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Abstract An efficient on-line changepoint detection algo-
rithm for an important class of Bayesian product partition
models has been recently proposed by Fearnhead and Liu
(in J. R. Stat. Soc. B 69, 589–605, 2007). However a severe
limitation of this algorithm is that it requires the knowledge
of the static parameters of the model to infer the number of
changepoints and their locations. We propose here an exten-
sion of this algorithm which allows us to estimate jointly
on-line these static parameters using a recursive maximum
likelihood estimation strategy. This particle filter type algo-
rithm has a computational complexity which scales linearly
both in the number of data and the number of particles. We
demonstrate our methodology on a synthetic and two real-
world datasets from RNA transcript analysis. On simulated
data, it is shown that our approach outperforms standard
techniques used in this context and hence has the potential
to detect novel RNA transcripts.
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1 Introduction

Many time series, such as DNA sequences, stock prices or
electricity load, exhibit temporal heterogeneity (Carlin et al.
1992; Fearnhead 2006; Johnson et al. 2003). In this context,
a popular approach consists of segmenting the sequence
of observations z1, z2, . . . , zT by choosing a sequence of
changepoint locations 0 < τ1 < τ2 < · · · < τm < T such that
the observations are homogeneous within segments and het-
erogeneous across segments. We focus here on a Bayesian
product partition changepoint model (Barry and Hartigan
1992) which assigns a joint prior distribution over the num-
ber and locations of change-points. We further assume that
the observations across segments are statistically indepen-
dent.

When the parameters of the changepoint model are
known, exact inference about the number of changepoints
and their locations can be performed using an algorithm of
complexity T 2 (Fearnhead 2006). This is far too computa-
tionally expensive when analyzing real-world data sets with
tens or hundreds of thousands observations as discussed in
this paper. To reduce this computational complexity, a par-
ticle filtering algorithm for product partition models was
proposed by Fearnhead and Liu (2007). It admits a compu-
tational complexity linear both in the number of data and the
number of particles. We propose here an extension of this
algorithm to infer jointly online the model parameters us-
ing a recursive maximum likelihood technique which builds
upon the recent work by Poyiadjis et al. (2011). A stan-
dard Bayesian alternative would consist of assigning a prior
to these parameters and to sample from the joint posterior
distribution of the changepoints and the parameters using
Markov chain Monte Carlo (MCMC) methods; see for ex-
ample Stephens (1994), Chib (1998), De Iorio et al. (2005).
However, MCMC techniques are far too computationally
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expensive for huge data sets. Moreover standard MCMC
strategies in this context update the changepoints and model
parameters independently. This can lead to slow mixing
Markov chains due to the strong correlations between these
parameters.

We apply our algorithm to the detection of novel RNA
transcripts from tiling arrays—an important problem that
has received little attention from the statistics community.
A common approach to address this problem is to com-
bine probe measurements via a sliding window (SW) statis-
tic computed over neighboring probes, and then to apply a
thresholding on the resulting statistics to call transcript re-
gions (Kapranov et al. 2002; Bertone et al. 2004; Cheng et
al. 2005). A more sophisticated method has been proposed
recently which models the underlying signal as piecewise
constant (Huber et al. 2006) but it fixes the number of seg-
ments in advance and requires specifying a threshold in or-
der to classify segments as transcript or non-transcript. The
model proposed here addresses these pitfalls, builds on pre-
vious approaches used in gene expression analysis (Newton
et al. 2001; Gottardo et al. 2003, 2006) and uses a mixture
of normal and skew t distributions to model non-Gaussianity
and classify segments as transcript or non-transcript, hence
no thresholding is necessary.

The rest of this paper is organized as follows. In Sects. 2
and 3, we present our changepoint model and parameter es-
timation procedure, respectively. In Sect. 4, we apply our
method to simulated and real-world data and compare it to
the changepoint model of Huber et al. (2006) and the SW
approach used by Cheng et al. (2005). Finally, in Sect. 5 we
discuss possible extensions of our work. All the calculations
are detailed in Appendices.

2 Statistical model

Assume we have a (possibly multi- dimensional) sequence
of observations {zt , t = 1, . . . , T } observed at consecutive
points in time. We will denote by zt1:t2 = {zt1, . . . , zt2} the
vector of observations from t1 to t2. Given a sequence
of changepoint locations 0 < τ1 < τ2 < · · · < τm < T ,
the sequence of observations z1, . . . , zT can be partitioned
into m + 1 contiguous segments z1:τ1 , zτ1+1:τ2 , . . . , zτm:T .
A Bayesian changepoint model is defined by a joint distri-
bution over the number of changepoints, their locations and
the data. We consider a specific changepoint model which is
such that the changepoint positions are modeled as a Markov
process

Pr(“next changepoint at t2”|“changepoint at t1”) = h(t2 − t1)

(1)

i.e. the probability of a changepoint only depends on the in-
dex distance to the previous one. This model is a special

case of a product partition model for changepoints (Barry
and Hartigan 1992; Fearnhead and Liu 2007). The function
h can be any distribution with support the set of positive in-
tegers. Finally, we denote by H , H(l) = ∑l

i=1 h(i) the cu-
mulative distribution associated with h, which will be used
in Sect. 3 when we describe our estimation procedure.

Additionally, we make the following conditional inde-
pendence assumption (Barry and Hartigan 1992; Fearnhead
and Liu 2007): “given the position of a changepoint, the
data before that changepoint is independent of the data af-
ter the changepoint”. Finally for a segment of observations
zτi+1:τi+1 , i = 0, . . . ,m, we assume that there are M possi-
ble models. To each model r ∈ {1, . . . ,M} of prior probabil-
ity p(r) is associated a set of unknown parameters �r with
some prior distribution πr which is such that for i ≤ j

P (i, j |r) :=
∫

p(zi:j |r,�r)πr(�r)d�r (2)

and the marginal likelihood

P(i, j) =
M∑

r=1

P(i, j |r)p (r) (3)

can be computed analytically. This is typically possible
when conjugate priors are used as in Fearnhead and Liu
(2007), Fearnhead (2006), Chib (1998). If this marginal like-
lihood is not analytically tractable, Gaussian quadrature or
Laplace approximation can be used to approximate (2); see
e.g. Kass and Raftery (1995).

3 Changepoint detection and parameter estimation

3.1 Exact inference

3.1.1 Filtering recursions

We can rewrite this changepoint model as a state-space
model (Chopin 2007; Fearnhead and Liu 2007). Let Ct de-
note the time of the most recent changepoint prior to t (with
Ct = 0 if there has been no changepoint before time t). Con-
ditional on Ct−1 = j , either Ct = j , i.e. there is no change-
point at time t , or Ct = t −1 if there is a changepoint. Using
(1), it is easy to establish that

f (Ct = j |Ct−1 = i)

=

⎧
⎪⎨

⎪⎩

1−H(t−i−1)
1−H(t−i−2)

if j = i
H(t−i−1)−H(t−i−2)

1−H(t−i−2)
if j = t − 1

0 otherwise

(4)

and

g(zt |Ct = j, z1:t−1) =
{

P(j,t)
P (j,t−1)

if j < t − 1

P(t − 1, t) if j = t − 1
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where P(·, ·) is given by (3).
The so-called filtering distributions p(Ct |z1:t ) can be

computed recursively in time using the recursions presented
in Fearnhead and Liu (2007)

p(Ct |z1:t ) = ξ (Ct , z1:t )
∑t−1

i=0 ξ (Ct = i, z1:t )

where

ξ(Ct , z1:t ) := g(zt |Ct , z1:t−1)p(Ct |z1:t−1)

satisfies the following recursion

ξ(Ct , z1:t )

=

⎧
⎪⎪⎨

⎪⎪⎩

g(zt |Ct = j, z1:t−1)f (Ct = j |Ct−1 = j)

×p(Ct−1 = j |z1:t−1) if j < t − 1,

g(zt |Ct = j, z1:t−1)
∑t−2

i=0 f (Ct = j |Ct−1 = i)

×p(Ct−1 = i|z1:t−1) if j = t − 1.

(5)

Once the filtering distributions p(Ct |z1:t ) are stored for
all t = 1, . . . , T , we can simulate from the joint posterior
distribution of the changepoints at time T (Chopin 2007;
Fearnhead and Liu 2007), as follows.1

Simulation of changepoints from the joint posterior
distribution

• Simulate τ1 from p(CT |z1:T ). Set k = 1.
• While τk > 0

• Sample τk+1 proportionally to f (Cτk+1 =
τk|Cτk

)p(Cτk
|z1:τk

) and set k = k + 1.

3.1.2 MAP recursions

An on-line Viterbi algorithm can be designed for calcu-
lating the maximum a posteriori (MAP) estimate of the
changepoints and model labels (Fearnhead and Liu 2007).
Let Mj be the event that given a changepoint at time j ,
the MAP estimate of changepoints and model has occurred
prior to time j . Then for t = 1, . . . , n, j = 0, . . . , t − 1 and
r = 1, . . . ,M , we define

Pt(j, r) = Pr(Ct = j,model r ,Mj , z1:t ),

P MAP
t = Pr(Changepoint at t, Mt , z1:t ).

At time t , the MAP estimate ĉt of Ct and the current model
are given by the values of j and r which maximise Pt (j, r).

1For notational convenience, we use a reversed ordering of the change-
points compared to the definition in Sect. 1.

The following recursions can be established

Pt(j, r) = (1 − H(t − j − 1))P (j, t | r)p(r)P MAP
j ,

P MAP
t = max

j,r

(
Pt (j, r)h(t − j)

1 − H(t − j − 1)

) (6)

where P(j, t |r) is the marginal distribution of the observa-
tions zj+1:t assumed to be in the same segment following
the model r .

3.1.3 Recursive parameter estimation

The previous recursions assume that the transition prob-
ability f (Ct |Ct−1) and the conditional predictive density
g(zt |Ct , z1:t−1) are known. However they usually depend
on some parameters θ in R

nθ which need to be estimated
from the data. We propose here a recursive maximum like-
lihood approach. We introduce a subscript θ to empha-
size the dependence on parameters θ of the filtering den-
sity pθ (Ct |z1:t ), the transition probability fθ (Ct |Ct−1),
the conditional predictive density gθ (zt |Ct , z1:t−1) and
ξθ (Ct , z1:t ) = gθ (zt |Ct , z1:t−1)pθ (Ct |z1:t−1). These quan-
tities are assumed to be continuously differentiable with re-
spect to θ .

The log-likelihood of the data z1:t is given by

lt (θ) = logpθ (z1) +
t∑

k=2

logpθ (zk|z1:k−1) (7)

where

pθ (zt |z1:t−1) =
t−1∑

j=0

ξθ (Ct = j, z1:t ). (8)

As t → ∞, we have

lim
t→∞

lt (θ)

t
= l(θ).

This follows from the fact that (1), (21) and (22) define
an (asymptotically) stationary process with ‘good’ mixing
properties. Moreover, l(θ) admits the true parameter θ∗ as a
global maximum. To find a local maximum of l(θ), we use a
stochastic approximation algorithm (Benveniste et al. 1990)

θ t = θ t−1 + γt∇ logpθ1:t−1(zt |z1:t−1) (9)

where the stepsize sequence {γt } is a positive non-increasing
sequence such that

∑
γt = ∞ and

∑
γ 2
t < ∞ whereas

∇ logpθ1:t−1(zt |z1:t−1) is the gradient of the predictive log-
likelihood w.r.t. θ . The subscript θ1:t−1 indicates that this
gradient is computed using the filtering recursions updated
with θ = θk at time k +1. Under regularity conditions (Ben-
veniste et al. 1990), it can be shown that θ t will converge to a
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local maximum of l(θ). To improve the convergence rate of
this algorithm, we can also use a Newton or quasi-Newton
stochastic gradient algorithm by computing the Hessian of
the log-likelihood; see Poyiadjis et al. (2011) for an applica-
tion of this approach in a general state-space model context.

To compute the gradient term appearing in (9), we note
that

∇ logpθ (zt |z1:t−1) = ∇pθ (zt |z1:t−1)

pθ (zt |z1:t−1)

=
∑t−1

j=0 ∇ξθ (Ct = j, z1:t )
∑t−1

j=0 ξθ (Ct = j, z1:t )
. (10)

By taking the derivative of pθ (Ct |z1:t ) with respect to θ , we
obtain

∇pθ (Ct |z1:t ) = ∇ξθ (Ct , z1:t )
∑t−1

i=0 ξθ (Ct = i, z1:t )

− pθ (Ct |z1:t )
∑t−1

i=0 ∇ξθ (Ct = i, z1:t )
∑t−1

i=0 ξθ (Ct = i, z1:t )
.

(11)

The term ∇ξθ (Ct , z1:t ) is obtained by taking the derivative
of (5)

∇ξθ (Ct = j, z1:t )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gθ (zt |Ct = j, z1:t−1)fθ (Ct = j |Ct−1 = j)

×pθ (Ct−1 = j |z1:t−1)π
(j,j)
t if j < t − 1

gθ (zt |Ct = j, z1:t−1)

×∑t−2
i=0 fθ (Ct = j |Ct−1 = i)

×pθ (Ct−1 = i|z1:t−1)π
(i,j)
t if j = t − 1

(12)

where

π
(i,j)
t := ∇ loggθ (zt |Ct = j, z1:t−1)

+ ∇ logfθ (Ct = j |Ct−1 = i)

+ ∇ logpθ (Ct−1 = i|z1:t−1).

3.2 Approximate inference

The computational cost of the recursion for computing
pθ (Ct |z1:t ) and ∇ logpθ (zt |z1:t−1) at each time t is propor-
tional to t . This procedure is thus not appropriate for large
datasets. We propose a deterministic approximation scheme
to numerically approximate these quantities. Our approx-
imation of pθ (Ct |z1:t ) is inspired by the work of Fearn-
head and Liu (2007) and relies on the following idea. At
time t , the exact algorithm stores the set of probabilities
pθ (Ct = j |z1:t ) for j = 0,1, . . . , t − 1. Given many of these
probabilities are negligible, we can reasonably approximate
the filtering distribution by a fewer set of Nt support points

c
(1)
t , . . . , c

(Nt )
t , called particles, with associated probability

mass w
(1)
t , . . . ,w

(Nt )
t , called weights. To limit the number of

particles Nt at time t , we adopt a simple adaptive determin-
istic selection scheme where all the particles whose weights
are below a given threshold ε are discarded; see below. In
simulations, we have found that this deterministic selection
step was performing a little bit better in terms of average
mean square error than the random stratified optimal resam-
pling proposed in Fearnhead and Liu (2007). However, the
algorithm in Fearnhead and Liu (2007) could also be used.

At time t − 1, suppose that ξθ (Ct , z1:t ) and
pθ (Ct−1|z1:t−1) are approximated through

ξ̂θ (Ct−1, z1:t−1) =
Nt−1∑

i=1

w̃
(i)
t−1δc

(i)
t−1

(Ct−1)

p̂θ (Ct−1|z1:t−1) =
Nt−1∑

i=1

w
(i)
t−1δc

(i)
t−1

(Ct−1)

(13)

where δ
c
(i)
t−1

(Ct−1) = 1 if Ct−1 = c
(i)
t−1 and 0 otherwise.

That is w̃
(i)
t−1 resp. w

(i)
t−1 is an approximation of ξθ (Ct−1 =

c
(i)
t−1, z1:t−1) resp. pθ (Ct−1 = c

(i)
t−1|z1:t−1) and w

(i)
t−1 ∝

w̃
(i)
t−1 with

∑Nt−1
i=1 w

(i)
t−1 = 1. We propose to approximate

∇pθ (Ct−1|z1:t−1) through

∇̂pθ (Ct−1|z1:t−1) =
Nt−1∑

i=1

w
(i)
t−1β

(i)
t−1δc

(i)
t−1

(Ct−1) (14)

where
∑Nt−1

i=1 w
(i)
t−1β

(i)
t−1 = 0; that is we are using the same

particles {c(i)
t−1}. Here w

(i)
t−1β

(i)
t−1 is an approximation of

∇pθ (Ct−1 = c
(i)
t−1|z1:t−1) so β

(i)
t−1 can be thought of as an

approximation of ∇ logpθ (Ct−1 = c
(i)
t−1|z1:t−1).

At time t , let c̃
(i)
t = c

(i)
t−1 and c̃

(Nt−1+1)
t = t − 1 for each

particle i = 1, . . . ,Nt−1. To compute an approximation of
pθ (Ct−1|z1:t−1), we plug our approximation (14) into (5) to
obtain the unnormalized weights for i = 1, . . . ,Nt−1

w̃
(i)
t = gθ (zt |Ct = c̃

(i)
t , z1:t−1)

× fθ (Ct = c̃
(i)
t |Ct−1 = c̃

(i)
t )w

(i)
t−1, (15)

and

w̃
(Nt−1+1)
t = gθ (zt |Ct = t − 1, z1:t−1)

×
Nt−1∑

i=0

fθ (Ct = t − 1|Ct−1 = c̃
(i)
t )w

(i)
t−1. (16)

Similarly, by plugging (14) into (12), we obtain an ap-
proximation α̃

(i)
t of ∇ξθ (Ct = c̃

(i)
t , z1:t ) which satisfies for
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i = 1, . . . ,Nt−1

α̃
(i)
t = gθ (zt |Ct = c̃

(i)
t , z1:t−1)fθ (Ct = c̃

(i)
t |Ct−1 = c̃

(i)
t )w

(i)
t−1

× [∇ loggθ (zt |Ct = c̃
(i)
t , z1:t−1)

+ ∇ logfθ (Ct = c̃
(i)
t |Ct−1 = c̃

(i)
t ) + β

(i)
t−1

]
, (17)

and

α̃
(Nt−1+1)
t = gθ (zt |Ct = t − 1, z1:t−1)

×
Nt−1∑

i=0

fθ (Ct = t − 1|Ct−1 = c̃
(i)
t )w

(i)
t−1

× [∇ loggθ (zt |Ct = t − 1, z1:t−1)

+ ∇ logfθ (Ct = t − 1|Ct−1 = c̃
(i)
t ) + β

(i)
t−1

]
.

(18)

Using (10), we obtain

∇̂ logpθ (zt |z1:t−1) =
∑Nt−1+1

i=1 α̃
(i)
t

∑Nt−1+1
i=1 w̃

(i)
t

. (19)

If we were to iterate this algorithm, the computational com-
plexity would increase without bound with t . We only keep
the particles c̃

(i)
t such that w

(i)
t > ε where w

(i)
t ∝ w̃

(i)
t ,

∑Nt−1+1
i=1 w

(i)
t = 1 and discard the others. We then renor-

malize the weights of the surviving Nt particles and denote
them w

(i)
t . Finally, using (11) we obtain

Particle filter for on-line changepoints and parameter
estimation
At time t = 1

• Set θ0, c
(1)
1 = 0, w

(1)
1 = 1, w

(1)
1 β

(1)
1 = 0 and N1 = 1.

At time t ≥ 2
• For i = 1, . . . ,Nt−1 let c̃

(i)
t = c

(i)
t−1. Set c̃

(Nt−1+1)
t = t − 1.

• For i = 1, . . . ,Nt−1 + 1, compute w̃
(i)
t using (15)–(16)

using θ t−1.
• For i = 1, . . . ,Nt−1 + 1, compute α̃

(i)
t using (17)–(18)

using θ t−1.
• Update the parameter vector using (9) and (19), that is

θ t = θ t−1 + γt

∑Nt−1+1
i=1 α̃

(i)
t

∑Nt−1+1
i=1 w̃

(i)
t

• Adaptive selection step: let Nt be the number of selected
particles and w

(i)
t , c

(i)
t , i = 1, . . . ,Nt be resp. the nor-

malized weights and the associated support points and
ϕ : {1, . . . ,Nt } → {1, . . . ,Nt−1 +1} the injective function
such that w

(i)
t = w̃

(ϕ(i))
t for i = 1, . . . ,Nt .

• For i = 1, . . . ,Nt , compute the weights w
(i)
t β

(i)
t using

(20).

w
(i)
t β

(i)
t = α̃

(ϕ(i))
t

∑Nt

j=1 w̃
(ϕ(j))
t

− w
(i)
t

∑Nt

j=1 α̃
(ϕ(j))
t

∑Nt

j=1 w̃
(ϕ(j))
t

(20)

for i = 1, . . . ,Nt where ϕ : {1, . . . ,Nt } → {1, . . . ,Nt−1 +1}
is the injective function such that w

(i)
t = w

(ϕ(i))
t .

To summarize, the particle filter for joint changepoints
and parameter estimation proceeds as follows.

If the number of particles is fixed to N , the overall
computational complexity of the algorithm is in
O(nθN log(N)T ) for T observations if a deterministic re-
sampling step is used, and O(nθNT ) if an optimal strat-
ified resampling step is used.2 Note that a particle filter
for joint state and parameter estimation relying on recursive
maximum likelihood has also been proposed in Poyiadjis et
al. (2011) for the class of general non-linear non-Gaussian
state-space models. However, the cost of the algorithm in
Poyiadjis et al. (2011) is quadratic in the number of parti-
cles whereas it is linear in our case.

The parameter estimate typically converges before time
T for large T . For smaller datasets, we can run the particle
filter K > 1 times on the dataset, using θ

(j)

1 = θ
(j−1)
T and

γ
(j)

1 = γ
(j−1)
T as the initial values for parameter estimates

and step size for runs j = 2, . . . ,K , so as to obtain con-
vergence. In this case, the algorithm can be interpreted as a
stochastic approximation algorithm maximizing lT (θ) given
by (7). Then the particle filter may be applied to obtain the
MAP and full posterior of changepoints using the final pa-
rameter estimate γ

(K−1)
T .

4 Genome-wide transcriptome analysis

4.1 Description of the dataset

We use two publicly available datasets to demonstrate our
methodology. In the first, David et al. (2006) use high den-
sity Affymetrix tiling arrays with 25-mer oligonucleotides
spaced every 4 bps on average to interrogate both strands
of the full Saccharomyces cerevisiae genome. We will re-
fer to these data as the yeast data. In the second, Cheng et
al. (2005) use tiling arrays to map the sites of transcription
for approximately 30% of the human genome encoded in 10
human chromosomes (6, 7, 13, 14, 19, 20, 21, 21, X, and
Y). Similar to David et al. (2006), Cheng et al. (2005) use
Affymetrix high density tiling arrays with 25-mer oligonu-
cleotides spaced every 5 bps on average. These data, which
we will refer to as the human data, also contain experimen-
tally verified transcripts which will allow us to validate our
methodology.

2As N is typically below 100, the computational time used for resam-
pling is negligible in our experiments.
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Similar to oligonucleotide gene expression arrays (Lock-
hart et al. 1996), Affymetrix tiling arrays query each se-
quence of interest with a perfect match (PM) and a mismatch
(MM) probe, where the MM probe is complementary to the
sequence of interest except at the central base, which is re-
placed with its complementary base. The difference is that
the probes used on tiling arrays do not necessarily belong
to genes, which allows for an unbiased mapping of RNA
transcripts. Following the idea that MM intensities are poor
measures of non-specific hybridization (Irizarry et al. 2003),
we only used the PM intensities. In the case of the yeast data,
the data were normalized using the procedure of David et al.
(2006) and described in Huber et al. (2006), which is part of
the tilingArray package available from Bioconductor
(Gentleman et al. 2004). In the case of the human data, the
data were normalized by quantile normalization (Bolstad et
al. 2003), as in Cheng et al. (2005). After normalization, the
data take the form {ytr : t = 1, . . . , T ; r = 1, . . . ,R}, where
ytr is the normalized intensity of probe (also called time in
the following) t from replicate r . Here, we assume that the
probes are ordered by genomic positions, where we denote
by {xt : t = 1, . . . , T } the corresponding positions arranged
in increasing order, that is xt < xt ′ for t < t ′. Finally, we
will summarize each probe measurement by the mean of its
normalized intensities across replicates, and we will denote
the resulting summaries by {zt : t = 1, . . . , T }. Such sum-
maries are often used in microarray studies to facilitate mod-
eling, reduce the computational burden, and avoid across-
array normalization issues; see for example Efron (2004)
and Do et al. (2005).

4.2 Changepoint model

We use a changepoint model (1) where h is chosen to be
a negative binomial distribution with parameters ρ and d ,
such that

h(x) = Negbin(x − u;ρ,d)

=
{

�(d+x−u)
�(x−u+1)�(d)

ρd(1 − ρ)x−u if x ≥ u

0 otherwise.

Here u controls the smallest distance between two change-
points, d controls the shape of the distribution, which has
a mode greater than u for d > 1, and ρ controls the aver-
age length of the segments. This distribution generalizes the
geometric distribution (implicitly assumed by HMMs) and
was shown to give a better fit for changepoint data on the
two real data sets. In these applications we will fix u to 15,
corresponding to a minimum segment size of approximately
100 bps based on our biological prior knowledge, and d to 2,
allowing for a positive mode. The parameter ρ is estimated
from the data.

4.3 Marginal likelihood

We assume that each segment may be either transcribed or
non-transcribed. Let us denote by λ the probability that a
segment is transcribed and ri ∈ {0,1} the associated latent
variable indicating if segment i is transcribed (ri = 1) or not
(ri = 0). It follows that ri ∼ Ber(λ), that is Bernoulli with
parameter λ. If ri = 1 (transcript), then the data zτi+1:τi+1 ,
are assumed to be distributed from a normal/normal-inverse
gamma compound distribution, as follows,

(zt |μi,σ
2
i , ri = 1) ∼ N (μi, σ

2
i ) for t = τi + 1, . . . τi+1

(μi, σ
2
i |ri = 1) ∼ N iG(m1, s1, ν1, γ1)

(21)

where N iG(m1, s1, ν1, γ1) is the normal-inverse gamma
distribution, defined in Appendix A, with parameters m1,
s1, ν1 and γ1 and N (μi, σ

2
i ) is the normal distribution with

mean μi and variance σ 2
i . If ri = 0 (not a transcript), the data

zτi+1:τi+1 , are assumed to arise from a mixture of a skew
t-distribution and a normal-normal inverse gamma com-
pound distribution. If we introduce another latent variable
qi ∼ Ber(p0), p0 ∈ [0,1], we can write

(zt |ri = 0, qi = 1) ∼ N (μi, σ
2
i ) for t = τi + 1, . . . τi+1

(μi, σ
2
i |ri = 0, qi = 1) ∼ N iG(m0, s0, ν0, γ0)

(22)

and

(zt |ri = 0, qi = 0) ∼ st (ϕ0,ψ0, ζ0, ξ0)

where m0, s0, ν0, γ0, ϕ0 and ψ0 are unknown parame-
ters that will be estimated while ζ0 and ξ0 will be fixed in
advanced. Note that in (22) resp. (21), the unknown pa-
rameters are shared across non-transcript segments, resp.
transcripts, which allows us to borrow strength across seg-
ments when estimating segment boundaries. The skew t-
distribution, st (ϕ0,ψ0, ζ0, ξ0), is as defined in Azzalini and
Capitanio (2003) and whose density is given in Appendix A.
The parameters ϕ0, ψ0, ζ0 and ξ0 represent the location,
scale, degrees of freedom, and skewness parameters. In the
example explored in this paper, we will use ζ0 = 4 for
the degrees of freedom parameter to provide for robustness
against outliers, and ξ0 = 10 for the skewness parameter,
which seems to be enough to deal with the skewness ob-
served for non-transcript segments. Even though these pa-
rameters could be estimated, we have chosen to fix them
for simplicity. However, the exact value of these parame-
ters is not crucial; experimentation showed that different
values give similar results. For the non-transcribed seg-
ments, we have found it necessary to introduce a skew t-
distribution to deal with frequent outliers and the skewed
nature of low-intensity observations. We have experimented
with a single normal/normal-inverse gamma compound dis-
tribution for the baseline and the results were not as good
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Fig. 1 Parameter estimates for
the simulated data. The value of
each parameter is shown as a
function of iterations. The true
value for each parameter is
shown with a horizontal line

in terms of goodness of fit and segmentation results (data
not shown). In order to have the same mean value for the
non-transcribed segments, we assume that the mean of the
skew t-distribution is equal to m0, that is we set m0 = ϕ0 +
ψ0ξ0/

√
1 + ξ2

0

√
ζ0/π�((ζ0 − 1)/2)/�(ζ0/2). Note that we

use the same generic variables μi and σ 2
i in (21) and (22) for

ease of notation even though these are different parameters.
In any case, these variables are nuisance parameters which
will be integrated out later on.

The marginal likelihood P(τi, τi+1) := p(zτi+1:τi+1)

conditional on two consecutive changepoints τi and τi+1

and the unknown parameters, which are omitted below for
ease of notation, is given in Appendix B.

4.4 Results

4.4.1 Synthetic dataset

In order to evaluate our approach and compare it to Huber’s
method (Huber et al. 2006), we present a simulation study
on synthetic data for which the ground truth is available.. We
have simulated 40,000 observations from our changepoint
model with the following parameters p0 = 0.4, ψ0 = 0.47,
ζ0 = 4, ξ0 = 10, m0 = −0.8, ϕ0 = −1.27, s0 = 0.3, ν0 = 16,
γ0 = 1.2, m1 = 0.5, s1 = 0.67, ν1 = 16, γ1 = 1.2, λ = 0.35,
ρ = 0.25, α = 10−6, d = 2, u = 15. These values were cho-
sen to be within the range of the estimated parameters on

real data. The parameters θ were first estimated on the whole
dataset using our on-line algorithm. The evolution of the pa-
rameter estimates over time are represented in Fig. 1. The
algorithm manages to correctly estimate this set of param-
eters. Based on the final estimated value, the particle filter
is then run again on the whole dataset. The MAP, poste-
rior of changepoints, and number of particles for a portion
of the data are represented in Fig. 2. The true transcribed
segments are represented by red patches. The number of
particles varies over time adaptively. It increases as long
as there is no changepoint, and decreases when evidence
of a changepoint occurs. Even with a few number of par-
ticles (20 on average), the algorithm manages to estimate
the model parameters (including the segment boundaries)
very well. This shows that our approximation is good even
when the number of particles is low and that an increase
in the number of particles does not imply significant im-
provements in the estimation of the changepoints and pa-
rameters.

We also compared our method with the dynamic pro-
gramming approach used in Huber et al. (2006). We took the
same parameters with p0 varying from 0 (skew-t distribu-
tion for the baseline) to 1 (normal distribution for the base-
line). We have simulated for each value of p0 200 datasets
of size 1,000 and we compared the error on the number of
estimated changepoints, the number of false positive and the
number of false negative for both methods, using MAP es-
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Fig. 2 (top) MAP, (middle)
posterior of changepoints and
(bottom) number of particles for
the simulated dataset. On the top
figure, the true transcribed
segments are represented by red
patches

Fig. 3 Mean absolute error and 90% confidence bounds on the esti-
mated number of changepoints for Huber’s and our method

timates for our method. The results are reported in Figs. 3
and 4. When the baseline data are normally distributed, both
methods perform similarly. As p0 increases, the number of
false positive for Huber’s method increases while it remains
roughly the same for our method. The number of false neg-
ative are equivalent for both methods whatever the value of
p0 is. Note that contrary to Huber’s method, ours is also able
to estimate the model label of each segment.

4.4.2 Yeast dataset

We fitted our changepoint model to the positive strand of
the first chromosome of the yeast data, using u = 15, d = 2,
ζ0 = 4 and ξ0 = 10, as explained earlier.

The parameters θ = {p0,ψ0,m0, s0, ν0, γ0, λ,m1, s1, ν1,

γ1, ρ} were estimated by running the particle filter K = 20
times with ε = 10−6 on the full dataset, hence requiring
4 × 105 iterations. Evolution of each parameter with re-
spect to iterations is shown in Fig. 5. Although we have
used K = 20 passes over the whole dataset in order to show
the convergence, most parameters had converged after only
two passes. In terms of segmentation and classification, the
results obtained using the parameter after 2 passes were
very similar to the results obtained after 20 passes. Note
that, as stated in the previous section, for a larger number
of probes the parameter estimates would typically converge
more quickly as there is more information available. The fi-
nal parameter value θ̂ obtained after 20 passes over the full
dataset, shown in Table 1, is used as the parameter values
and the particle filter is then ran with ε = 10−6 in order to
obtain the segmentation. The MAP estimate of the change-
points for a portion of the whole chromosome is represented
in Fig. 6 (top). The associated number of changepoints for
the whole chromosome is 299. Figure 6 (bottom) also shows
the results using the algorithm of Huber et al. (2006), with
153 segments over chromosome 1. The number 153 was es-
timated using previous biological knowledge as explained in
David et al. (2006). Overall, both segmentations show sim-
ilar results and clearly agree with known coding sequence
(CDS) annotations. This said, the advantage of our method-
ology over Huber’s is obvious when looking at the segmen-
tation results as we get a direct classification of the segments
into transcripts and non-transcripts. Additionally, no thresh-
olding is necessary. Using our method, one can easily see
that some of the detected transcripts (green background)
do not overlap with know annotations. This confirms the
findings of David et al. (2006) that even this well-studied
genome has transcriptional complexity far beyond current
annotations.
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Fig. 4 (a) Mean number of false positive and 90% confidence bounds for Huber’s and our method. (b) Mean number of false negative and 90%
confidence bounds for Huber’s and our method

Fig. 5 Online estimation
convergence for the yeast data.
The value of each parameter is
shown as a function of
iterations. The dot on the
left-hand side of each plot
represents the initial value of the
hyperparameter

Table 1 Summary of parameter
estimates for both the yeast and
human data, using the online
estimation procedure

Parameter p0 ψ0 m0 s0 ν0 γ0 λ m1 s1 ν1 γ1 ρ

Yeast .52 .50 −0.64 .76 16.5 1.17 .51 .55 1.98 11.88 1.35 .05

Human .23 .93 −0.37 .96 10.83 1.84 .63 1.18 .83 6.02 4.32 .21
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Fig. 6 (Color online) Segmentation results for part of chromosome
1 for the yeast data using our algorithm (top) and Huber et al.’s al-
gorithm (bottom). For the top graph, the MAP estimate is displayed
with transcript segments (green background), non-transcript segments
(white background) segments and black segments for the segment in-

tensity levels. For both top and bottom graphs, segments boundaries
are represented with green vertical lines. Transcript annotations are
shown below with red rectangles representing coding sequences and
black segments representing TF binding sites

Note that, using our method, the number of segments
is estimated whereas in Huber’s it has to be fixed in ad-
vance. Our estimated number of segments is significantly
larger than the number used by David et al. (2006), but a
closer look at the segmentation results suggests that such a
larger number is necessary to explain changes in intensity
along the chromosome; see Fig. 7 where we have zoomed
onto two specific regions. For example, the left parts of
Fig. 7(a) (around 6.9 × 104) show a clear jump in the ob-
served intensities, which is detected as a separate transcript
by our method (top) but not Huber’s (bottom). Similar ob-
servations can be made for the left parts of Fig. 7(b) (around
1.14 × 105), where our method detects a putative transcript
not detected by Huber’s. Even though David et al. (2006)
decided to fix the number of segments to 153 using previ-
ous biological knowledge, Huber et al. (2006) also provide
a method for estimating the number of segments based on
AIC or BIC. For the data used here, the estimated number
of segments using AIC and BIC are 307 and 232, respec-
tively, which are closer to our estimate. Finally, Fig. 7(a) also
shows the marginal posterior probabilities of changepoints,
which provide nice measures of uncertainty for the corre-
sponding changepoints. These marginal probabilities are ob-
tained with 1,000 draws distributed from the approximated

joint posterior distribution of the changepoints; see the algo-
rithm in Sect. 3.1.1.

Overall, using the yeast data, we have shown that our
changepoint model is a compelling method for RNA tran-
script segmentation using tiling arrays as it automatically
estimates the number of segments along with their classi-
fication while also estimating important tuning parameters.
We now turn to a more complex human dataset (Cheng et al.
2005).

4.4.3 Human dataset

As with the yeast data, we fitted our changepoint model
to the chromosome 6 of the human data with the same
fixed parameters, namely u = 15, d = 2, ζ0 = 4 and ξ0 =
10. For ease of comparison with Huber’s segmentation al-
gorithm, we have only selected a subset of chromosome
6 which contains 20,000 probes with many known an-
notations and verified transcript regions. For comparison,
we have also ran our algorithm on the whole chromo-
some 6, and the results were very similar. The parameters
θ = {p0,ψ0,m0, s0, ν0, γ0, λ,m1, s1, ν1, γ1, ρ} are first esti-
mated, running the particle filter with ε = 10−6 twenty times
on the full dataset, hence 4 × 105 iterations. Evolution of θ



Stat Comput

Fig. 7 Segmentation results for
two close up regions from the
yeast data. Our MAP
segmentation (top) provides a
better fit to the data by
segmenting a few jumps in the
data not detected as segments by
Huber’s method (bottom). The
posterior probabilities of
changepoints are represented in
the middle plots

with respect to iterations is shown in Fig. 8. Most of the pa-
rameters have converged. The parameters associated to the
skew t-distribution converge slowly due to the small proba-

bility of this mixture component (around 0.09). Using more
iterations for the parameter estimation has shown very little
difference for the changepoint results.
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Fig. 8 Parameter estimates for
the human dataset. The value of
each parameter is shown as a
function of iterations. The dot
on the left-hand side of each
plot represents the initial
parameter estimates

The estimate of the parameter θ obtained after 20 passes
(Table 1), is used as the parameter value, then the particle
filter algorithm is applied with ε = 10−6 in order to obtain
the segmentation. The MAP segmentation estimate of the
changepoints for a portion of the whole chromosome is rep-
resented in Fig. 9 (top). The associated number of change-
points is 824, which is significantly higher than for the yeast
data used previously, even though it contains roughly the
same number of probes. This is not surprising as the human
genome is far more complex than its yeast counterpart as it
contains many exons (Fig. 9). In addition, the experiment of
Cheng et al. (2005) was not strand-specific (hence the pres-
ence of both +/− annotations on Fig. 9) which could lead to
more transcripts being detected. Finally, Cheng et al. (2005)
did not use a control sample to normalize their data as did
David et al. (2006), which could potentially lead to the de-
tection of false transcripts due to sequence specific biases.
Figure 9 (bottom) also shows the results using the algorithm
of Huber et al. (2006), fixing the number of segments to 204
using BIC. Using AIC, the optimal number of segments is
5448, which seems a bit large.

Because of the large number of changepoints, it is hard to
compare our approach with that of Huber et al. (2006) based
on Fig. 9 alone. This said, the advantage of our methodol-
ogy over Huber’s is once again obvious when looking at the
segmentation results as we get a direct classification of seg-
ments into transcripts and non-transcripts. In addition, using

our method, the number of segments is estimated automati-
cally. As with the yeast data, Fig. 9 shows that many of the
detected transcripts (green background) do not overlap with
known annotations. This confirms the findings of Cheng et
al. (2005), where the authors have noted that most of the
detected transcripts were previously unannotated.

The number of segments estimated by our method is
somewhat larger than the number estimated by Huber’s seg-
mentation combined with BIC, but a closer look at some
specific regions suggests that such a number is necessary
to explain changes in intensity along the chromosome; see
Fig. 10 where we have zoomed onto two specific regions.
For example the left parts of Fig. 10(a) (around 7.1715 ×
106) show many jumps in the observed intensities which are
detected as separate transcripts by our method (top) but not
Huber’s (bottom). In fact, Huber’s method fails to properly
segment one validated region (mark as verified transcript).
Figure 10 also shows the regions detected as transcripts by
the sliding window approach of Cheng et al. (2005). In gen-
eral, our method and Huber’s lead to precise estimates of
the transcript boundaries whereas the sliding window ap-
proach tends to smooth out the boundaries, confirming pre-
vious observations made by Huber et al. (2006). In addition,
the sliding window approach requires one to derive a thresh-
old in order to call transcript regions, which can be difficult
without prior knowledge. Cheng et al. (2005) used negative
control measurements to derive the threshold used to de-



Stat Comput

Fig. 9 (Color online) Segmentation results for part of chromosome 6
for the human dataset using our algorithm (top) and Huber et al.’s al-
gorithm (bottom). For the top graph, the MAP estimate is displayed
with transcript segments (green background) and non-transcript seg-
ments (white background), and black segments for the segment inten-

sity levels. For both top and bottom graphs, segment boundaries are
represented with green vertical lines. Transcript annotations are shown
with coding sequences and Exon for both strands. We also show the
transcript regions found by the sliding window method of Cheng et al.
(2005), and the subset of these that were experimentally verified

tect transcripts, but such controls are not always available.
Using our method, we simultaneously estimate the number
of segments along with their classification (transcript/non-
transcript). In particular, our method correctly classifies all
of the verified transcripts. Note that such classification is not
possible with Huber’s method.

4.4.4 Model checking

In order to check model assumptions for both datasets, we
now look at the predictive cumulative distribution Pr(Zt ≤
zt |z1:t−1) evaluated at zt . If the model assumptions are cor-
rect, these values should be uniformly distributed between
0 and 1 and �−1(Pr(Zt ≤ zt |z1:t−1)), where �−1 is the
inverse Gaussian cdf, should be normally distributed. The
histogram of the predictive distribution and the associated
qq-plot are represented in Fig. 11. Although the model is
slightly overconfident, the histogram and qq-plot show that
our model fits the data quite well for the yeast dataset. For
the human dataset, the qq-plot and histogram are not as
good, which is not surprising as the data are more noisy than
the yeast data. Nonetheless, there is no evidence of severe
mis-specification.

5 Discussion

This paper has presented an original algorithm to perform
jointly on-line changepoint detection and parameter esti-
mation. This algorithm has a computational complexity
which is linear in the number of data and does not suf-
fer from degeneracy problems of standard particle meth-
ods for static parameter estimation (Andrieu et al. 2005;
Fearnhead 2002). Let N be the number of particles then the
computational complexity is only in N (optimal stratified re-
sampling) or N logN (deterministic resampling) compared
to N2 for general state-space models (Poyiadjis et al. 2011).

The model relies on the assumption that the marginal
likelihood (4.3) can be computed analytically. This assump-
tion, which leads to very efficient algorithms, is made in sev-
eral other papers on Bayesian analysis of changepoint mod-
els (Fearnhead and Liu 2007; Fearnhead 2006; Xuan and
Murphy 2007) and other Bayesian modeling frameworks
(Gottardo et al. 2003; Colella et al. 2007; Kendziorski et al.
2003) to cite a few.

In a genomic application, we have demonstrated that our
approach provides a powerful framework for detecting RNA
transcripts from tiling array experiments. In this context, it
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Fig. 10 Segmentation results
for two close-up regions from
the human data. Our MAP
segmentation (top) provides a
better fit to the data and properly
detect a verified transcript not
detected by Huber’s method
(bottom)

presents several advantages over current approaches. It can
automatically detect the number of transcripts and classify
them as transcribed/not-transcribed. Using two experiments

on Affymetrix tiling arrays, we have shown that our al-
gorithm can provide powerful detection of RNA transcript
compared to a sliding window approach or a simple seg-
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Fig. 11 Histogram of Pr(Zt ≤ zt |z1:t−1) and qq-plot for the Yeast (a–b) and Human (c–d) datasets

mentation algorithm. This is particularly true of the human
dataset were we have detected all of the verified transcripts.
In addition, we have performed a simulation study which
showed that our estimation procedure provides good esti-
mates of the unknown parameters, including the unknown
changepoints.

It is possible to propose various straightforward exten-
sions of the model and associated algorithm. Although our
applications deal with univariate time series, it can be used
directly for multivariate time series; see Xuan and Murphy
(2007) for some interesting examples. Additionally, instead
of focusing on piecewise constant signals, we could for ex-

ample consider switching linear regression or switching au-
toregressive models (Fearnhead 2005). This could be useful
in a biological context. Here we have assumed that the bi-
ological process of transcription can be described by piece-
wise constant expression levels as in Huber et al. (2006) and
David et al. (2006). In reality, the actual biological process
could lead to more complex hybridization profiles than the
piecewise constant shape assumed here.
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Appendix A: Distributions

The probability distribution of the skew t-distribution with
parameters ϕ0, ψ0, ζ0 and ξ0 is given by

2

ψ0
t

(
x − ϕ0

ψ0
, ζ0

)

T

(

ξ0

(
x − ϕ0

ψ0

)

×
√
√
√
√
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(

x−ϕ0
ψ0

)2 + ζ0

, ζ0 + 1

)

(23)

where t and T are the standard centered student t density
and cumulative density function, respectively. The param-
eters ϕ0, ψ0, ζ0 and ξ0 represent the location, scale, de-
grees of freedom and skewness parameters. The normal in-
verse gamma distribution (μ,σ 2) ∼ N iG(m1, s1, ν1, γ1) is
defined by

(μi |σ 2
i ) ∼ N (m1, s

2
1σ 2

i ), σ 2
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(
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2
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2

)

and the resulting joint pdf is given by
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Appendix B: Marginal likelihoods

B.1 Genome-wide transcriptome analysis

Conditioning on two consecutive changepoints τi and τi+1

and the unknown parameters, which are omitted below for
ease of notation, the marginal likelihood is given by

P(τi, τi+1) := p(zτi+1:τi+1) (24)

= (1 − λ)p(zτi+1:τi+1 |ri = 0)

+ λp(zτi+1:τi+1 |ri = 1) (25)

B.1.1 Transcribed segments

The marginal likelihood p(zτi+1:τi+1 |ri = 1) is

p(zτi+1:τi+1 |ri = 1)

=
∫

p(zτi+1:τi+1 |ri = 1,μi, σ
2
i )p(μi, σ

2
i )dμidσi

= π−n/2(1 + ns2
1)−1/2

×
(

s2 + n(m − m1)
2

1 + ns2
1

+ γ1

)−(n+ν1)/2

× γ
ν1/2
1

�((n + ν1)/2)

�(ν1/2)

where m = 1
n

∑τi+1
k=τi+1 zk , s2 = ∑τi+1

k=τi+1(zk − m)2 and n =
τi+1 − τi .

B.1.2 Non-transcribed segments

The marginal likelihood p(zτi+1:τi+1 |ri = 0) is

p(zτi+1:τi+1 |ri = 0) = (1 − p0)p(zτi+1:τi+1 |ri = 0, qi = 0)

+ p0p(zτi+1:τi+1 |ri = 0, qi = 1)

where

p(zτi+1:τi+1 |ri = 0, qi = 0)

=
τi+1∏

k=τi+1

st (zk;ϕ0,ψ0, ζ0, ξ0)

p(zτi+1:τi+1 |ri = 0, qi = 1)

= π−n/2(1 + ns2
0)−1/2

×
(

s2 + n(m − m0)
2

1 + ns2
0

+ γ0

)−(n+ν0)/2

× γ
ν0/2
0

�((n + ν0)/2)

�(ν0/2)

where again m = 1
n

∑τi+1
k=τi+1 zk , s2 = ∑τi+1

k=τi+1(zk − m)2

and n = τi+1 − τi .
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