : A → [0,∞] with µ(∅) = 0. Let µ be a set function. We say that µ is

1. increasing if for all A,B ∈ A with A ⊆ B,

µ(A) ≤ µ(B),

2. additive if for all disjoint A,B ∈ A with A ∪ B ∈ A (note that we must specify this in general)

µ(A ∪ B) = µ(A) + µ(B),

3. countably additive if for all sequences of disjoint sets {An}n∈N in A with ∪n∈NAn ∈ A

µ

(
⋃

n∈N

An

)
=
∑

n∈N

µ(An).

In this language, a measure space is a set Ω equipped with a σ-algebra F and a countably additive
set function on F .

An immediate consequence of σ-additivity of measures is the following useful lemma.
Notation: For a sequence of sets {Fn}n∈N, Fn ↑ F means Fn ⊆ Fn+1 for all n and ∪n∈NFn = F .
Similarly, Gn ↓ G means Gn ⊇ Gn+1 for all n and ∩n∈NGn = G.

Lemma 1.11 (Monotone convergence properties). Let (Ω,F , µ) be a measure space.

1. If {Fn}n∈N is a collection of sets from F with Fn ↑ F , then µ(Fn) ↑ µ(F ) as n → ∞,

2. If {Gn}n∈N is a collection of sets from F with Gn ↓ G, and µ(Gk) < ∞ for some k ∈ N then
µ(Gn) ↓ µ(G) as n → ∞.

Proof

1. Let H1 = F1, Hn = Fn\Fn−1, n ≥ 2. Then {Hn}n∈N are disjoint and

µ(Fn) = µ(H1 ∪ · · · ∪ Hn)

=
n∑

k=1

µ(Hk) (additivity)

↑
∞∑

k=1

µ(Hk) (positivity)

= µ

(
∞⋃

k=1

Hk

)
(σ-additivity)

= µ(F ).

2. follows on taking Fn = Gk\Gk+n. 2

Note that µ(Gk) < ∞ is essential (for example take Gn = (n,∞) ⊆ R and Lebesgue measure).

Theorem 1.12 (Carathéodory Extension Theorem). Let Ω be a set and A an algebra on Ω. Let
F = σ(A) denote the σ-algebra generated by A. Let µ0 : A → [0,∞] be a countably additive set
function. Then there exists a measure µ on (Ω,F) such that µ = µ0 on A.
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Remark 1.13. If µ0(Ω) < ∞, then Theorem 1.8 tells us that µ is unique since an algebra is certainly
a π-system.

Corollary 1.14. There exists a unique measure µ on the Borel subsets of R such that for all a, b ∈ R

with b > a, µ ((a, b]) = b − a. The measure µ is the Lebesgue measure on B(R).

The proof of this result is an exercise. (The tricky bit is that Theorem 1.8 requires µ(Ω) < ∞ and so
you must work a little harder.)

The proof of the Carathéordory Extension Theorem proceeds in much the same way as our (sketch)
proof of the existence of Lebesgue measure in Part A Integration. First one defines an outer measure
µ∗ by

µ∗(A) = inf{
∑

j

µ0(Aj) : A ⊆ ∪j∈NAj, Aj ∈ A}

and define a set to be measurable if for all sets E,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

One must check that µ∗ then defines a countably additive set function on the collection of measurable
sets and that the measurable sets form a σ-algebra that contains A. For more details see Varadhan
and the references therein.

The Carathéodory Extension Theorem doesn’t quite solve the problem of constructing measures on
σ-algebras - it reduces it to constructing countably additive set functions on algebras. The following
theorem is very useful for constructing probability measures on Borel subsets of R. First we need some
notation.
Notation:

For −∞ ≤ a < b < ∞, let Ia,b = (a, b] and set Ia,∞ = (a,∞)
Let I = {Ia,b : −∞ ≤ a < b ≤ ∞}. That is I is the collection of intervals that are open on the left

and closed on the right.
Now suppose that F : R → [0, 1] is a non-decreasing function with limx→−∞ F (x) = 0 and

limx→∞ F (x) = 1. Recall that F is said to be right continuous if for each x ∈ R F (x) = limy↓x F (y).
Given such an F we can define a finitely additive probability measure on the algebra A consisting of
the emptyset and finite disjoint unions of intervals from I by setting

µ(Ia,b) = F (b) − F (a)

for intervals and then extending it to A by defining it as the sum for disjoint unions from I.
Notice that the Borel σ-field B(R) is the σ-field generated by A. So Carathéodory’s Extension

Theorem tells us that this extends to a probability measure on B provided that µ is countably additive
on A.

Theorem 1.15 (Lebesgue). µ is countably additive on A if and only if F (x) is a right continuous
function of x. Therefore for each right continuous non-decreasing function F (x) with F (−∞) = 0
and F (∞) = 1 there is a unique probability measure µ on the Borel sets of the line such that F (x) =
µ(I−∞,x). Conversely, every countably additive probability measure µ on B(R) comes from some F .
The correspondence is one-to-one.

Sketch of key points of proof

We’ll see essentially this result again in a slightly different guise later in the course. Rather than
give a detailed proof here, let’s see where right continuity comes into it.
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First note that by the monotone convergence properties of Lemma 1.11 (as you prove on problem
sheet 1) the σ-additivity of µ on A is equivalent to saying that for any sequence {An}n∈N of sets from
A with An ↓ ∅, µ(An) ↓ 0.

If µ is σ-additive, then right continuity of F is immediate since this implies

µ(Ixy) = F (y) − F (x) ↓ 0 as y ↓ x.

The other way round is a bit more work. Suppose that F is right continuous but, for a contradiction,
that there exist {An}n∈N from A with µ(An) ≥ δ > 0 and An ↓ ∅.

Step 1: Replace An by Bn = An ∩ [−l, l]. Since

|µ(An) − µ(Bn)| ≤ 1 − F (l) + F (−l),

we may do this in such a way that µ(Bn) ≥ δ/2 > 0.
Step 2: Supose that Bn = ∪kn

i=1Iani
,bni

. Replace Bn by Cn = ∪kn

i=1Iãni
,bni

where ani
< ãni

< bni
and

we use right continuity of F to do this in such a way that

µ(Bn\Cn) <
δ

10 · 2n
for each n.

Step 3: Set Dn = Cn, the closure of Cn (obtained by adding the points ãni
to Cn). Set En = ∩n

i=1Dni

and Fn = ∩n
i=1Ci. Then

Fn ⊆ En ⊆ An.

So En ↓ ∅ (since An ↓ ∅). But

µ(Fn) ≥ µ(Bn) −
∑

i

µ(Bi\Ci) =
δ

2
−
∑

i

δ

10 · 2i
=

2δ

5

and so Fn and hence Dn is non-empty. The decreasing limit of a sequence of closed sets cannot be
empty and so we have the desired contradiction. 2

The function F (x) is the distribution function corresponding to the probability measure µ. In the
case when it is differentiable it is precisely the cumulative distribution function of a continuous random
variable with probability density function f(x) = F ′(x) that we encountered in mods.

If x1, x2, . . . is a sequence of points and we have probabilities pn at these points (for example
x1, x2, . . . could be the non-negative integers), then for the discrete measure

µ(A) =
∑

n:xn∈A

pn,

we have the distribution function
F (x) =

∑

n:xn≤x

pn,

which only increases by jumps, the jump at xn being of height pn.
There are examples of continuous F that don’t come from any density (recall the Devil’s staircase

of Part A Integration).
The measure µ is sometimes called a Lebesgue-Stieltjes measure. We’ll return to it a little later.
We now have a very rich class of measures to work with. In Part A Integration, we developed a

theory based on Lebesgue measure. It is natural to ask whether we can develop an analogous theory
for other measures. The answer is ‘yes’ and it is gratifying that we already did the work in Part A.
The proofs that we used there will carry over to any σ-finite measure. It is left as a (useful) exercise
to check that. Here we just state the key definitions and results.
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2 Integration

2.1 Definition of the integral

Definition 2.1 (Measurable function). Let (Ω,F , µ) and (Λ,G, ν) be measure spaces. A function
f : Ω → Λ is measurable (with respect to F , G) if and only if

G ∈ G =⇒ f−1(G) ∈ F .

Let (Ω,F , µ) be a measure space. We suppose that [−∞,∞] is endowed with the Borel sets B(R).
We want to define, where possible, for measurable functions f : Ω → [−∞,∞], the integral of f with
respect to µ,

µ(f) =

∫
fdµ =

∫

x∈Ω
f(x)µ(dx).

Unless otherwise stated, measurable functions map to R with the Borel σ-algebra.
Recall that

lim sup
n→∞

xn = lim
n→∞

sup
m≥n

xm and lim inf
n→∞

xn = lim
n→∞

inf
m≥n

xm.

Theorem 2.2. Let {fn}n∈N be a sequence of measurable functions with respect to F ,B). Then the
following are also measurable:

max
n≤k

fn, min
n≤k

fn, sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn.

Definition 2.3. A simple function is a finite sum

φ(x) =

N∑

k=1

ak1Ek
(x) (7)

where each Ek is a measurable set of finite measure and the ak are constants.

The canonical form of a simple function φ is the unique decomposition as in (7) where the numbers
ak are distinct and the sets Ek are disjoint.

Definition 2.4. If φ is a simple function with canonical form

φ(x) =

M∑

k=1

ck1Fk
(x)

then we define the integral of φ with respect to µ as

∫
φ(x)µ(dx) =

M∑

k=1

ckµ(Fk).

Definition 2.5. For a non-negative measurable function f on (Ω,F , µ) we define the integral

µ(f) = sup
{
µ(g) : g simple, g ≤ f

}
.

Definition 2.6. We say that a measurable function f on (Ω,F , µ) is integrable if µ(|f |) < ∞ and then
we set

µ(f) = µ(f+) − µ(f−).

Definition 2.7 (µ-almost everywhere). Let (Ω,F , µ) be a measure space. We say that a property holds
µ-almost everywhere if it holds except on a set of µ-measure zero. If µ is a probability measure, we
often say almost surely instead of almost everywhere.

Note: It is vital to remember that notions of almost everywhere depend on the underlying measure µ.
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2.2 The Convergence Theorems

Theorem 2.8 (Fatou’s Lemma). Let {fn}n≥1 be a sequence of non-negative measurable functions on
(Ω,F , µ). Then

µ(lim inf
n→∞

fn) ≤ lim inf
n→∞

µ(fn).

Corollary 2.9 (Reverse Fatou Lemma). Let {fn}n≥1 be a sequence of non-negative integrable functions.
Assume that there exists a measurable function g ≥ 0 such that µ(g) < ∞ and fn ≤ g for all n ∈ N.
Then

µ(lim sup
n→∞

fn) ≥ lim sup
n→∞

µ(fn).

Proof

Apply Fatou to {g − fn}n≥1. (Note that µ(g) < ∞ is needed.) 2

Theorem 2.10 (Monotone Convergence Theorem). Let {fn}n≥1 be a sequence of non-negative mea-
surable functions. Then

fn ↑ f =⇒ µ(fn) ↑ µ(f).

(Note that we are not excluding µ(f) = ∞ here.)

Theorem 2.11 (Dominated Convergence Theorem). Let {fn}n≥1 be a sequence of integrable functions
on (Ω,F , µ) with fn(x) → f(x) as n → ∞ for each x ∈ Ω. (We say that fn converges pointwise to f .)
Suppose that for some integrable function g, |fn| ≤ g for all n. Then f is integrable and

µ(fn) → µ(f) as n → ∞.

A useful lemma that you prove on the problem sheet is the following.

Lemma 2.12 (Scheffé’s Lemma). Let {fn}n≥1 be a sequence of non-negative integrable functions on
(Ω,F , µ) and suppose that fn(x) → f(x) for µ-almost every x ∈ Ω (written fn → f a.e.). Then

µ(|fn − f |) n→∞−→ 0 iff µ(fn)
n→∞−→ µ(f).

The corollaries of the MCT and DCT for series also extend to this general setting.
The measurable functions that are going to interest us most in what follows are random variables.

Definition 2.13 (Random Variable). In the special case when (Ω,F , P) is a probability space, we’ll
call a measurable map X : Ω → R a random variable.

In the language of mods, Ω is the sample space of an experiment and the random variable X is a
measurement of the outcome of the experiment. We can think of X as inducing a probability measure
on R via

µX(A) = P[X−1(A)] for A ∈ B(R),

and, in particular, FX(x) = µX((−∞, x]) defines the distribution function of X (c.f. Theorem 1.15).
Since {(−∞, x] : x ∈ R} is a π-system, we see that the distribution function uniquely determines µX .
In this notation, ∫

X(ω)P(dω) =

∫
xµX(dx) ≡ E[X].

Very often in applications we suppress the sample space and work directly with µX .
In fact this idea of using a measurable function to map a measure on one space onto a measure on

another is more general. Let (Ω,F) and (Λ,G) be measurable spaces and let µ be a measure on F .
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Then any measurable (with respect to (F ,G)) function f : Ω → Λ induces an image measure ν = µ◦f−1

on G given by
ν(A) = µ

(
f−1(A)

)
.

On the problem sheet you’ll use this to construct the measure µ of Theorem 1.15 from Lebesgue measure
on [0, 1].

2.3 Product Spaces and Independence

Because we want to be able to discuss more than one random variable at a time, we need the notion
of product spaces.

Definition 2.14 (Product σ-algebras). Given two sets Ω1 and Ω2, the Cartesian product Ω = Ω1×Ω2

is the set of pairs (ω1, ω2) with ω1 ∈ Ω1 and ω2 ∈ Ω2.
If Ω1 and Ω2 come with σ-algebras F1 and F2 respectively, then we can define a natural σ-algebra

F on Ω as the σ-algebra generated by sets of the form A1 × A2 with A1 ∈ F1 and A2 ∈ F2. This
σ-algebra will be called the product σ-algebra.

Given two probability measures P1 and P2 on (Ω1,F1) and (Ω2,F2) respectively, we’d like to define
a probability measure on (Ω,F) by

P[A1 × A2] = P1[A1] × P2[A2] (8)

and extending it to the whole of F .
Evidently it can be extended to the algebra A of sets that are finite disjoint unions of measurable

rectangles as the obvious sum. It is a tedious, but straightforward, exercise to check that this is
well-defined.

To check that we can extend it to the whole of F = σ(A), we need to check that P defined by (8)
is actually countably additive on A so that we can apply Carathéodory’s Extension Theorem.

Lemma 2.15. The finitely additive set function P, defined on A through (8) is countably additive on
A.

Proof

Recall that countable additivity is equivalent to checking that for any sequence of measurable sets
with An ↓ ∅, P[An] ↓ 0.

For any A ∈ A, define the section

Aω2 = {ω1 : (ω1, ω2) ∈ A}.

Then P1[Aω2 ] is a measurable function of ω2 (in fact it is a simple function - exercise) and

P[A] =

∫

Ω2

P1[Aω2 ]dP2.

Now let An ∈ A be a sequence of sets with An ↓ ∅. Then

An,ω2 = {ω1 : (ω1, ω2) ∈ An}

satisfies An,ω2 ↓ ∅ for each ω2 ∈ Ω2. Since P1 is countably additive, P1[An,ω2] → 0 for each ω2 ∈ Ω2

and since 0 ≤ P1[An,ω2 ] ≤ 1 for n ≥ 1 it follows from the DCT (with dominating function g ≡ 1) that

P[An] =

∫
P1[An,ω2]dP2 → 0.

11



So P is countably additive as required. 2

By an application of the Carathéodory Extension Theorem we see that P extends uniquely to a
countably additive set function on σ(A) = F .

Definition 2.16 (Product measure). The measure P defined through (8) is called the product measure
on (Ω,F).

The most familiar example of a product measure is, of course, Lebesgue measure on R2, or, more
generally, by extending the above in the obvious way on Rd.

Our integration theory was valid for any measure space (Ω,F , µ) on which µ is a countably additive
measure. But as we already know for R2, in order to calculate the integral of a function of two variables
it is convenient to be able to proceed in stages and calculate the repeated integral. So if f is integrable
with respect to Lebesgue measure on R2 then we know that

∫

R2

f(x, y)dxdy =

∫ (∫
f(x, y)dx

)
dy =

∫ (∫
f(x, y)dy

)
dx.

What is the analogous result here?

Theorem 2.17 (Fubini’s Theorem). Let f(ω) = f(ω1, ω2) be a measurable function on (Ω,F). Then
f can be considered as a function of ω2 for each fixed ω1 or the other way around. The functions gω1(·)
on Ω2 and hω2(ω1) on Ω1 defined by

gω1(ω2) = hω2(ω1) = f(ω1, ω2)

are measurable for each ω1 and ω2.
If f is integrable with respect to the product measure P then the function gω1(·) is integrable with

respect to P2 for P1-almost every ω1 and the function hω2(·) is integrable with respect to P1 for P2-almost
every ω2. Their integrals

G(ω1) =

∫

Ω2

gω1(ω2)dP2

and

H(ω2) =

∫

Ω1

hω2(ω1)dP1

are measurable, finite almost everywhere, and integrable with respect to P1 and P2 respectively. Finally,

∫

Ω
f(ω1, ω2)dP =

∫

Ω1

G(ω1)dP1 =

∫

Ω2

H(ω2)dP2.

Conversely, for a non-negative function, if either
∫

GdP1 or
∫

HdP2 is finite then so is the other and
f is integrable with integral equal to either of the repeated integrals.

Warning: Just as we saw for functions on R2 in Part A Integration, for f to be integrable we require
that |f | is integrable. If we drop the assumption of non-negative in the last part then the result is false
and it is not hard to cook up examples where both repeated integrals exist but f is not integrable.

The proof of Fubini’s Theorem is not examinable. It follows a standard pattern that Williams calls
the standard machine:

• Check the result for f = 1A where A ∈ F .

• Extend by linearity to non-negative simple functions.
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• Pass to increasing limits using the MCT.

• Take positive and negative parts.

However, in this case, it turns out that what one might hope would be the easy bit - checking the
result for indicator functions of measurable sets - is highly non-trivial. It relies on a result called the
Monotone Class Theorem. We include this here, but it is not examinable.

Definition 2.18 (Monotone Class). A family of subsets M of Ω is called a monotone class if it is
stable under countable unions and countable intersections.

Theorem 2.19 (The Monotone Class Theorem). The smallest monotone class containing an algebra
A is the σ-algebra generated by A.

The point is that if we have a result that we know to be valid on an algebra A and we can check
that the sets for which the result holds form a monotone class, then necessarily the result holds on
σ(A).

To illustrate, here’s the difficult bit of the proof of Fubini’s Theorem.

Corollary 2.20 (to Lemma 2.15). For and A ∈ F , if we denote by Aω1 and Aω2 the respective sections

Aω1 = {ω2 : (ω1, ω2) ∈ A},

Aω2 = {ω1 : (ω1, ω2) ∈ A},
then the functions P1[Aω2 ] and P2[Aω1 ] are measurable and

P[A] =

∫
P1[Aω2 ]dP2 =

∫
P2[Aω1 ]dP1.

In particular, for a measurable set A, P[A] = 0 iff for P1-almost all ω1 the sections Aω1 have P2-measure
zero or equivalently for P2-almost every ω2, the sections Aω2 have P1-measure zero.

Proof

The assertion clearly works for a rectangle of the form A1 ×A2 with A1 ∈ F1 and A2 ∈ F2. It also
follows by simple addition to sets in A. By the MCT, the class of sets for which the assertion is valid
form a monotone class, and since it contains A it also contains σ(A) = F . 2

One of the central ideas in probability theory is independence and this is intricately linked with
product measure.

Intuitively, two events are independent if they have no influence on each other. Knowing that one
has happened tells us nothing about the chance that the other has happened. More formally:

Definition 2.21 (Independence). Let (Ω,F , P) be a probability space. Let I be a finite or countably
infinite set. We say that the events {Ai ∈ F , i ∈ I} are independent if for all finite subsets J ⊆ I

P

[
⋂

i∈J

Ai

]
=
∏

i∈J

P[Ai].

Sub σ-algebras G1,G2, . . . of F are called independent if whenever Gi ∈ Gi (i ∈ N) and i1, i2, . . . , in are
distinct

P[Gi1 ∩ . . . Gin ] =
n∏

k=1

P[Gik ].
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How does this fit in with our notion of independence from mods?

Definition 2.22 (σ-algebra generated by a random variable). Let (Ω,F , P) be a probability space
and let X be a real-valued random variable on Ω,F , P) (that is a measurable function from Ω,F) to
(R,B(R)). Then

σ(X) = σ ({{ω ∈ Ω : X(ω) ∈ A};A ∈ B(R)})
= σ

({
X−1(A) : A ∈ B(R)

})
.

It is the smallest sub σ-algebra of F with respect to which X is a measurable function.

Definition 2.23 (Independent random variables). Random variables X1,X2, . . . are called independent
if the σ-algebras σ(X1), σ(X2), . . . are independent.

If we write this in more familiar language we see that X and Y are independent if for each pair
A,B of Borel subsets of R

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B].

From this it is easy to check the following result.

Lemma 2.24. Two random variables X and Y on the probability space (Ω,F , P) are independent iff
the measure µXY induced on R2 by (X,Y ) is the product measure µX × µY where µX and µY are the
measures on R induced by X and Y respectively.

This generalises the result you learned in mods and part A for discrete/continuous random variables
- two continuous random variables X and Y are independent if and only if their joint density function
can be written as the product of the density function of X and the density function of Y .

Of course the conditions of Definition 2.23 would be impossible to check in general - we don’t
have a nice explicit presentation of the σ-algebras σ(Xi). But we can use our result of Theorem 1.8
(uniqueness of extension) to reduce it to something much more manageable.

Theorem 2.25. Let (Ω,F , P) be a probability space. Suppose that G and H are sub σ-algebras of F
and that G0 ad H0 are π-systems with

σ(G0) = G, and σ(H0) = H.

Then G and H are independent iff G0 and H0 are independent, i.e. P[G ∩ H] = P[G]P[H] whenever
G ∈ G0, H ∈ H0.

Proof

The two measures H 7→ P[G∩H] and H 7→ P[G]P[H] on (Ω,H) have the same total mass P[G] and
they agree on the π-system H0. So by Theorem 1.8 they agree on σ(H0) = H. Hence, for G ∈ G0 and
H ∈ H

P[G ∩ H] = P[G]P[H].

Now fix H ∈ H and repeat the argument with the two measures G 7→ P[G∩H] and G 7→ P[G]P[H]. 2

Corollary 2.26. A sequence {Xn}n∈N of real-valued random variables on (Ω,F , P) is independent iff
for all x1, . . . xn ∈ R and n ∈ N

P[X1 ≤ x1, . . . Xn ≤ xn] = P[X1 ≤ x1] . . . P[Xn ≤ xn].
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Remark 2.27 (Kolmogorov’s Consistency Theorem). Notice that our notion of independence only
really makes sense if our random variables are defined on a common probability space. For a countable
sequence of random variables with specified distributions it is not completely clear that there exists such
a probability space.

By extending our construction of product measure in the obvious way, we can construct a measure
on Rn for every n which is the joint distribution of the first n of the random variables. Let us denote
it by Pn. The Pn’s are consistent in the sense that if we project from R(n+1) to Rn in the obvious way,
then Pn+1 projects to Pn. Such a family is called a consistent family of finite dimensional distributions.

Now look at the space Ω = R∞ of all real sequences ω = {xn : n ≥ 1} with the σ-algebra F , generated
by the algebra A of finite dimensional cylinder sets, that is sets of the form B = {ω : (x1, . . . , xn) ∈ A}
where A varies over the Borel sets in Rn and n varies over positive integers.

The Kolmogorov Consistency Theorem tells us that given a consistent family of finite dimensional
distributions Pn, there exists a unique P on (Ω,F) such that for every n, under the natural projection
πn(ω) = (x1, . . . , xn), the induced measure Pπ−1

n = Pn on Rn.

3 Tail events and modes of convergence

3.1 The Borel-Cantelli Lemmas

We’ll return to independence, or more importantly lack of it, in the next section, but first we look
at some ramifications of our theory of integration for probability theory. Throughout, (Ω,F , P) will
denote a probability space.

First we’re going to look at Fatou’s Lemma in this setting, but in the special case where the functions
fn are indicator functions of measurable sets. Recall that Fatou’s Lemma says that for a sequence of
non-negative measurable functions {fn}n∈N

P[lim inf
n→∞

fn] ≤ lim inf
n→∞

P[fn]

and the reverse Fatou lemma says that if 0 ≤ fn ≤ g for some g with P[g] < ∞ then

P[lim sup
n→∞

fn] ≥ lim sup
n→∞

P[fn].

So what does lim infn→∞ fn or lim supn→∞ fn look like if the fn’s are indicator functions of sets?
Let fn = 1An for some An ∈ F .

lim sup
n→∞

fn = lim
n→∞

sup
m≥n

fm

= lim
n→∞

sup
m≥n

1Am

= lim
n→∞

1∪m≥nAm

= 1∩n∈N∪m≥nAm .

This motivates the following definition.

Definition 3.1. Let {An}n∈N be a sequence of sets from F . We define

lim sup
n→∞

An =
⋂

n∈N

∪m≥nAm

= {Am occurs infinitely often}
= {ω ∈ Ω : ω ∈ Am for infinitely many m}.
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lim inf
n→∞

An =
⋃

n∈N

∩m≥nAm

= {ω ∈ Ω : for some m(ω), ω ∈ Am for all m ≥ m(ω)}
= {‘Am eventually’}
= {Ac

m infinitely often}c.

Lemma 3.2.

1lim supn→∞ An
= lim sup

n→∞
1An , 1lim infn→∞ An

= lim inf
n→∞

1An .

The proof is an exercise (based on our calculations above).
In this terminology the Fatou and reverse Fatou Lemmas say

P[An eventually] ≤ lim inf
n→∞

P[An]

and
P[An i.o.] ≥ lim sup

n→∞
P[An]

(both of which make good intuitive sense). In fact we can say more about the probabilities of these
events.

Lemma 3.3 (The First Borel-Cantelli Lemma, BC1). Suppose that

∑

n∈N

P[An] < ∞,

then
P[An i.o.] = 0.

Remark 3.4. Notice that we are making no assumptions about independence here. This is a very
powerful result.

Proof of BC1

Let Gn = ∪m≥nAm. Then

P[Gn] ≤
∞∑

m=n

P[Am]

and Gn ↓ G = lim supn→∞ An, so by Lemma 1.11 (monotone convergence properties), P[Gn] ↓ P[G].
On the other hand, since

∑
n∈N P[An] < ∞, we have that

∞∑

m=n

P[Am] → 0 as n → ∞,

and so
P[lim sup

n→∞
An] = lim

n→∞
P[Gn] = 0

as required. 2

A partial converse to this result is provided by the second Borel-Cantelli Lemma, but note that we
must now assume that the events are independent.
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Lemma 3.5 (The Second Borel-Cantelli Lemma, BC2). Assume that {An}n∈N are independent events.
If ∑

n∈N

P[An] = ∞

then
P[An i.o.] = 1.

Proof

Set am = P[Am] and note that 1−a ≤ e−a. We consider the complementary event {Ac
n eventually}.

P[
⋂

m≥n

Ac
m] =

∏

m≥n

(1 − am) (by independence)

≤ exp(−
∑

m≥n

am) = 0.

Hence using Lemma 1.11 (monotone convergence properties) again

P


⋃

n∈N

⋂

m≥n

Ac
m


 = lim

N→∞
P




N⋃

i=1

⋂

m≥n

Ac
m




≤ lim
N→∞

N∑

n=1

P


 ⋂

m≥n

Ac
m


 = 0.

Thus

P

[
lim inf
n→∞

Ac
n

]
= P


⋃

n∈N

⋂

m≥n

Ac
m


 = 0.

and since (
lim inf
n→∞

Ac
n

)c
= lim sup

n→∞
An

we have
P[lim sup

n→∞
An] = P[An i.o.] = 1

as required. 2

Example 3.6. A monkey is provided with a typewriter. At each time step it has probability 1/26
of typing any of the 26 letters independently of other times. What is the probability that it will type
ABRACADABRA at least once? infinitely often?

Solution

We can consider the events

Ak = {ABRACADABRA is typed between times 11k + 1 and 11(k + 1)}

for each k. The events are independent and P[Ak] = (1/26)11 > 0. So
∑∞

k=1 P[Ak] = ∞. Thus BC2
says that Ak happens infinitely often. 2

Later in the course, with the help of a suitable martingale, we’ll be able to work out how long we
must wait, on average, before we see patterns appearing in the outcomes of a series of independent
experiments.

We’ll see many applications of BC1 and BC2 in what follows. Before developing more machinery,
here is one more.
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Example 3.7. Let {Xn}n≥1 be independent exponentially distributed random variables with mean 1
and let Mn = max{X1, . . . ,Xn}. Then

P

[
lim inf
n→∞

Mn

log n
≥ 1

]
= 1.

Remark 3.8. In fact with a little more work we can show that

P

[
Mn

log n
→ 1 as n → ∞

]
= 1.

See, for example, S.C. Port, Theoretical Probability for Applications, Wiley 1993, Example 4.7.2 p.560.

First recall that if X is an exponential random variable with parameter 1 then

P[X ≤ x] =

{
0 x < 0,

1 − e−x x ≥ 0.

Fix 0 < ǫ < 1. Then

P[Mn ≤ (1 − ǫ) log n] = P

[
n⋂

i=1

{Xi ≤ (1 − ǫ) log n}
]

=
n∏

i=1

P [Xi ≤ (1 − ǫ) log n] (independence)

=

(
1 − 1

n1−ǫ

)n

≤ exp(−nǫ).

Thus
∞∑

n=1

P[Mn ≤ (1 − ǫ) log n] < ∞

and so by BC1
P[Mn ≤ (1 − ǫ) log n i.o.] = 0.

Since ǫ was arbitrary this gives

P

[
lim inf
n→∞

Mn

log n
≥ 1

]
= 1.

2

At first sight, it looks as though BC1 and BC2 are not very powerful - they tell us when certain
events have probability zero or one. But in fact for many applications, in particular when the events
are independent, these are events that can only have probability zero or one. This is because they are
examples of what are known as ‘tail’ events.

Recall from Definition 2.22 that the σ-algebra generated by a random variable X is the smallest
sub σ-algebra of F with respect to which X is measurable. That is

σ(X) = σ
(
{X−1(A) : A ∈ B(R)}

)
.

Definition 3.9 (Tail σ-algebra). For a sequence of random variables {Xn}n∈N define

Tn = σ(Xn+1,Xn+2 . . .)

and
T =

⋂

n∈N

Tn.

Then T is called the tail σ-algebra of the sequence {Xn}n∈N.
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We can think of the tail σ-algebra as containing events describing the limiting behaviour of the
sequence as n → ∞.

Theorem 3.10 (Kolmogorov’s 0-1 law). Let {Xn}n∈N be a sequence of independent random variables.
Then the tail σ-algebra T of {Xn}n∈N contains only events of probability 0 or 1. Moreover, any T -
measurable random variable is almost surely constant.

Proof

Let Fn = σ(X1, . . . ,Xn). Note that Fn is generated by the π-system of events

A = {{X1 ≤ x1, . . . ,Xn ≤ xn} : x1, . . . , xn ∈ R}

and Tn is generated by the π-system of events

B = {{Xn+1 ≤ xn+1, . . . ,Xn+k ≤ xn+k} : xn+1, . . . , xn+k ∈ R, k ∈ N} .

For any A ∈ A, B ∈ B, by the independence of the random variables {Xn}n∈N, we have

P[A ∩ B] = P[A]P[B]

and so by Theorem 2.25 the σ-algebras σ(A) = Fn and σ(B) = Tn are also independent.
Since T ⊆ Tn we conclude that Fn and T are also independent.
Now ∪n∈NFn is a π-system (although not in general a σ-algebra) generating the σ-algebra F∞ =

σ({Xn}n∈N). So applying Theorem 2.25 again we see that F∞ and T are independent. But T ⊆ F∞

so that if A ∈ T
P[A] = P[A ∩ A] = P[A]2

and so P[A] = 0 or P[A] = 1.
Now suppose that Y is any T -measurable random variable. Then FY (y) = P[Y ≤ y] is right

continuous and takes only values in {0, 1}. So P[Y = c] = 1 where c = inf{y : FY (y) = 1}. 2

Example 3.11. Let {Xn}n∈N be a sequence of independent, identically distributed (i.i.d.) random
variables and let Zn =

∑n
k=1 Xk. Consider L = lim supn→∞ Zn/n. Then L is a tail random variable and

so almost surely constant. We’ll prove later in the course (Theorem 9.2) that, under weak assumptions,
L = E[X1] almost surely.

If the Xn in the last example have mean zero one, then setting

B =

{
lim sup

n→∞

Zn√
2n log log n

= 1

}
, (9)

similarly we have P[B] = 0 or P[B] = 1. In fact P[B] = 1. This is called the law of the iterated
logarithm. Under the slightly stronger assumption that ∃α > 0 such that E[|Xn|2+α] < ∞, Varadhan
proves this by a (delicate) application of Borel-Cantelli.

You may at this point be feeling a little confused. In mods probability/statistics (possibly even
at school) you learned that if {Xn}n∈N is a sequence of i.i.d. random variables with mean zero and
variance one then

P

[
X1 + · · · + Xn√

n
≤ a

]
= P

[
Zn√

n
≤ a

]
n→∞−→

∫ a

−∞

1√
2π

exp

(
−x2

2

)
dx. (10)

This is the Central Limit Theorem without which statistics would be a very different subject. How
does it fit with (9)? The results (9) and (10) are giving quite different results about the behaviour of
Zn for large n. They correspond to different ‘modes of convergence’.
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Definition 3.12 (Modes of convergence). Let (Ω,F , P) be a probability space, X a given random
variable and {Xn}n∈N a sequence of random variables.

1. We say that {Xn}n∈N converges almost surely to X (written Xn
a.s.→ X) if

P[ω : lim
n→∞

Xn(ω) = X(ω)] = 1.

2. We say that {Xn}n∈N converges to X in probability (written Xn
P→ X) if, given ǫ > 0,

lim
n→∞

P[ω : |Xn(ω) − X(ω)| > ǫ] = 0.

3. Let F and Fn denote the distribution functions of X and Xn respectively. We say that Xn

converges to X in distribution (written Xn
d→ X or Xn

L→ X) if

lim
n→∞

Fn(x) = F (x).

4. Suppose that X and Xn have finite rth moment for some r > 0 (that is E[|X|r] < ∞). We say

that Xn converges to X in Lr (written Xn
Lr

→ X) if

lim
n→∞

E[|Xn − X|r] = 0.

These notions of convergence are all different.

Convergence a.s. =⇒ Convergence in Probability =⇒ Convergence in Distribution

⇑
Convergence in Lr

We already saw some different modes of convergence in Part A Integration. For example, for the
sequence fn given by:

fn(x) =

{
n(1 − kx) 0 ≤ x ≤ 1/n,

0 otherwise.

f

10

n

n

1/n
we have fn → 0 almost everywhere on [0, 1] but fn 6→ 0 in L1. If we think of ([0, 1],B([0, 1]), Leb.) as a
probability space that immediately gives us an example here of a.s convergence but not L1 convergence.

Example 3.13 (Convergence in probability does not imply a.s. convergence). To understand what’s
going on in (9) and (10), let’s stick with [0, 1] with the Borel sets and Lebesgue measure as our probability
space. We define {Xn}n∈N as follows:

for each n there is a unique pair of integers (m,k) such that n = 2m + k. We set

Xn(ω) = 1[2−mk,2−m(k+1))(ω).

Pictorially we have a ‘moving blip’ which travels repeatedly across [0, 1] getting narrower at each pass.
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n=5n=2 n=3 n=4

For fixed ω, Xn(ω) = 1 i.o., but

P[ω : Xn(ω) = 0] = 1 − 1

2m
→ 0 as n → ∞.

So
Xn

P→ 0, but Xn 6→ 0 a.s. as n → ∞.

On the other hand, if we look at the {X2n}n∈N, we have

n=16n=2 n=4 n=8

and we see that X2n
a.s.→ 0.

It turns out that this is a general phenomenon.

Theorem 3.14 (Convergence in Probability and a.s. Convergence). Let (Ω,F , P) be a probability
space, X a given random variable and {Xn}n∈N a sequence of random variables.

1. If Xn
a.s.→ X then Xn

P→ X.

2. If Xn
P→ X, then there exists a subsequence {Xnk

}k∈N such that Xnk

a.s.→ X.

Proof

Write Yn = Xn − X and
An,ǫ = {|Yn| > ǫ}.

1. By the reverse Fatou Lemma (since P is a probability measure we certainly have the boundedness
assumption)

P[An,ǫ i.o] = P[lim sup
n→∞

An,ǫ] ≥ lim sup
n→∞

P[An,ǫ]

and since Xn
a.s.→ X, P[An.ǫ i.o.] = 0 and so certainly limn→∞ P[An,ǫ] = 0 as required.

2. This is the more interesting direction. Since Xn
P→ X, given ǫ > 0 there exists N(ǫ) such that

P[An,ǫ] < ǫ, ∀n ≥ N(ǫ).

Choosing ǫ = 1/k2 and writing nk = N(1/k2) for k ∈ N,

∑

k∈N

P[Ank,1/k2 ] < ∞

21



and so by BC1, P[Ank,1/k2 i.o.] = 0. That is

P[lim sup
n→∞

Ank,1/k2 ] = 0

which, in turn, says Xnk

a.s.→ X as required. 2

The First Borel-Cantelli Lemma provides a very powerful tool for proving almost sure convergence
of a sequence of random variables. It’s successful application often rests on being able to find good
bounds on the random variables {Xn}n∈N. We end this section with some inequalities that are often
helpful in this context. The first is trivial, but has many applications.

Lemma 3.15 (Chebyshev’s inequality). Let (Ω,F , P) be a probability space and X a non-negative
random variable, then for each λ > 0

P[X ≥ λ] ≤ 1

λ
E[X].

More generally, let Y be any random variable (not necessarily non-negative) and let φ : R → [0,∞] be
non-decreasing and measurable. Then for any λ ∈ R,

P[Y ≥ λ] = P[φ(Y ) ≥ φ(λ)]

≤ 1

φ(λ)
E[φ(Y )].

The second inequality is often applied with φ(x) = eθx to obtain

P[Y ≥ λ] ≤ e−θλE[eθY ]

and then optimised over θ.
For the next inequality we recall

Definition 3.16 (Convex function). Let I ⊆ R be an interval. A function c : I → R is convex if for
all x, y ∈ I and t ∈ [0, 1],

c (tx + (1 − t)y) ≤ tc(x) + (1 − t)c(y).

Theorem 3.17 (Jensen’s inequality). Suppose that (Ω,F , P) is a probability space and X an integrable
random variable taking values in I. Let c : I → R be convex. Then

E[c(X)] ≥ c (E[X]) .

Important examples of convex functions include x2, ex, 1/x. To check that a twice continuously
differentiable function is convex, it suffices to check that c′′(x) > 0 for all x.

The proof of Theorem 3.17 rests on the following lemma.

Lemma 3.18. Suppose that c : I → R is convex and let m be an interior point of I. Then there exits
a, b ∈ R such that c(x) ≥ ax + b for all x with equality at x = m.

Proof

For x < m < y, by convexity,

c(m) ≤ (m − x)

(y − x)
c(y) +

(y − m)

(y − x)
c(x).
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Rearranging,
c(m) − c(x)

m − x
≤ c(y) − c(m)

y − m
.

So for an interior point m, since the left hand side does not depend on y and the right hand side does
not depend on x,

sup
x<m

c(m) − c(x)

m − x
≤ inf

y>m

c(y) − c(m)

y − m

and choosing a so that

sup
x<m

c(m) − c(x)

m − x
≤ a ≤ inf

y>m

c(y) − c(m)

y − m

we have that c(x) ≥ c(m) + a(x − m) for all x ∈ I. 2

Proof of Theorem 3.17

Since E[X] is certainly an interior point of I (other than in the trivial case X is almost surely
constant), set m = E[X] in the previous lemma and we have

c(X) ≥ c (E[X]) + a(X − E[X]).

Now take expectations to recover
E[c(X)] ≥ c (E[X])

as required. 2

4 Conditional Expectation

Probability is a measure of ignorance. When new information decreases that ignorance we change our
probabilities. We formalised this in mods through Bayes’ rule. For a probability space (Ω,F , P) and
A,B ∈ F

P[A|B] =
P[A ∩ B]

P[B]
.

We want now to introduce an extension of this which lies at the heart of martingale theory: the notion
of conditional expectation. First a preliminary definition:

Definition 4.1 (Equivalence class of a random variable). Let (Ω,F , P) be a probability space and X a
random variable. The equivalence class of X is the collection of random variables that differ from X
only on a null set.

Definition 4.2 (Conditional Expectation). Let (Ω,F , P) be a probability space and let X be an in-
tegrable random variable (that is one for which E[|X|] < ∞). Let G be a sub σ-algebra of F . The
conditional expectation E[X|G] is any G-measurable, integrable random variable Z in the equivalence
class of random variables such that

∫

Λ
ZdP =

∫

Λ
XdP for any Λ ∈ G.

The integrals of X and Z over sets Λ ∈ G are the same, but X is F-measurable whereas Z is
G-measurable. The conditional expectation satisfies

∫

Λ
E[X|G]dP =

∫

Λ
XdP for any Λ ∈ G (11)
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and we shall call (11) the defining relation.
Just as probability of an event is a special case of expectation (corresponding to integrating an

indicator function rather than a general measurable function), so conditional probability is a special
case of conditional expectation. In that case (11) becomes

∫

Λ
P[A|G]dP = P[A ∩ Λ] for any Λ ∈ G. (12)

Let’s see how this fits with our understanding from mods. Suppose that X is a discrete random variable
taking values {xn}n∈N. Then the events {X = xn} are a partition of Ω (that is Ω is a disjoint union
of these events.) So, by the Partition Theorem of mods,

P[A] = P

[
⋃

n∈N

(A ∩ {X = xn})
]

=
∑

n∈N

P[A ∩ {X = xn}]

=
∑

n∈N

P[A|X = xn]P[X = xn].

Now we ‘randomize’ - replace P[X = xn] by 1{X=xn} and we write

P[A|X] = P[A|σ(X)] =

∞∑

n=1

P[A|X = xn]1{X=xn},

which means that for a given ω ∈ Ω

P[A|σ(X)] =





P[A|X = x1], if X(ω) = x1,
P[A|X = x2], if X(ω) = x2,

· · · · · ·
P[A|X = xn], if X(ω) = xn.

To see that this coincides with (12), notice that if Λ ∈ σ(X) then it can be expressed as a union of
sets of the form {X = xn} (the advantage with working with discrete random variables again - the
σ-algebra is easy) and for such Λ

∫

Λ

(
∞∑

n=1

P[A|X = xn]1{X=xn}

)
dP =

∑

n:xn∈Λ

P[A|X = xn]P[X = xn]

=
∑

n:xn∈Λ

P[A ∩ {X = xn}]

= P[A ∩ Λ].

This would have worked equally well for any other partition in place of {{X = xn}}n∈N. So more
generally, let {Λn}n∈N be a partition of Ω and let E[X|Λn] be the conditional expectation relative to
the conditional measure P[·|Λn] so that

E[X|Λn] =

∫

Ω
X(ω)dP[ω|Λn] =

∫
Λn

XdP

P[Λn]
.
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Then for Λ =
∑

j∈J Λj ∈ G we obtain (using the disjointness of the Λj ’s)

∫

Λ

(
∞∑

n=1

E[X|Λn]1Λn

)
dP =

∑

j∈J

∞∑

n=1

∫

Λj

E[X|Λn]1Λn1Λj
dP (the summand is zero if n 6= j)

=
∑

j∈J

∫

Λj

E[X|Λj ]dP

=
∑

j∈J

E[X|Λj ]P[Λj]

=
∑

j∈J

∫
Λj

XdP

P[Λj ]
P[Λj ]

=
∑

j∈J

∫

Λj

XdP

=

∫

∪jΛj

XdP =

∫

Λ
XdP.

So in this case

E[X|G] =

∞∑

n=1

E[X|Λn]1Λn a.s.,

or, spelled out, that

E[X|G] =





E[X|Λ1] if ω ∈ Λ1,
E[X|Λ2] if ω ∈ Λ2,

· · · · · ·
E[X|Λn] if ω ∈ Λn,

· · · · · ·
So E[X|G] is constant on each set Λi (where it takes the value E[X|Λi]).

So far we have proved that conditional expectations exist for sub σ-algebras G generated by parti-
tions. Before proving existence in the general case we show that we have (a.s.) uniqueness.

Proposition 4.3 (Almost sure uniqueness of conditional expectation). Let (Ω,F , P) be a probability
space, X an integrable random variable and G a sub σ-algebra of F . If Y and Z are two G-measurable
random variables that both satisfy the defining relation (11), then P[Y 6= Z] = 0. That is Y and Z
agree up to a null set.

Proof

Since Y and Z are both G-measurable,

Λ1 = {ω : Y (ω) < Z(ω)} ∈ G,

so using the defining relation ∫

Λ1

(Y − Z)dP = 0

which implies P[Λ1] = 0.
Similarly,

Λ2 = {ω : Y (ω) > Z(ω)} ∈ G
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and ∫

Λ2

(Y − Z)dP = 0

gives P[Λ2] = 0 which completes the proof. 2

For existence in the general case we will use another important result from measure theory. First
a definition.

Definition 4.4. Let (Ω,F , P) be a probability space and let Q be a finite measure on (Ω,F). The
measure Q is absolutely continuous with respect to P iff

P[a] = 0 =⇒ Q[A] = 0 ∀A ∈ F .

We write Q ≪ P.

Theorem 4.5 (The Radon-Nikodym Theorem). Let (Ω,F , P) be a probability space and suppose that
Q is a finite measure that is absolutely continuous with respect to P. Then there exists an F-measurable
random variable Z with finite mean such that

Q[A] =

∫

A
ZdP for all A ∈ F .

Moreover, Z is P-a.s. unique. It is written

Z =
dQ

dP

and is called the Radon-Nikodym derivative of Q with respect to P.

Theorem 4.6 (Existence of conditional expectation). Let (Ω,F , P) be a probability space, X an in-
tegrable random variable and G a sub σ-algebra of F . Then there exists a unique equivalence class of
random variables with are measurable with respect to G and for which the defining relation (11) holds.

Proof

Let P|G denote the measure P restricted to the sub σ-algebra G. Set

Q[A] =

∫

A
XdP for A ∈ G.

Then Q ≪ P|G and so the Radon-Nikodym Theorem applies to Q, P|G on (Ω,G). Write

E[X|G] =
dQ

dP|G
.

2

It is much harder to write out E[X|G] explicitly when G is not generated by a partition. But note
that if G = σ(Y ) for some random variable Y on (Ω,F , P), then any G-measurable function can, in
principle, be written as a function of Y . We saw an example of this with our branching process in §0.2.
If Zn was the number of descendants of a single ancestor after n generations, then

E[Zn+1|σ(Zn)] = µZn

where µ is the expected number of offspring of a single individual.
In general, of course, the relationship can be much more complicated.
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Exercise 4.7. Roll a fair die until we get a six. Let Y be the total number of rolls and X the number
of 1’s. Show that

E[X|Y ] =
1

5
(Y − 1) and E[X2|Y ] =

1

25
(Y 2 + 2Y − 3).

Let’s turn to some elementary properties of conditional expectation. Most of the following are
obvious. Always remember that whereas expectation is a number, conditional expectation is a function
on (Ω,G) and, since conditional expectation is only defined up to equivalence (so up to null sets) we
have to qualify many of our statements with the caveat ‘a.s.’.

Proposition 4.8. Let (Ω,F , P) be a probability space, X and Y integrable random variables, G ⊆ F a
sub σ-algebra and a, b, c real numbers. Then

1. E[E[X|G]] = E[X].

2. E[aX + bY |G]
a.s.
= aE[X|G] + bE[Y |G].

3. If X is G-measurable, then E[X|G]
a.s.
= X.

4. E[c|G]
a.s.
= c.

5. E[X|{∅,Ω}] = E[X].

6. If X ≤ Y a.s. then E[X|G] ≤ E[Y |G] a.s.

7. |E[X|G]| ≤ E[|X||G].

8. If X is independent of G then E[X|G] = E[X] a.s.

Proof

The proofs all follow from the requirement that E[X|G] be G-measurable and the defining rela-
tion (11). We just do some examples.

1. Set Λ = R in the defining relation.
2. ∫

Λ
E[aX + bY |G]dP =

∫

Λ
(aX + bY )dP

= a

∫

Λ
XdP + b

∫

Λ
Y dP (linearity of the integral)

= a

∫

Λ
E[X|G]dP + b

∫

Λ
E[Y |G]dP

=

∫

Λ
(aE[X|G] + bE[Y |G])dP,

where the last line again follows by linearity of the integral. And if two G-measurable functions agree
on integration over any G-measurable set then they are P-a.s equal.

5. The sub σ-algebra is just {∅,Ω} and so E[X|{∅,Ω}] (in order to be measurable with respect to
{∅,Ω}) must be constant. Now integrate over Ω to identify that constant.

Jumping to 8. Note that E[X] is G-measurable and for Λ ∈ G
∫

Λ
E[X]dP = E[X]P[Λ] = E[X]E[1Λ]

= E[X1Λ] (by independence)

=

∫
X1ΛdP =

∫

Λ
XdP,
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so the defining relation holds. 2

Notice that 8 is intuitively clear. If X is independent of G, then telling me about events in G tells
me nothing about X and so my assessment of its expectation does not change. On the other hand for
3, if X is G-measurable, then telling me about events in G actually tells me the value of X.

The conditional counterparts of our convergence theorems of integration also hold good.

Proposition 4.9 (Conditional Convergence Theorems). Let (Ω,F , P) be a probability space, {Xn}n∈N

a sequence of integrable random variables, X a random variable and G a sub σ-algebra of F .

1. cMON: If Xn ↑ X as n → ∞, then E[Xn|G] ↑ E[X|G] a.s. as n → ∞.

2. cFatou: If {Xn}n∈N are non-negative then

E[lim inf
n→∞

Xn|G] ≤ lim inf
n→∞

E[Xn|G] a.s.

3. If {Xn}n∈N are non-negative and Xn ≤ Z for all n where Z is an integrable random variable then

E[lim sup
n→∞

Xn|G] ≥ lim sup
n→∞

E[Xn|G] a.s.

4. cDOM: If Y is an integrable random variable and |Xn| ≤ Y for all n and Xn
a.s.→ X then

E[Xn|G]
a.s.→ E[X|G] as n → ∞.

The proofs all use the defining relation (11) to transfer statements about convergence of the condi-
tional probabilities to our usual convergence theorems and are left as an exercise.

The following two results are incredibly useful in manipulating conditional expectations. The first
is sometimes referred to as ‘taking out what is known’.

Proposition 4.10. Let (Ω,F , P) be a probability space and X, Y integrable random variables. Let G
be a sub σ-algebra of F and suppose that Y is G-measurable. Then

E[XY |G]
a.s.
= Y E[X|G].

Proof

We use the ‘standard machine’.
First suppose that X and Y are non-negative. If Y = 1A for some A ∈ G, then for any Λ ∈ G we

have Λ ∩ A ∈ G and so by the defining relation (11)
∫

Λ
Y E[X|G]dP =

∫

Λ∩A
E[X|G]dP =

∫

Λ∩A
XdP =

∫

Λ
Y XdP.

Now extend by linearity to simple random variables Y . Next if {Yn}n≥1 are simple random variables
with Yn ↑ Y as n → ∞, it follows that YnX ↑ Y X and YnE[X|G] ↑ Y E[X|G] from which we deduce the
result by the MCT. Finally, for X, Y not necessarily non-negative, write XY = (X+ −X−)(Y + −Y −)
and use linearity of the integral. 2

Proposition 4.11 (Tower property of conditional expectations). Let (Ω,F , P) be a probability space
and X an integrable random variable and F1, F2 sub σ-algebras of F with F1 ⊆ F2. Then

E [E[X|F2]| F1] = E[X|F1] a.s.

In other words, writing Xi = E[X|Fi],

X1 = E[X2|F1] a.s.
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This extends Part 5 of Proposition 4.8 which dealt with the case F1 = {∅,Ω}.
The usefulness of this result mirrors that of the ‘partition theorem’ of mods probability theory. If

sets A1, . . . , An partition Ω then for any random variable X,

E[X] =

n∑

i=1

E[X|Ai]P[Ai].

Proof of Proposition 4.11

Choose Λ ∈ F1 and observe that automatically Λ ∈ F2. Applying the defining relation (three times)
gives ∫

Λ
E [E[X|F2]| F1] dP =

∫

Λ
E[X|F2]dP =

∫

Λ
XdP =

∫

Λ
E[X|F1]dP.

2

Jensen’s inequality also extends to the conditional case.

Proposition 4.12 (Conditional Jensen’s Inequality). Suppose that (Ω,F , P) is a probability space and
that X is an integrable random variable taking values in an open interval I ⊆ R. Let c : I → R be
convex and let G be a sub σ-algebra of F . If E[|c(X)|] < ∞ then

E[c(X)|G] ≥ c (E[X|G]) a.s.

Proof

Recall from our proof of Jensen’s inequality that if c is convex, then for x < m < y ∈ I

c(m) − c(x)

m − x
≤ c(y) − c(m)

y − m
. (13)

Letting x ↑ m and writing

(D−c)(q) = lim
r↑q

c(q) − c(r)

q − r

for the left derivative of c at the point q, we see that

c(y) ≥ sup
m∈I

{(D−c)(m)(y − m) + c(m)}

and in fact we have equality (by setting y = m on the right hand side).
(Existence of (D−(c) follows from (13) which also automatically guarantees continuity of c).
In particular, there exists a pair of sequences {an}n∈N, {bn}n∈N of real numbers such that

c(x) = sup
n
{anx + bn} for x ∈ I.

Now for our random variable X, since c(X) ≥ anX + bn we have

E[c(X)|G] ≥ anE[X|G] + bn a.s. (14)

Since the union of a countable union of null sets is null (Part A Integration) we can arrange for (14)
to hold simultaneously for all n ∈ N except possibly on a null set and so

E[c(X)|G] ≥ sup
n
{anE[X|G] + bn} a.s.

= c (E[X|G]) a.s.

2

An important special case is c(x) = xp for p > 1. In particular, for p = 2

E[X2|G] ≥ E[X|G]2.

This leads to another interesting characteristaion of E[X|G].
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Remark 4.13 (Conditional Expectation and Mean Square Approximation). Let (Ω,F , P) be a proba-
bility space and X, Y square integrable random variables. Let G be a sub σ-algebra of F and suppose
that Y is G-measurable. Then

E[(Y − X)2] = E
[
{Y − E[X|G] + E[X|G] − X}2

]

= E[(Y − E[X|G])2] + E[(E[X|G] − X)2] + 2E[(Y − E[X|G])(E[X|G] − X)].

Now Y is G-measurable and so, using Proposition 4.8 part 1 and Proposition 4.10 we have

E[(Y − E[X|G])(E[X|G] − X)] = E [E[(Y − E[X|G])(E[X|G] − X)|G]

= E [(Y − E[X|G]) (E[E[X|G] − X|G])] = 0,

and so the cross-terms vanish.
In particular, we can minimise E[(Y − X)2] by choosing Y = E[X|G]. In other words, E[X|G] is

the best mean-square approximation of X among all G-measurable random variables.
If you have already done Hilbert space theory then E[X|G] is the orthogonal projection of X ∈

L2(Ω,F , P) onto the closed subspace L2(Ω,G, P). Indeed this is a route to showing that conditional
expectations exist without recourse to the Radon-Nikodym Theorem.

We are now, finally, in a position to introduce martingales.

5 Martingales

Much of modern probability theory derived from two sources: the mathematics of measure and gam-
bling. (The latter perhaps explains why it took so long for probability theory to become a respectable
part of mathematics.) Although the term ‘martingales’ has many meanings outside mathematics - it
is the name given to a strap attached to a fencer’s épée, it’s a strut under the bowsprit of a sailing
ship and it is part of a horse’s harness that prevents the horse from throwing its head back - it’s
introduction to mathematics, by Ville in 1939, was inspired by the gambling strategy ‘the infallible
martingale’. This is a strategy for making a sure profit on games such as roulette in which one makes
a sequence of independent bets. The strategy is to stake £1 (on, say, a specific number at roulette)
and keep doubling the stake until that number wins. When it does, all previous losses and more are
recouped and you leave the table with a profit. It doesn’t matter how unfavourable the odds are, only
that a winning play comes up eventually. But the martingale is not infallible. Nailing down why in
purely mathematical terms had to await the development of martingales in the mathematical sense by
J.L. Doob in the 1940’s. Doob originally called them ‘processes with property E’, but in his famous
book on stochastic processes he reverted to the term ‘martingale’ and he later attributed much of the
success of martingale theory to the name.

The mathematical term martingale doesn’t refer to the gambling strategy, but rather models the
outcomes of a series of fair games (although as we shall see this is only one application).

We begin with some terminology.

Definition 5.1 (Filtration). A filtration on the probability space (Ω,F , P) is a sequence {Fn}n≥0 of
sub σ-algebras such that for all n, Fn ⊆ Fn+1.

Usually n is interpreted as time and Fn represents knowledge accumulated by time n (we never
forget anything).

Definition 5.2 (Adapted stochastic process). A stochastic process, {Xn}n≥0 is a collection of random
variables defined on some probability space (Ω,F , P).

We say that {Xn}n≥0 is adapted to the filtration {Fn}n≥0 if, for each n, Xn is Fn-measurable.
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Definition 5.3 (Martingale, submartingales, supermartingale). Let (Ω,FP) be a probability space and
{Fn}n≥0 a filtration. An integrable, Fn-adapted stochastic process {Xn}n≥0 is called

1. a martingale if E[Xn+1|Fn] = Xn a.s. for n ≥ 0,

2. a submartingale if E[Xn+1|Fn] ≥ Xn a.s. for n ≥ 0,

3. a supermartingale if E[Xn+1|Fn] ≤ Xn a.s. for n ≥ 0.

If we think of Xn as our accumulated fortune when we make a sequence of bets, then a martingale
represents a fair game in the sense that the conditional expectation of Xn+1−Xn, given our knowledge
at the time when we make the (n + 1)st bet (that is Fn), is zero. A submartingale represents a
favourable game and a supermartingale an unfavourable game.

Note that the concept of martingale makes no sense unless we specify the filtration. Very often, if
a filtration is not specified, it is implicitly assumed that the natural filtration is intended.

Definition 5.4 (Natural filtration). The natural filtration associated with a stochastic process {Xn}n≥0

on the probability space (Ω,F , P) is defined by

Fn = σ(X0,X1, . . . ,Xn), n ≥ 0.

A stochastic process is automatically adapted to the natural filtration associated with it.
Here are some elementary properties.

Proposition 5.5. Let (Ω,F , P) be a probability space.

1. A stochastic process {Xn}n≥0 on (Ω,F , P) is a submartingale w.r.t. the filtration {Fn}n≥0 if and
only if {−Xn}n≥0 is a supermartingale. It is a martingale if and only if it is both a martinagle
and a submartingale.

2. If {Xn}n≥0 is a martingale w.r.t. {Fn}n≥0 then

E[Xn] = E[X0] for all n.

If {Xn}n≥0 is a submartingale and m < n then

Xm ≤ E[Xn|Fm] a.s.

and
E[Xm] ≤ E[Xn].

If {Xn}n≥0 is a supermartingale and m < n then

Xm ≥ E[Xn|Fm] a.s.

and
E[Xm] ≥ E[Xn].

3. If {Xn}n≥0 is a submartingale w.r.t. some filtration {Fn}n≥0, then it is also a submartingale
with respect to the natural filtration Gn = σ(X0, . . . ,Xn).
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Proof

1 is obvious.
2. We prove the result when {Xn}n≥0 is a submartingale w.r.t {Fn}n≥0.
The result is true for n = m+1 by definition. Suppose that it is true for n = m+k for some k ∈ N.

Then
Xm+k ≤ E[Xm+k+1|Fm+k]

(by definition) and so (by the inductive hypothesis)

Xm ≤ E [E[Xm+k+1|Fm+k]| Fm]

and since Fm ⊆ Fm+k, the tower property gives

Xm ≤ E[Xm+k+1|Fm]i a.s.

and the result follows by induction. For the second conclusion, take expectations.
3. {Xn}n≥0 is adapted to its natural filtration {Gn}n≥0 and since (by definition) Gn is the smallest

σ-algebra with respect to which {X0, . . . ,Xn} are all measurable, Gn ⊆ Fn. Thus, by the tower
property,

E[Xn|Gm] = E [E[Xn|Fm]| Gm] ≥ E[Xm|Gm] = Xm.

2

Proposition 5.6. Let (Ω,F , P) be a probability space. Suppose that {Xn}n≥0 is a martingale with
respect to the filtration {Fn}n≥0. Let c be a convex function on R. If c(Xn) is an integrable random
variable for each n ≥ 0, then {c(Xn)}n≥0 is a submartingale w.r.t {Fn}n≥0.

Proof

By Jensen’s inequality for conditional expectations

c(Xm) = c (E[Xn|Fm]) (martingale property)

≤ E[c(Xn)|Fm] (Jensen’s inequality).

2

Corollary 5.7. If {Xn}n≥0 is a martingale w.r.t. {Fn}n≥0 then (subject to integrability) {|Xn|}n≥0,
{X2

n}n≥0, {eXn}n≥0, {e−Xn}n≥0, {max(Xn,K)}n≥0 are all submartingales w.r.t. {Fn}n≥0.

Example 5.8 (Sums of independent random variables). Suppose that Y1, Y2, . . . are independent ran-
dom variables on the probability space (Ω,F , P) and that E[Yn] = 0 for each n. Define

Xn =

n∑

k=1

Yk, X0 = 0.

Then {Xn}n≥0 is a martingale with respect to the natural σ-algebra

Fn = σ({X1, . . . ,Xn}) = σ({Y1, . . . , Yn}).

In this sense martingales generalise the notion of sums of independent random variables with mean
zero. The independent random variables {Yi}i∈N of Example 5.8 can be replaced by martingale differ-
ences (which are not necessarily independent).
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Definition 5.9 (Martingale differences). Let (Ω,F , P) be a probability space and {Fn}n≥0 a filtra-
tion. A sequence {Un}n∈N of integrable random variables, adapted to the filtration {Fn}n∈N is called a
martingale difference sequence if

E[Un+1|Fn] = 0 a.s. for all n ≥ 0.

Example 5.10. Let (Ω,F , P) be a probability space and let {Xn}n∈N be a sequence of independent,
non-negative random variables with E[Xn] = 1 for all n. Define

M0 = 1, Mn =

n∏

i=1

Xi for n ≥ 1.

Let {Fn}n∈N be the natural filtration associated with {Mn}n∈N. Then {Mn}n∈N is a martingale. (Ex-
ercise).

This is an example where the martingale is (obviously) not a sum of independent random variables.

Example 5.11. Let (Ω,F , P) be a probability space and let {Fn}n∈N be a filtration. Let X be an
integrable random variable (that is E[|X|] < ∞). Then setting

Xn = E[X|Fn], n ≥ 1,

{Xn}n∈N is a martingale w.r.t. {Fn}n∈N. This is an easy consequence of the tower property. Indeed

E[Xn+1|Fn] = E[E[X|Fn+1]|Fn] = E[X|Fn] a.s.

We shall see later that a large class of martingales (called uniformly integrable) can be written in this
way. One can think of {Fn}n∈N as representing unfolding information about X and we’ll see that
Xn → X a.s. as n → ∞.

Definition 5.12 (Predictable process). Let (Ω,F , P) be a probability space and {Fn}n∈N a filtration.
A sequence {Un}n∈N of random variables is predictable with respect to {Fn}n∈N if Un is measurable
with respect to Fn−1 for all n ≥ 1.

Example 5.13 (Discrete stochastic integral or martingale transform). Let (Ω,F , P) be a probability
space and {Fn}n∈N a filtration. Let {Yn}n∈N be a martingale with difference sequence {Un}n≥1. Suppose
that {vn}n≥1 is a predictable sequence. Set

X0 = 0, Xn =
n∑

k=1

Ukvk for n ≥ 1.

The sequence {Xn}n≥1 is called a martingale transform and is itself a martingale. It is a discrete
version of the stochastic integral. To check the martingale property:

E[Xn+1|Fn] = E

[
n∑

k=1

Ukvk|Fn

]
+ E[Un+1vn+1|Fn]

= Xn + vn+1E[Un+1|Fn] (using Proposition 4.10)

= Xn.
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Typical examples of predictable sequences appear in gambling or finance contexts where they might
constitute strategies for future action. The strategy is then based on the current state of affairs. If, for
example, (k − 1) rounds of some gambling game have just been completed, then the strategy for the
kth round is vk ∈ Fk−1. The change in fortune in the kth round is then Ukvk.

Another situation is when vk = 1 as long as some special event has not yet happened and vk = 0
thereafter. That is the game goes on until the event occurs. This is called a stopped martingale - a
topic we’ll return to in due course.

There are more examples on the problem sheet. Here is one last one.

Example 5.14. Let {Yi}i∈N be independent random variables such that E[Yi] = µi, var(Yi) = E[Y 2
i ]−

E[Yi]
2 = σ2

i . Let

s2
n =

n∑

i=1

σ2
i , n ≥ 1.

(That is s2
n = var(

∑n
i=1 Yi) by independence.) Take {Fn}n∈N to be the natural filtration generated by

{Yn}n∈N.
It is easy to check that

Xn =
n∑

i=1

(Yi − µi)

is a martingale (just by modifying Example 5.8) and so by Proposition 5.6, since c(x) = x2 is a convex
functions, {X2

n}n∈N is a submartingale. But we can recover a martingale from it by compensation:

Mn =

(
n∑

i=1

(Yi − µi)

)2

− s2
n, n ≥ 1

is a martingale with respect to {Fn}n≥1.

Proof

By considering the sequence Ỹi = Yi − µi of independent mean zero random variables if necessary,
we see that w.l.o.g. we may assume µi = 0 for all i. Then

E[Mn+1|Fn] = E



(

n∑

i=1

Yi + Yn+1

)2

− s2
n+1

∣∣∣∣∣∣
Fn




= E



(

n∑

i=1

Yi

)2

+ 2Yn+1

n∑

i=1

Yi + Y 2
n+1 − s2

n+1|Fn




=

(
n∑

i=1

Yi

)2

+ 2

n∑

i=1

YiE[Yn+1|Fn] + E[Y 2
n+1|Fn] − s2

n − σ2
n+1 a.s.

= Mn

since E[Yn+1|Fn] = 0 and E[Y 2
n+1|Fn+1] = σ2

n+1. 2

This process of ‘compensation’, whereby we correct a process by something predictable (in this
example it was deterministic) in order to obtain a martingale reflects a general result due to Doob.

Theorem 5.15 (Doob’s Decomposition Theorem). Let (Ω,F , P) be a probability space and {Fn}n∈N a
filtration. Let {Xn}n∈N be a sequence of integrable random variables, adapted to {Fn}n∈N. Then
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1. {Xn}n∈N has a Doob decomposition

Xn = X0 + Mn + An (15)

where {Mn}n∈N is a martingale and {An}n∈N is a predictable process and M0 = 0 = A0. More-

over, if Xn = X0 + M̃n + Ãn is another Doob decompositon of {Xn}n∈N then

P[Mn = M̃n, An = Ãn for all n] = 1.

2. {Xn}n∈N is a supermartingale if and only if {An}n∈N in (15) is a decreasing process and a
submartingale if and only if {An}n∈N is an increasing process.

Proof

Let

Mn =

n∑

k=1

(Xk − E[Xk|Fk−1]) , and An = Xn − Mn, n ≥ 1.

Then, since
E[Xk − E[Xk|Fk−1]|Fk−1] = 0,

the process {Mn}n∈N is a martingale. We must check that {An}n∈N is predictable. But

An = Xn −
n∑

k=1

(Xk − E[Xk|Fk−1]) =
n∑

k=1

E[Xk|Fk−1] −
n−1∑

k=1

Xk

which is Fn−1-measurable.
That establishes existence of a decomposition. For uniqueness, suppose that Xn = X0 + M̃n + Ãn.

Then by predictability,

Ãn+1 − Ãn = E[Ãn+1 − Ãn|Fn]

= E[(Xn=1 − Xn) − (M̃n+1 − M̃n)|Fn]

= E[Xn+1|Fn] − Xn

= An+1 − An,

which combined with A0 = 0 = Ã0 proves uniqueness of the increasing process and therefore, since

Mn = Xn − X0 − An = Xn − X0 − Ãn = M̃n,

also proves uniqueness of the martingale.
2 is obvious. 2

Remark 5.16 (The angle bracket process 〈M〉). Let (Ω,F , P) be a probability space, {Fn}n∈N a fil-
tration and {Mn}n∈N a martingale with respect to {Fn}n∈N with E[M2

n] < ∞ for each n. (Such a
martingale is called an L2-martingale.) Then by Proposition 5.6, {M2

n}n∈N is a submartingale. Thus
by Theorem 5.15 it has a Doob decomposition (which is essentially unique),

M2
n = Nn + An

where {Nn}n∈N is a martingale and {An}n∈N is an increasing predictable process. The process {An}n∈N

is often denoted by {〈M〉n}n∈N.
Note that E[M2

n] = E[An] and that

An − An−1 = E[(Mn − Mn−1)
2|Fn−1].

It turns out that {〈M〉n}n∈N is an extremely powerful tool with which to study {Mn}n∈N. It is beyond
our scope here, but see for example Neveu 1975, Discrete Parameter Martingales.
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6 Stopping Times and Stopping Theorems

Much of the power of martingale methods, as we shall see, comes from the fact that (under suitable
boundedness assumptions) the martingale property is preserved if we ‘stop’ the process at certain
random times. Such times are called ‘stopping times’ (or sometimes ‘optional times’).

Intuitively, stopping times are times that we can recognise when they arrive, like the first time
heads comes up in a series of coin tosses or the first time the FTSE 100 index takes a 3% fall in a single
day. They are times which can be recognised without reference to the future. Something like ‘the day
in December when the FTSE 100 reaches its maximum’ is not a stopping time - we must wait until the
end of December to determine the maximum, and by then, in general, the time has passed.

Stopping times can be used for strategies of investing and other forms of gambling. We recognise
them when they arrive and can make decisions based on them (for example to stop playing).

Definition 6.1 (Stopping time). Let (Ω,F , P) be a probability space and {Fn}n∈N a filtration. A
positive integer-valued (possibly infinite) random variable τ is called a stopping time with respect to
{Fn}n∈N if {τ = n} ∈ Fn for all n or, equivalently, if {τ > n} ∈ Fn for all n. Stopping times are
sometimes called optional times.

Warning: Some authors assume P[τ < ∞] = 1.

Lemma 6.2. Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration, {Mn}n∈N a martingale with re-
spect to {Fn}n∈N and τ a stopping time with respect to {Fn}n∈N. Then {Mn∧τ}n∈N is also a martingale
with respect to {Fn}n∈N.

Proof

Take vn = 1τ>n−1 in Example 5.13. 2

This Lemma tells us that E[Mn∧τ ] = E[M0], but can we let n → ∞ to obtain E[Mτ ] = E[M0]? The
answer is ‘no’.

Example 6.3. Let {Yi}i∈N be i.i.d. random variables with P[Yi = 1] = P[Yi = −1] = 1/2. Set
Xn =

∑n
k=1 Yk, n ≥ 1. That is Xn is the position of a simple random walk started from the origin

after n steps. In particular, {Xn}n∈N is a martingale and so E[Xn] = 0 for all n.
Now let τ = min{n : Xn = 1}. It is clear that τ is a stopping time and evidently Xτ = 1. But then

E[Xτ ] = 1 6= 0 = E[X0].

The problem is that τ is too large - E[τ ] = ∞. It turns out that if we impose suitable boundedness
assumptions then we will have E[Mτ ] = E[M0] and that is the celebrated Optional Stopping Theorem.
There are many variants of this result.

Theorem 6.4 (Doob’s Optional Stopping Theorem). Let (Ω,F , P) be a probability space, {Fn}n∈N

a filtration, {Mn}n∈N a martingale with respect to {Fn}n∈N and τ a stopping time with respect to
{Fn}n∈N. Then Mτ is integrable and

E[Mτ ] = E[M0] (16)

in each of the following situations:

1. τ is a.s. finite and {Mn}n∈N is bounded (that is there exists K such that |Mn(ω)| ≤ K for every
n ∈ N and every ω ∈ Ω).

2. τ is bounded (for some N ∈ N, τ(ω) ≤ N for all ω ∈ Ω).

3. E[τ ] < ∞ and there exists M < ∞ such that

E [ |Mn+1 − Mn|| Fn] < M, for all n.

36



Proof

1. Because τ < ∞, limn→∞ Mn∧τ = Mτ a.s. and since {Mn}n∈N is bounded we may apply the
Bounded Convergence Theorem (that is the DCT with dominating function g(ω) ≡ K) to deduce the
result.

2. Take n = N in Lemma 6.2.
3. Note first that setting M0∧τ = 0,

|Mn∧τ | =

∣∣∣∣∣

n∑

i=1

(Mi∧τ − M(i−1)∧τ )

∣∣∣∣∣

≤
n∑

i=1

|Mi∧τ − M(i−1)∧τ |

≤
∞∑

i=1

1τ≥i|Mi∧τ − M(i−1)∧τ |. (17)

Now

E

[
∞∑

i=1

1τ≥i|Mi∧τ − M(i−1)∧τ |
]

=

∞∑

i=1

E[1τ≥i|Mi∧τ − M(i−1)∧τ |] (by MCT)

=
∞∑

i=1

E
[
E[1τ≥i|Mi∧τ − M(i−1)∧τ |

∣∣Fi−1]
]

(tower property)

=
∞∑

i=1

E
[
1τ≥iE[ |Mi∧τ − M(i−1)∧τ |

∣∣Fi−1]
]

(since {τ ≥ i} ∈ Fi−1)

≤ M

∞∑

i=1

E[1τ≥i]

= M

∞∑

i=1

P[τ ≥ i] = ME[τ ] < ∞.

Moreover, τ < ∞ a.s. and so Mn∧τ → Mτ a.s. as n → ∞ and so by the DCT with the function on the
right hand side of (17) as dominating function, we have the result. 2

In order to make use of 3, we need to be able to check when E[τ ] < ∞. The following lemma
provides a useful test.

Lemma 6.5. Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration, and τ a stopping time with
respect to {Fn}n∈N. Suppose that there exists N ∈ N and ǫ > 0 such that for all n ∈ N

P[τ < n + N | Fn] ≥ ǫ a.s.

Then E[τ ] < ∞.

The proof is an exercise.
Let’s look at some applications of Theorem 6.4.

Example 6.6. Suppose that (Ω,F , P) is a probability space and {Xi}i∈N are i.i.d. random variables
with P[Xi = j] = pj for each j = 0, 1, 2, . . .. What is the expected number of random variables that
must be observed before the subsequence 0, 1, 2, 0, 1 occurs?
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Solution

Consider a fair gambling casino - that is one in which the expected gain from each bet is zero. In
particular, a gambler betting £a on the outcome of the next bet being a j will lose with probability
1−pj and will win £a/pj with probbaility pj. (Her expected fortune after the game is then 0(1−pj)+
pjaj/pj = a, the same as before the game.)

Imagine a sequence of gamblers betting at the casino, each with a fortune 1.
Gambler i bets £1 that Xi = 0; if she wins, she bets her entire fortune of £1/p0 that Xi+1 = 1;

if she wins again she bets her fortune of £1/(p0p1) that Xi+2 = 2; if she wins that bet, then she bets
£1/(p0p1p2) that Xi+3 = 0; if she wins that bet then she bets her total fortune of £1/(p2

0p1p2) that
Xi+4 = 1; if she wins she quits with a fortune of £1/(p2

0p
2
1p2.

Let Mn be the casino’s winnings after n games (so when Xn has just been revealed). Then {Mn}n∈N

is a mean zero martingale, adapted to the filtration {Fn}n∈N where Fn = σ(X1, . . . ,Xn). If we write
τ for the number of random variables to be revealed before we see the required pattern, then by
Lemma 6.5, E[τ ] < ∞. Condition 3 of Theorem 6.4 is satisfied (for example take M = 4/(p2

0p
2
1p2)).

After Xτ has been revealed, gamblers 1, 2, . . . , τ − 5 have each lost £1.

• Gambler τ − 4 has gained £1/(p2
0p

2
1p2) − 1,

• Gamblers τ − 3 and τ − 2 have each lost £1,

• Gambler τ − 1 has gained £1/(p0p1) − 1,

• Gambler τ has lost £1.

Thus

Mτ = τ − 1

p2
0p

2
1p2

− 1

p0p1

and by Theorem 6.4 E[Mτ ] = 0, so taking expectations,

E[τ ] =
1

p2
0p

2
1p2

+
1

p0p1
.

2

The same trick can be used to calculate the expected time until any (finite) specified pattern occurs
in i.i.d. data.

We stated the Optional Stopping Theorem for martingales, but similar results are available for
supermartingales - just replace the equality in (16) by an inequality. We also have the following useful
analogue of Lemma 6.2.

Lemma 6.7. Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration, {Xn}n∈N a submartingale with
respect to {Fn}n∈N and τ a stopping time (finite or infinite) with respect to {Fn}n∈N. Then {Xn∧τ}n∈N

is also a submartingale with respect to {Fn}n∈N.

Proof

Let Λ ∈ Fn.
∫

Λ
E[X(n+1)∧τ

∣∣Fn]dP =

∫

Λ
X(n+1)∧τ dP

=

∫

Λ∩{τ≤n}
X(n+1)∧τdP +

∫

Λ∩{τ>n}
Xn+1dP.
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Now Λ ∩ {τ > n} ∈ Fn so by the submartingale inequality the right hand side is

≥
∫

Λ∩{τ≤n}
Xn∧τdP +

∫

Λ∩{τ>n}
XndP =

∫

Λ
Xn∧τdP.

Thus ∫

Λ
Xn∧τdP ≤

∫

Λ
E[X(n+1)∧τ |Fn]dP

for each Λ ∈ Fn and since Xn∧τ is Fn-measurable this implies

Xn∧τ ≤ E[X(n+1)∧τ |Fn] a.s.

2

Let’s just record one more result for submartingales.
According to Chebyshev’s inequality, if X is a random variable and λ > 0, then

P[|X| ≥ λ] ≤ E[|X|]
λ

.

Martingales satisfy a similar, but much more powerful inequality, which bounds the maximum of the
process.

Theorem 6.8 (A maximal inequality). Let {Xn}n∈N be a positive submartingale (adapted to a filtration
{Fn}n∈N). Then for each fixed N ∈ N,

P[max
n≤N

Xn ≥ λ] ≤ E[XN ]

λ
.

Corollary 6.9. Let (Ω,F , P) be a probability space and {Fn}n∈N a filtration. If {Mn}n∈N is a martin-
gale with respect to {Fn}n∈N then for each N ∈ N

P [maxn≤N |Mn| ≥ λ] ≤ E[|MN |]
λ

.

Proof

Since c(x) = |x| is convex, set Xn = |Mn| and {Xn}n∈N is a submartingale. 2

Proof of Theorem 6.8

First let τ be a stopping time with P[τ ≤ N ] = 1. Then

E[Xτ ] =

N∑

k=1

E[Xτ1{τ=k}] =

N∑

k=1

E[Xk1{τ=k}].

Now

E[XN1{τ=k}] = E[E[XN1{τ=k}|Fk]]

= E[1{τ=k}E[XN |Fk]]

≥ E[1{τ=k}Xk] since {Xn}n∈N a submartingale

and summing over k,

E[XN ] =

N∑

k=1

E[XN1{τ=k}] ≥
N∑

k=1

E[Xk1{τ=k}] = E[Xτ ].
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Now define τ by
τ = inf{n ≤ N : Xn ≥ λ}

if the set is non-empty and τ = N otherwise. Then {maxn≤N Xn ≥ λ} = {Xτ ≥ λ} and

P[max
n≤N

Xn ≥ λ] = P[Xτ ≥ λ] ≤ 1

λ
E[Xτ ] ≤

1

λ
E[XN ]

as required. 2

7 The Upcrossing Lemma and Martingale Convergence

Let {Xn}n∈N be an integrable random process, for example modelling the value of the stockmarket.
Consider the following strategy:

1. You do not invest until the value of X goes below some level a (representing what you consider
to be a bottom price), in which case you buy a share.

2. You keep your share until X gets above some level b (a value you consider to be overpriced) in
which case you sell your share and you return to the first step.

Three remarks:

1. However clever this strategy may seem, if {Xn}n∈N is a supermartingale and you stop playing at
some bounded stopping time then your losses will be greater than your winnings.

2. Your earnings are bounded above by (b− a) times the number of times the process went up from
a to b.

3. If you stop at a time n when the value is below the price at which you bought, then you make a
loss which is bounded above by (Xn − a)−.

Combining these remarks, if {Xn}n∈N is a supermartingale we should be able to bound (above) the
number of times the stock price rose from a to b by E[(Xn−a)−]/(b−a). This is precisely what Doob’s
upcrossing inequality will tell us. To make it precise, we need some notation.

Definition 7.1 (Upcrossings). If x = {xn}n≥0 is a sequence of real numbers and a < b are fixed, define
two integer-valued sequences {Sk(x)}k≥1, {Tk(x)}k≥1 recursively as follows:

Let T0(x) = 0 and for k ≥ 0 let

Sk+1(x) = inf{n ≥ Tk(x) : xn < a},

Tk+1(x) = inf{n ≥ Sk+1(x) : xn > b},
with the usual convention that inf ∅ = ∞.

Let
Nn([a, b], x) = sup{k > 0 : Tk(x) ≤ n}

be the number of upcrossings of [a, b] by x before time n and let

N([a, b], x) = sup{k > 0 : Tk(x) < ∞}

be the total number of upcrossings of [a, b] by x.
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Lemma 7.2 (Doob’s upcrossing lemma). Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration and
{Xn}n∈N a supermartingale adapted to {Fn}n∈N. Let a < b be fixed real numbers. Then for every
n ≥ 0,

E[Nn([a, b],X)] ≤ E[(Xn − a)−]

(b − a)
.

Proof

It is an easy induction to check that Sk = Sk(X), k ≥ 1, and Tk = Tk(X), k ≥ 1 are stopping times.
Now set

Cn =
∑

k≥1

1{Sk<n≤Tk}.

Notice that Cn only takes the values 0 and 1. It is 1 at time n if X is in the process of making an
upcrossing from a to b or if TK = ∞ for some K and n > SK .

T2

b

a

S1
C=0 C=1

T1
C=0

S2
C=1

Notice that
{Sk < n ≤ Tk} = {Sk ≤ n − 1} ∩ {Tk ≤ n − 1}c ∈ Fn−1.

So {Cn}n∈N is predictable (recall Definition 5.12). Now just as in Example 5.13 we construct the discrete
stochastic integral

(C ◦ X)n =

n∑

k=1

Ck(Xk − Xk−1)

=

Nn∑

i=1

(XTi
− XSi

) + (Xn − XSNn+1
)1{SNn+1≤n}

≥ (b − a)Nn + (Xn − a)1{Xn≤a}

≥ (b − a)Nn − (Xn − a)−. (18)

Now since {Cn}n∈N is bounded, non-negative and predictable and {Xn}n∈N is a supermartingale we
can deduce exactly as in Example 5.13 that {(C ◦X)n}n∈N is also a supermartingale. So finally, taking
expectations in (18),

0 = E[(C ◦ X)0] ≥ E[(C ◦ X)n] ≥ (b − a)E[Nn] − E[(Xn − a)−]

and rearranging gives the result. 2

Now one way to show that a sequence of real numbers converges as n → ∞ is to show that it
doesn’t oscillate too wildly and that can be expressed in terms of upcrossings. The following lemma
makes this precise.
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Lemma 7.3. A real sequence {xn}n∈N converges to a limit in [−∞,∞] if and only if N([a, b], x) < ∞
for all a, b ∈ R with a < b.

Proof

Because we need to be able to take a, b rational in our next theorem, we’ll show that {xn}n∈N does
not converge if and only if there exist rationals a < b such that N([a, b], x) = ∞.

(i) If N([a, b], x) = ∞, then
lim inf
n→∞

xn ≤ a < b ≤ lim sup
n→∞

xn

and so {xn}n∈N does not converge.
(ii) If {xn}n∈N does not converge, then

lim inf
n→∞

xn < lim sup
n→∞

xn

and so choose two rationals a < b in between. 2

Now a supermartingale {Xn}n∈N is just a random sequence and by Doob’s Upcrossing Lemma we
can bound the number of upcrossings of [a, b] that it makes for any a < b and so our hope is that we
can combine this with Lemma 7.3 to show that the random sequence {Xn}n∈N converges. This is our
next result.

Theorem 7.4 (Doob’s Forward Convergence Theorem). Let (Ω,F , P) be a probability space and
{Fn}n∈N a filtration. Suppose that {Xn}n∈N is a supermartingale adapted to {Fn}n∈N with the property
that

sup
n

E[|Xn|] < ∞

(we say that {Xn}n∈N is bounded in L1), then {Xn}n∈N converges with probability one to an a.s. finite
limit X∞.

Proof

Fix rationals a < b. Then by Doob’s Upcrossing Lemma

E[Nn([a, b],X)] ≤ E[(Xn − a)−]

(b − a)
≤ E[|Xn| + a]

(b − a)

and so by the MCT,

E[N([a, b],X)] ≤ supn E[|Xn| + a]

(b − a)

which implies that N([a, b],X) < ∞ a.s.. That is P[N([a, b],X) < ∞] = 1 for any a < b ∈ Q. Hence

P

[ ⋂

a<b∈Q

{N([a, b],X) < ∞}
]

= 1

(since a countable union of null sets is null). So {Xn}n∈N converges a.s. to some X∞. It remains to
check that X∞ is finite a.s. But Fatou’s Lemma gives

E[|X∞|] ≤ lim inf
n→∞

E[|Xn|]

and the right hand side is finite by assumption. Hence |X∞| < ∞ a.s.. 2

Corollary 7.5. If {Xn}n∈N is a non-negative supermartingale, then X∞ = limn→∞ Xn exists a.s.
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Proof

Since E[|Xn|] = E[Xn] ≤ E[X0] we may apply Theorem 7.4. 2

Example 7.6. Recall our branching process of Definition 0.1. We defined Z0 = 1 and

Zn+1 = X
(n+1)
1 + · · · + X

(n+1)
Zn

where the random variables X
(n+1)
i are i.i.d. all with law P[X = k] = pk for suitable constants pk. We

also wrote µ =
∑∞

k=1 kpk = E[X] and Mn = Zn/µn.
Let {Fn}n∈N be the natural filtration. Then

E[Mn+1|Fn] = E

[
Zn+1

µn+1

∣∣∣∣Fn

]

= E

[
1

µn+1
(X

(n+1)
1 + · · · + X

(n+1)
Zn

∣∣∣∣Fn

]

=
Zn

µn+1
E[X] =

Zn

µn
= Mn.

So {Mn}n∈N is a non-negative martingale and by Doob’s Forwards Convergence Theorem we see that
{Mn}n∈N converges a.s. to a finite limit. However, as we saw in §0.2, if µ ≤ 1 then Mn → 0 with
probability one even though E[M0] = M0 = 1. So we have convergence a.s. but not ‘in L1’. That is

0 = E[M∞] 6= lim
n→∞

E[Mn] = 1.

Convergence in L1 will require a stronger condition. What is happening for our subcritical branching
process is that although for large n, Mn is very likely to be zero, if it is not zero then it is very big with
sufficiently high probability that E[Mn] 6→ 0. This mirrors what we saw in Part A Integration with
sequences like

f

10

n

n

1/n

for which we have a strict inequality in Fatou’s Lemma. In §8 we will introduce a condition called
‘uniform integrability’ which is just enough to prohibit this sort of behaviour. First we consider another
sort of boundedness.

7.1 Martingales bounded in L
2

The assumption that supn E[|Xn|] < ∞ in Doob’s Forwards Convergence Theorem is not always easy
to check, so sometimes it is convenient to work with uniformly square integrable martingales.
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Definition 7.7 (Martingales bounded in Lp). Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration
and {Mn}n∈N a martingale adapted to {Fn}n∈N. We say that {Mn}n∈N is bounded in Lp (or for p = 2
‘uniformly square integrable’) if

sup
n

E[|Mn|p] < ∞.

Suppose that {Mn}n∈N is a uniformly square integrable martingale and that k > j ≥ 0. We adopt
the convention that M−1 = 0. Then

E[(Mk − Mk−1)(Mj − Mj−1)] = E [E [(Mk − Mk−1)(Mj − Mj−1)|Fk−1]] (tower property)

= E [(Mj − Mj−1)E[Mk − Mk−1)|Fk−1]] (taking out what is known)

= 0. (martingale property)

This allows us to obtain a ‘Pythagoras rule’:

E[M2
n] = E



(

n∑

k=1

(Mk − Mk−1)

)2



= E[M2
0 ] +

n∑

k=1

E[(Mk − Mk−1)
2] + 2

∑

n≥k>j≥1

E[(Mk − Mk−1)(Mj − Mj−1)]

= E[M2
0 ] +

n∑

k=1

E[(Mk − Mk−1)
2]. (19)

Theorem 7.8. Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration and {Mn}n∈N a martingale
adapted to {Fn}n∈N. The martingale {Mn}n∈N is uniformly square integrable if and only if

∑

k≥1

E[(Mk − Mk−1)
2] < ∞ (20)

and in this case Mn → M∞ a.s. and

lim
n→∞

E[(Mn − M∞)2] = 0,

that is Mn → M∞ in L2.

Proof

From (19) it is clear that (20) is equivalent to uniform square integrability.
Now suppose (20) holds. From Jensen’s inequality (since c(x) = x2 is convex)

E[|Mn|]2 ≤ E[M2
n]

and so Doob’s Forward Convergence Theorem shows that M∞ = limn→∞ Mn exists a.s. To check
convergence in L2 we use Pythagoras again,

E[(Mn+k − Mn)2] =

n+k∑

j=n+1

E[(Mj − Mj−1)
2], (21)

and so by Fatou’s Lemma

E[(M∞ − Mn)2] = E[lim inf
k→∞

(Mn+k − Mn)2]

≤ lim inf
k→∞

E[(Mn+k − Mn)2]

=
∑

j≥n+1

E[(Mj − Mj−1)
2] (using (21))
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and since
∞∑

j=1

E[(Mj − Mj−1)
2] < ∞

(which is (20)) the right hand side tends to zero as n → ∞. That is

lim
n→∞

E[(M∞ − Mn)2] = 0

as required. 2

Notice that martingales that are bounded in L2 form a strict subset of those that are bounded
in L1 (that is those for which we proved Doob’s Forwards Convergence Theorem). And convergence
in L2 implies convergence in L1, so for these martingales we don’t have the difficulty we had with
our branching process example. L2-boundedness is often relatively straightforward to check, so is
convenient, but it is a stonger condition than we need for L1-convergence.

8 Uniform Integrability

If X is an integrable random variable (that is E[|X|] < ∞) and Λn is a sequence of sets with P[Λn] → 0,
then E[|X1Λn |] → 0 as n → ∞. (This is a consequence of the DCT since |X| dominates |X1Λn | and
|X1Λn | → 0 a.s.) Uniform integrability demands that this type of property holds uniformly for random
variables from some class.

Definition 8.1 (Uniform Integrability). A class C of random variables is called uniformly integrable
if given ǫ > 0 there exists K ∈ (0,∞) such that

E[|X|1{|X|>K}] < ǫ for all X ∈ C.

There are two reasons why this definition is important:

1. Uniform integrability is necessary and sufficient for passing to the limit under an expectation,

2. it is often easy to verify in the context of martingale theory.

Property 1 should be sufficient to guarantee that uniform integrability is interesting, but in fact uniform
integrability is not often used in analysis where it is usually simpler to use the MCT or the DCT. It is
only taken seriously in probability and that is because of 2.

Proposition 8.2. Suppose that {Xα, α ∈ I} is a uniformly integrable family of random variables on
some probability space (Ω,F , P). Then

1.
sup

α
E[|Xα|] < ∞,

2.
P[|Xα| > N ] → 0 as N → ∞, uniformly in α.

3.
E[|Xα|1Λ] → 0 as P[Λ] → 0, uniformly in α.

Conversely, either 1 and 3 or 2 and 3 implies uniform integrability.
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Proof

1 By definition of uniform integrability, there exists N0 such that for all α

E[|Xα|1{|Xα|>N0}] ≤ 1.

Then for all α

E[|Xα|] = E
[
|Xα|1{|Xα|≤N0} + |Xα|1{|Xα|>N0}

]
≤ N0P[|Xα| ≤ N0] + 1 ≤ N0 + 1.

Now 1 implies 2 since

P[|Xα| > N ] ≤ 1

N
E[|Xα|] (Chebyshev)

≤ 1

N
sup

α
E[|Xα|]

and the bound on the right, which evidently tends to zero as N → ∞, is independent of α.
To see 3, fix ǫ > 0 and choose Nǫ such that

E[|Xα|1{|Xα|>Nǫ}] <
ǫ

2
for all α.

Then choose δ = ǫ/(2Nǫ) and suppose P[Λ] < δ, then

E[|Xα|1Λ] = E[|Xα|1Λ∩{|Xα|≤Nǫ} + |Xα|1Λ∩{|Xα|>Nǫ}]

≤ NǫE[1Λ] + E[|Xα|1Λ∩{|Xα|>Nǫ}]

≤ NǫP[Λ] +
ǫ

2
< ǫ independent of α.

Thus, given ǫ > 0, choosing δ in this way, P[Λ] < δ implies E[|Xα|1Λ] < ǫ as required.
For the converse, since 1 implies 2, it is enough to check that 2 and 3 imply uniform integrability.

Choose ǫ > 0, by 3 there exists δ > 0 such that P[Λ] < δ implies E[|Xα|1Λ] < ǫ for all α. Then since
by 2 there is N0 such that N ≥ N0 implies P[|Xα| > N ] < δ for all α, we have that for all N ≥ N0

E
[
|Xα|1{|Xα|>N}

]
< ǫ for all α.

2

We’ve already said that uniform integrability is a necessary and sufficient condition for going to
the limit under the integral. Let’s state this a bit more formally. Recall that for a family of random
variables {Xn}n∈N on (Ω,F , P) we say that Xn → X in L1 if

E[|Xn − X|] → 0 as n → ∞.

We say that Xn → X in probability if given ǫ > 0

lim
n→∞

P [{ω : |Xn(ω) − X(ω)| > ǫ}] = 0.

It’s easy to check that if Xn → X in L1, then for any set Λ

E [|Xn1Λ − X1Λ|] → 0 as n → ∞.

Theorem 8.3 (Uniform Integrability and L1 convergence). Let {Xn}n∈N be a sequence of integrable
random variables which converge in probability to a random variable X. TFAE
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1. {Xn}n∈N is uniformly integrable,

2. E[|Xn − X|] → 0 as n → ∞,

3. E[|Xn|] → E[|X|] as n → ∞.

Proof

Since |Xn| → |X| in probability, by Theorem 3.14 there exists a subsequence {nk}k∈N such that
{Xnk

}k∈N converges a.s.. Fatou’s Lemma gives

E[|X|] ≤ lim inf
n→∞

E[|Xnk
|]

and by Proposition 8.2 1 the right hand side is bounded. Thus X is integrable. Now let ǫ > 0.

E[|X − Xn|] = E[|X − Xn|1{|X−Xn|≤ǫ/3} + |X − Xn|1{|X−Xn|>ǫ/3}]

≤ ǫ

3
+ E

[
|X|1{|X−Xn|>ǫ/3} + |Xn|1{|X−Xn|>ǫ/3}

]
.

Now since Xn → X in probability we have P[|X − Xn| > ǫ/3] → 0 as n → ∞ and so using the
integrability of X and the DCT gives

E[|X|1{|X−Xn|>ǫ/3}] → 0 as n → ∞.

Since by Proposition 8.2 3, uniform integrability implies

E[|Xn|1{|X−Xn|>ǫ/3}] → 0 as n → ∞,

we have
E[|Xn − X|] → 0 as n → ∞

as required.
2 implies 3 is obvious, so let’s prove that 3 implies 1.
Suppose then thet E[|Xn|] → E[|X|] as n → ∞. For any real number M such that P[X = M ] = 0,

we define

X(M) =

{
X |X| ≤ M,
0 |X| > M,

with a parallel definition for X
(M)
n .

Then for any such M ,

E[|Xn|1{|Xn|>M}] = E[|Xn|] − E[|X(M)
n |]

→ E[|X|] − E[|X(M)|]

as n → ∞ since E[|Xn|] → E[|X|] by hypothesis and using the bounded convergence theorem.
Now let ǫ > 0. Choose Mǫ large enough that

E[|X|] − E[|X(Mǫ)|] <
ǫ

3

(and P[|X| = Mǫ] = 0 as above). There exists N0 such that for n ≥ N0 we have both

|E[|Xn|] − E[|X|]| <
ǫ

3
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and ∣∣∣E[|X(Mǫ)
n |] − E[|X(Mǫ)|]

∣∣∣ <
ǫ

3
.

Then for all n ≥ N0,

E[|Xn|1{|Xn|>Mǫ}] = E[|Xn|] − E[|X(Mǫ)
n |]

≤
∣∣∣E[|X|] − E[|X(Mǫ)|]

∣∣∣+ |E[|Xn|] − E[|X|]| +
∣∣∣E[|X(Mǫ)

n |] − E[|X(Mǫ)|]
∣∣∣

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

There are only finitely many n < N0, so there exists M ′
ǫ ≥ Mǫ such that

E
[
|Xn|1{|Xn|>M ′

ǫ}

]
< ǫ

for all n, which is 1. 2

The second reason that uniform integrability is important is that it is readily verified for martingales
and submartingales.

Theorem 8.4. Let {Fα}α∈I be a family of sub σ-fields of F and let X be an integrable random variable.
Define

Xα = E[X|Fα].

Then {Xα, α ∈ I} is uniformly integrable.

Proof

Let Y = E[X|Fα]. By the conditional Jensen inequality (Proposition 4.12), since c(x) = |x| is
convex,

|Y | = |E[X|Fα]| ≤ E [ |X|| Fα] a.s.

and so
E[|Y |1{|Y |≥K}] ≤ E

[
E[ |X|| Fα]1{|Y |≥K}

]
= E[|X|1{|Y |≥K}]. (22)

Now the single integrable random variable X forms on its own a uniformly integrable class and so
by Proposition 8.2 given ǫ > 0 we can find δ > 0 such that P[Λ] < δ implies E[|X|1Λ] < ǫ. So to
show that (22) is less than ǫ for sufficiently large K we must check that P[|Y | ≥ K] converges to zero
(uniformly in α) as K → ∞. But

P[|Y | ≥ K] ≤ E[|Y |]
K

(Chebyshev)

=
E[|X|]

K
(tower property)

so for any α, taking K > E[|X|]/δ implies P[|Y | ≥ K] < δ and hence the right hand side of (22) is less
than ǫ as required. 2

Theorem 8.5. Let (Ω,F , P) be a probability space, {Fn}n∈N a filtration and {Mn}n∈N a martingale
adapted to {Fn}n∈N. TFAE

1. {Mn}n∈N is uniformly integrable,

2. Mn converges a.s. and in L1(Ω,F , P) to a limit M∞,

3. there exists Z ∈ L1(Ω,F , P) such that Mn = E[Z|Fn], n ≥ 0
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Proof

We already have most of the ingredients.
1 =⇒ 2: If {Mn}n∈N is uniformly integrable then it is bounded in L1 and so by Doob’s Forward

Convergence Theorem it converges a.s.. Theorem 8.3 and uniform integrability ensure convergence in
L1 to a limit which we denote M∞.

2 =⇒ 3: Choose Z = M∞. For all m,n ∈ N with m ≥ n and all F ∈ Fn

E[Xm1F ] = E[Xn1F ]

(combining Xn = E[Xm|Fn] a.s. and the tower property) and letting m → ∞ , the L1 convergence
gives

E[X∞1F ] = E[Xn1F ] for all F ∈ Fn

which gives Xn = E[X∞|Fn] a.s. by definition of conditional expectation.
3 =⇒ 1 follows directly from Theorem 8.4. 2

9 Backwards Martingales and the Strong Law of Large Numbers

Backwards martingales are martingales for which time is indexed by the negative integers Z.
Given sub σ-algebras

G−∞ =
⋂

k∈N

G−k ⊆ · · · ⊆ G−(n+1) ⊆ G−n ⊆ · · · ⊆ G0

an integrable {G−n}n∈N-adapted process {M−n}n∈N is a backwards martingale if

E[M−n+1|G−n] = M−n a.s.

Backwards martingales are automatically uniformly integrable by Theorem 8.4 since M0 is integrable
and

M−n = E[M0|G−n].

We can easily adapt Doob’s Upcrossing Lemma to prove that if Nm([a, b],M) is the number of up-
crossings of [a, b] by a backwards martingale between times −m and 0, then

(b − a)E[Nm([a, b],M)] ≤ E[(M0 − a)−]. (23)

To see this consider the forwards martingale {M−m+k} for 0 ≤ k ≤ m. As m → ∞, Nm([a, b],M)
converges a.s. to the total number of upcrossings of [a, b] by {M−n}n∈N and since the bound in (23) is
uniform in m, we conclude, exactly as in Doob’s Forward Convergence Theorem, that M−n converges
a.s. to a G−∞-measurable random variable M−∞ as −n → −∞. As remarked above, our backwards
martingale is automatically uniformly integrable and so we have:

Theorem 9.1. Let {M−n}n∈N be a backwards martingale. Then M−n converges a.s. and in L1 as
−n → −∞ to the random variable M−∞ = E[M0|G−∞].

We now use this result to prove the celebrated Kolmogorov Strong Law.

Theorem 9.2 (Kolmogorov’s SLLN). Let {Xn}n∈N be a sequence of i.i.d. random variables with
E[|Xk|] < ∞ for each k. Write µ = E[Xk] and define

Sn =

n∑

k=1

Xk.
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Then
Sn

n
→ µ a.s. and in L1 as n → ∞.

Proof

Define
G−n = σ(Sn, Sn+1, Sn+2, . . .)

and
G−∞ = ∩k∈NG−k.

Note that G−n = σ(Sn,Xn+1,Xn+2, . . .) and that by independence of the Xi’s, G−(n+1) is independent
of the sub σ-algebra σ(X1, Sn) (which is a sub σ-algebra of σ(X1,X2, . . . ,Xn)). Thus

E[X1|G−n] = E[X1|σ(Sn, σ(Xn+1,Xn+2, . . .))] = E[X1|Sn].

But by symmetry (recall that {Xn}n∈N is an i.i.d. sequence)

E[X1|Sn] = E[X2|Sn] = · · · = E[Xn|Sn]

and
1

n
E[X1 + · · · + Xn|Sn] =

1

n
Sn.

Therefore, for all n ∈ N

E[X1|G−n] = · · · = E[Xn|G−n] =
Sn

n

so that

E[Sn|G−(n+1)] = E[Sn+1|G−(n+1)] − E[Xn+1|G−(n+1)]

= Sn+1 −
Sn+1

n + 1
=

n

n + 1
Sn+1.

Hence, setting M−n = Sn/n, {M−n}n∈N is a backwards martingale with respect to its natural filtration.
Thus Sn/n converges a.s. and in L1 to a limit which is a.s. constant by Kolmogorov’s 0-1 law and so
it must equal its mean value,

E[ lim
−n→−∞

E[X1|G−n]] = lim
−n→−∞

E[E[X1|G−n]]

= lim
n→∞

E[
Sn

n
] = µ.

2

Note that the result is not completely obvious. For example, if the Xi are normally distributed
with mean zero and variance 1, Sn/n converges to zero a.s., but Sn/

√
n does not converge and indeed

lim sup Sn/
√

2n log log n = 1.
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Jensen’s inequality, 22
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sets, 15
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martingale, 4, 31
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monotone convergence properties, 6
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Monotone Convergence Theorem, 10

natural filtration, 31

Optional Stopping Theorem, 36
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partition, 24
Partition Theorem, 24, 29
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reverse Fatou Lemma, 10

Scheffé’s Lemma, 10
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