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ScaLE is an interesting Monte Carlo scheme preserving exactness under sub-
sampling and is thus relevant to large data applications. Piecewise determin-
istic Markov chain Monte Carlo (MCMC) schemes also demonstrate similar
features [BFR19, BCVD18]; however, these continuous-time algorithms can be
difficult to understand and implement. A discrete-time alternative is the Scal-
able Metropolis-Hastings (SMH) algorithm [CVBC+19], a subsampling MCMC
method whose invariant distribution is also the true posterior.

Like ScaLE, SMH makes use of control variate ideas, leveraging a Taylor
series approximation to the log-posterior density at the MLE. Like Metropolis-
Hastings (MH), SMH relies on a proposal q but uses the following acceptance
probability
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π̂(x)q(x′|x)

} n∏
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min
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′)/f̂i(x
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fi(x)/f̂i(x)

}
,

where fi(x) is the likelihood from observation i, f̂i(x) its control variate ap-

proximation and π̂(x) = f0(x)
∏N

i=1 f̂i(x).
Naively simulating an event of probability α(x,x′) admits a O(n) cost. How-

ever, as with ScaLE, this can be improved if the derivatives of the per-datum
terms are uniformly bounded and if the posterior concentrates. When using a
first-order Taylor approximation for π̂, SMH accesses O(1) data at each iteration
and O(n−1/2) when using a second-order approximation [CVBC+19].

We tested SMH on the airline and heterogeneous datasets, using a second-
order Taylor approximation centered at the MLE given in the text; see Table
1. We used independent proposals drawn from the Gaussian distribution corre-
sponding to this Taylor approximation of the log-posterior.

For airline, SMH demonstrates a notable improvement over MH, visiting
only 0.34 data on average per iteration. As for heterogeneous, it was neces-
sary to use more finely-grained bounds than those described in [CVBC+19] by
considering each of the d3 partial derivatives; see [Van20] for details. Our im-
plementation generated ∼ 3.0× 105 effective samples per second and it visited
only 0.015 data per iteration on average.

Although SMH outperforms significantly MH on these datasets, Monte Carlo
methods are here of limited interest. Over 99.9% of the proposals sampled from
our independent normal proposal distribution were accepted, suggesting that
the posterior distribution is very close to its Laplace approximation in both
cases.

Despite their current limitations, it is our hope that subsampling Monte
Carlo methods such as ScaLE and SMH might form a basis for new algorithms
to perform Bayesian inference in more challenging settings, such as random
effect models.
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Dataset Size (n) Algorithm Data/sample ESS/s

Airline 1.21× 108 MH 1.21× 108 0.28
SMH 0.34 4.7× 104

Heterogeneous 107 MH 107 3.3
SMH 0.015 3.0× 105

Table 1: Performance of MH and SMH in terms of average number of data
points accessed per iteration (Data/sample) and Effective Sample Size per sec-
ond (ESS/s).

References
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