
3 Discrete time models II

3.1 The multiperiod binary model

Our single step binary model is, of course, inadequate as a model of the evolution
of an asset price. One way to think of it is as a model of how prices evolve over
a single `tick' of a clock. As the next level of generality, we extend this model to
include several ticks of the clock.

We again think of our market as consisting of just two securities: a bond
(representing riskless borrowing) and a stock S. Unlimited amounts of either can
be bought and sold without transaction costs, and so on. At every tick of a clock,
we are allowed to readjust our portfolio.

As in the single period binary model, we shall suppose that at each tick of
the clock, the stock moves from its current value to one of two possible values
(depending on its current value). There are 2i possible states of the stock price
after i ticks of the clock, and we think of them as being arranged in a tree as in
Figure 4.
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Figure 4.

The bond moves as before, so over the ith tick its value is scaled up by exp(ri).
We assume that all ri are known.

Suppose again that I am pricing a European option with strike price K at the
maturity time, T . We assume now that T = n. The payo� of the option is then
(Sn �K)+ at time n.

The idea is to use backward induction on the tree as follows. If we knew the
price, Sn�1, of the stock after (n� 1) ticks, then our previous analysis would tell



us the value, Cn�1, of the claim at time (n � 1). Namely Cn�1 =  
(n)
0 En�1 [Cn]

where the expectation is with respect to a probability measure for which Sn�1 =

 
(n)
0 E n�1 [Sn] and  

(n)
0 = e�rn . So for each state of the market at time (n � 1), I

know that I need a portfolio worth Cn�1 if I am to meet the claim against me at
time n. I can now think of Cn�1 as a claim at time (n�1). In the same way then,
if I know Sn�2, in order to meet the claim against me at time (n � 1), I need to

hold a portfolio worth  
(n�1)
0 En�2 [Cn�1], where the expectation is with respect to

a measure such that Sn�2 =  
(n�1)
0 En�2 [Sn�1], and this in turn guarantees that I

can exactly meet the claim against me at time n. Continuing in this way, we can
successively calculate the cost of a portfolio that, after appropriate readjustment
at each tick of the clock, but without any extra input of wealth and without paying
dividends, will allow us to exactly meet the claim against us at time n.

The strategy that readjusts the portfolio in this way is said to be a self-
�nancing strategy.

The probability measures used at each stage in the above prescribe exactly one
probability for each branch in our tree of stock prices. For each vertex of the tree
there is a unique path from the vertex through the tree that the stock price could
have followed to reach that vertex, and we specify a probability measure on paths
by declaring that the probability of such a path is the product of the probabilities
on the branches that comprise it.

Let us assume, for simplicity, that the rate of interest is everywhere zero. There
is no loss of generality in this { it is equivalent to replacing Si by the discounted
security price

~Si =

iY
j=1

 
(j)
0 Si = e�

P
i

1
rjSi:

Our risk neutral probabilities then have the property that E [Sk jSk�1] = Sk�1
for each k = 1; 2; : : : ; n. In fact much more is true. To illustrate, consider the
two-step model in Figure 5.
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Using the notation in Figure 5, we have,

E [S2 ] = p0p00S
00
2 + p0P01S

01
2 + p1p10S

10
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11
2

= p0
�
p00S

00
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01
2

�
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�
p10S

10
2 + p11S

11
2

�
= p0E

�
S2jS1 = S01

�
+ p1E

�
S2jS1 = S11

�
= E [E [S2jS1]]

= E [S1] = S0:

More generally, if j > i,
E [SjjSi] = Si:

The same argument shows that Cn�i = E [Cn jSn�i], where the expectation is with
respect to the probabilities on paths de�ned above.

The sequence of (discounted) prices, fSig
n
i=0, is a stochastic process and the

probability measure that we have de�ned has the property that E [Sj jSi] = Si.
Moreover, in this model, the stock price `has no memory' so that the movement
of the stock over the next tick of the clock is not inuenced by the way in which
the stock reached its current value and so for j > i,

E [SjjS0; S1; : : : Si] = Si:

De�nition 3.1 A sequence of random variables (or stochastic process)X0; X1; : : : ; Xn

with E [jXr j] <1 for each r is a martingale if

E [XjjX0; X1; : : :Xj�1] = Xj�1 r = 1; 2; : : : ; n: (3)

The idea comes from gambling where if Xr denotes the capital of the gambler at
time r then the game is `fair' only if (3) holds.
Warning

The notion of martingale is really that of a P-martingale. It does not make
sense to talk about martingales without specifying a probability measure.

The `information' X0; X1; : : : ; Xr�1 is often written Fr�1. In a continuous
setting we will be a little more careful about the de�nition, but the idea is the
same, Fr�1 is the set of events that are `decidable' by observing the process Xi

up to time r � 1.
We now recast the results of $2 in this language.
Suppose that the possible values that the stocks S1; : : : ; SN can take on at

times 1; 2; 3; : : : are known. We denote by 
 the set of all possible `paths' that
the stock price vector can follow in RN

+ . (We are moving away from the binary
model now, but the same argument that allows us to pass from the single period
binary model to the multi-period binary model allows us to move from the single
period model of Theorems 2.5{2.7 to this multiperiod setting.)

Theorem 2.5 tells us that the absence of arbitrage is equivalent to the existence
of a probability measure, Q , on 
 that assigns strictly positive mass to every ! 2 

and such that

Sr�1 =  
(r)
0 EQ [SrjSr�1];

where Si is the vector of stock prices at time r.



If, as above, we consider the discounted stock prices, then

EQ [ ~Srj ~S1; : : : ; ~Sr�1] = ~Sr�1:

In other words, the discounted stock price vector is a Q -martingale.

De�nition 3.2 Two probability measures P and Q on a space 
 are said to be
equivalent if for events A � 


Q(A) = 0 if and only if P(A) = 0:

Suppose then that we have a market model in which the stock price vector can
follow one of a �nite number of paths 
 through Rn

+ . We may even have our own
belief as to how the price will evolve, encoded in a probability measure, P, on 
.

Theorems 2.5 and 2.7 combine to say

Theorem 3.3 There is no arbitrage if and only if there is an equivalent martin-
gale measure Q . That is, there is a measure, Q , equivalent to P, such that the

discounted price process is a Q -martingale.
In that case, the market price of an attainable claim C (to be delivered at time

n) at time zero is unique and is given by

EQ [ 0C];

where  o =
Qn

1  
(i)
0 is the discount factor over n periods.

This fundamental theorem will have essentially the same statement in the conti-
nous setting.

3.2 The Cox Ross Rubinstein model

De�nition 3.4 The Cox Ross Rubinstein (CRR) model is the name given to the

special case of the multiperiod binary model in which in each time interval the
stock price moves from its current value, S, to one of Su, Sd, where u and d are
�xed constants with d < er�T < u.

Notice that in this case the tree recombines. This is often refered to as the
binomial model. At time k, there are k possible values that the price can take
and

P[Sk = S0u
jdk�j] =

�
k
j

�
pj(1� p)k�j:

The recombining of the tree makes this highly numerically e�cient.
The values of u and d must be calibrated with the market. The usual assump-

tion is that u = 1=d and p can then be determined by risk neutrality as

p =
er�t � d

u� d
:

Finally, u is �tted using the variance of the stock price.


