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Abstract

The Bradley-Terry model is a popular approach to describe probabilities of the

possible outcomes when elements of a set are repeatedly compared with one another

in pairs. It has found many applications including animal behaviour, chess ranking

and multiclass classification. Numerous extensions of the basic model have also been

proposed in the literature including models with ties, multiple comparisons, group

comparisons and random graphs. From a computational point of view, Hunter

(2004) has proposed efficient iterative MM (minorization-maximization) algorithms

to perform maximum likelihood estimation for these generalized Bradley-Terry

models whereas Bayesian inference is typically performed using MCMC (Markov

chain Monte Carlo) algorithms based on tailored Metropolis-Hastings (M-H) pro-

posals. We show here that these MM algorithms can be reinterpreted as special

instances of Expectation-Maximization (EM) algorithms associated to suitable sets
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of latent variables and propose some original extensions. These latent variables

allow us to derive simple Gibbs samplers for Bayesian inference. We demonstrate

experimentally the efficiency of these algorithms on a variety of applications.

Keywords: Bradley–Terry model, data augmentation, EM algorithm, Gibbs

sampler, maximum likelihood estimation, MCMC algorithms, MM algorithm, Plackett–

Luce model.

1 Introduction

Consider a set of K elements. These elements are repeatedly compared with one another

in pairs. For two elements i and j of this set, Bradley and Terry (1952) suggested the

following model

Pr(i beats j) =
λi

λi + λj

(1)

where λl > 0 is a parameter associated to element l ∈ {1, 2, . . . , K} that represents its

skill rating and we denote λ := {λi}Ki=1.

This model has found numerous applications. As mentioned in (Hunter, 2004), as

early as 1976, a published bibliography on paired comparisons includes several hundred

entries (Davidson and Farquhar, 1976). For example, it has been adopted by the World

Chess Federation and the European Go Federation to rank players and it is a standard

approach to build multiclass classifiers based on the output of binary classifiers (Hastie

and Tibshirani, 1998). Various extensions have been proposed to handle home advan-

tage (Agresti, 1990), draws (Rao and Kupper, 1967), multiple (Plackett, 1975; Luce,

1959) and team comparisons (Huang et al., 2006). In particular, the popular extension

to multiple comparisons, named the Plackett-Luce model (Plackett, 1975; Luce, 1959),

defines a prior distribution over permutations and has been used for ranking of multiple

individuals and for choice models (Luce, 1977). The monographs of David (1988) and

Diaconis (1988, Chap. 9) provide detailed discussions on the statistical foundations of

these models.

For the basic Bradley-Terry model (1), it is possible to find the maximum likelihood

(ML) estimate of the skill ratings λ using a simple iterative procedure (Zermelo, 1929;

Hunter, 2004). Lange et al. (2000) established that this procedure is a specific case of

the general class of algorithms referred to as MM algorithms. Generally speaking, MM
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algorithms use surrogate minimizing functions of the log-likelihood to define an iterative

procedure converging to a local maximum. EM algorithms are thus just a special case

of MM algorithms. An excellent survey of the MM approach and its applications can

be found in (Lange et al., 2000). Hunter (2004) further derived MM algorithms for

generalized Bradley-Terry models and established sufficient conditions under which these

algorithms are guaranteed to converge towards the ML estimate.

Recently several authors have proposed to perform Bayesian inference for (generalized)

Bradley-Terry models (Adams, 2005; Gormley and Murphy, 2009; Guiver and Snelson,

2009). The resulting posterior density is typically not tractable and needs to be ap-

proximated. An Expectation-Propagation method is developed in (Guiver and Snelson,

2009); this yields an approximation of the posterior which can be computed quickly and

might be suitable for very large scale applications. However, it relies on a functional

approximation of the posterior and the convergence properties of this algorithm are not

well-understood. M-H algorithms have been proposed in (Adams, 2005; Gormley and

Murphy, 2009). Gormley and Murphy (2009) suggested a carefully designed proposal

distribution, though it can perform poorly in some scenarios as demonstrated in section

7.

Our contribution here is three-fold. First, we show that by introducing suitable sets

of latent variables, the MM algorithms proposed by Hunter (2004) for the basic Bradley-

Terry model and its generalizations to take into account home advantage, ties and multiple

comparisons can be reinterpreted as standard EM algorithms. Hence, in cases where

these EM algorithms converge slowly, all the acceleration techniques developed for EM

algorithms can be directly used. We also believe that this non-trivial reinterpretation is

potentially fruitful for statisticians who usually like thinking in terms of latent variables.

Note that the latent variables introduced here differ from the ones introduced in the

standard Thurstonian interpretation of the Bradley-Terry model (Diaconis, 1988, Chap.

9) and lead to more efficient algorithms as discussed in section 2. Second, using similar

ideas, we propose original EM algorithms for some recent generalizations of the Bradley-

Terry model including group comparisons and random graphs. Third, based on the sets

of latent variables introduced to derive these EM algorithms, we propose Gibbs samplers

to perform Bayesian inference in this important class of models. To the best of our

knowledge, no Gibbs sampler has ever been proposed in this context. These algorithms
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have the great advantage of allowing us to bypass the design of proposal distributions for

M-H updates and we demonstrate experimentally that they perform very well.

The rest of this paper is organized as follows. In section 2, we consider the basic

Bradley-Terry model (1). Based on the introduction of a suitable set of latent variables,

we present an EM reinterpretation of the MM algorithm presented by Hunter (2004) for

Maximum a Posteriori (MAP) parameter estimation and an original data augmentation

algorithm to sample from the posterior. In section 3, various standard extensions of the

Bradley-Terry model allowing for home advantage, ties and competition between teams

are described. EM algorithms and original Gibbs sampling schemes are proposed. The

Plackett-Luce model (Plackett, 1975; Luce, 1959), a very popular generalization of the

Bradley-Terry model for multiple comparisons, is presented in section 4. A discussion on

identifiability issues and estimation of hyperparameters is given in section 5. Algorithms

applicable to further extensions of the Bradley-Terry model to choice models, random

graphs and classification are presented in section 6. In section 7, these algorithms are

applied to the NASCAR 2002 dataset and to chess competition data.

2 Bradley-Terry model

Suppose we have observed a number of pairwise comparisons among K individuals. We

denote by D the associated data. Let also wij denote the number of comparisons where i

beats j, wi =
∑K

j=1,j ̸=i wij the total number of wins of element i and nij = wij + wji the

total number of comparisons between i and j. Based on the Bradley-Terry model (1),

the log-likelihood function is given by

ℓ(λ) =
∑

1≤i̸=j≤K

[wij log λi − wij log(λi + λj)]

=
K∑
i=1

wi log λi −
∑

1≤i<j≤K

nij log(λi + λj)

where the notation 1 ≤ i ̸= j ≤ K is an abuse of notation to denote the set
{
(i, j) ∈ {1, ..., K}2

such that i ̸= j} and 1 ≤ i < j ≤ K stands for
{
(i, j) ∈ {1, ..., K}2 such that i < j

}
.

We seek to introduce latent variables which are such that the resulting complete log-

likelihood admits a simple form. It is well-known that the Bradley-Terry model enjoys
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the following Thurstonian interpretation (Diaconis, 1988, Chap. 9): for each pair 1 ≤

i < j ≤ K and for each associated pair comparison k = 1, . . . , nij, let Yki ∼ E(λi) and

Ykj ∼ E(λj) where E (ς) is the exponential distribution of rate parameter ς then

Pr(Yki < Ykj) =
λi

λi + λj

.

These latent variables can be interpreted as arrival times and the individual with the

lowest arrival time wins. These latent variables would allow us to define EM and data

augmentation algorithms. However, instead of introducing these variables, we introduce

for each pair i, j the latent random variable

Zij =

nij∑
k=1

min(Ykj, Yki).

It follows from the properties of the exponential distribution that min(Yki, Ykj) ∼ E(λi +

λj). Additionally, the sum of identically distributed exponential random variables is

Gamma distributed with shape given by the number of variables and rate equal to the

exponential rate so

Zij ∼ G(nij, λi + λj)

and the resulting complete log-likelihood remains simple. As Zij is a deterministic func-

tion of {Yki, Ykj}k=1,...,nij
, the fraction of missing information is reduced when the latent

variables {Zij} are introduced instead of {Yki, Ykj}. This leads to faster rates of conver-

gence for the resulting EM and data augmentation algorithms (Liu, 2001, Chap. 6).

To summarize, for 1 ≤ i < j ≤ K such that nij > 0, we introduce the latent variables

Z = {Zij} which are such that

p (z|D,λ) =
∏

1≤i<j≤K|nij>0

G(zij;nij, λi + λj) (2)
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The resulting complete log-likelihood is given by

ℓc(λ) =
K∑
i=1

wi log λi −
∑

1≤i<j≤K

nij log(λi + λj)

+
∑

1≤i<j≤K

[nij log(λi + λj)− (λi + λj)zij + (nij − 1) log zij − log Γ(nij)]

=
K∑
i=1

wi log λi −
∑

1≤i<j≤K|nij>0

[(λi + λj)zij − (nij − 1) log zij + log Γ(nij)] (3)

where Γ is the Gamma function. If we assign additionally a prior to λ such that

p (λ) =
K∏
i=1

G(λi; a, b) (4)

as in (Gormley and Murphy, 2009; Guiver and Snelson, 2009) then we can maximize the

resulting log-posterior using the EM algorithm which proceeds as follows at iteration t:

λ(t) = argmax
λ

Q(λ, λ(t−1)), (5)

where

Q(λ, λ∗) = EZ|D,λ∗ [ℓc(λ)] + log p (λ) (6)

≡
K∑
i=1

[(a− 1 + wi) log λi − bλi]−
∑

1≤i<j≤K

(λi + λj)
nij

λ∗
i + λ∗

j

with “≡” meaning “equal up to terms independent of the first argument of the Q func-

tion”. Using (5), it follows that

λ
(t)
i =

a− 1 + wi

b+
∑

j ̸=i
nij

λ
(t−1)
i +λ

(t−1)
j

. (7)

For a = 1 and b = 0, the MAP and ML estimates coincide. In this case (6) is exactly the

minorizing function of the MM algorithm proposed in (Hunter, 2004, Eq. (10)) and thus

the MM algorithm is given by (7).

Based on the same latent variables, we present a simple data augmentation algorithm

for sampling from the posterior distribution p (λ, z|D). By construction, we can update

Z conditional upon λ using (2) and the conditional p (λ|z,D) ∝ p (λ) exp (ℓc(λ)) can be
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expressed easily as the gamma prior is a conjugate prior for the complete data likelihood

exp(ℓc(λ)) ∝
K∏
i=1

λwi
i exp

−

 ∑
i<j|nij>0

zij +
∑

i>j|nij>0

zji

 λi


 .

The data augmentation sampler at iteration t proceeds as follows:

• For 1 ≤ i < j ≤ K s.t. nij > 0, sample

Z
(t)
ij |D,λ(t−1) ∼ G

(
nij, λ

(t−1)
i + λ

(t−1)
j

)
. (8)

• For i = 1, . . . , K, sample

λ
(t)
i |D,Z(t) ∼ G

a+ wi, b+
∑

i<j|nij>0

Z
(t)
ij +

∑
i>j|nij>0

Z
(t)
ji

 . (9)

3 Generalized Bradley-Terry models

3.1 Home advantage

Consider now that the pairwise comparisons are modeled using the Bradley-Terry model

with “home-field advantage” (Agresti, 1990) where

Pr(i beats j) =

 θλi

θλi+λj
if i is home,

λi

λi+θλj
if j is home.

(10)

The parameter θ, θ > 0, measures the strength of the home-field advantage (θ > 1) or

disadvantage (θ < 1). Let aij be the number of times that i is at home and beats j and

bij is the number of times that i is at home and loses to j.

The log-likelihood of the skill ratings λ and θ is given by

ℓ(λ, θ) = c log θ +
K∑
i=1

wi log λi −
∑

1≤i̸=j≤K

nij log(θλi + λj)
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where nij = aij + bij is the number of times i plays at home against j, c =
∑

1≤i̸=j≤K aij

is the total number of home-field wins and wi is the total number of wins of element i.

For 1 ≤ i ̸= j ≤ K such that nij > 0, let us introduce the latent variables Z = {Zij}

which are such that

p (z|D,λ) =
∏

1≤i ̸=j≤K|nij>0

G(zij;nij, θλi + λj). (11)

The associated complete data log-likelihood is given by

ℓc(λ, θ) = c log θ+
K∑
i=1

wi log λi−
∑

1≤i ̸=j≤K|nij>0

[(θλi + λj)zij + log Γ (nij)− (nij − 1) log zij] .

(12)

Using independent priors for λ and θ, i.e. p (λ, θ) = p (λ) p (θ), where p (λ) is defined

as (4) and

θ ∼ G(aθ, bθ), (13)

then we have

Q((λ, θ) , (λ∗, θ∗)) = EZ|D,λ∗,θ∗ [ℓc(λ, θ)] + log p (λ, θ)

≡ (aθ − 1 + c) log θ − bθθ +
K∑
i=1

[(a− 1 + wi) log λi − bλi]

−
∑

1≤i̸=j≤K

nij
θλi + λj

θ∗λ∗
i + λ∗

j

.

We cannot maximize Q analytically w.r.t. (λ, θ). Instead we first maximize

Q(
(
λ, θ(t−1)

)
,
(
λ(t−1), θ(t−1)

)
) w.r.t. λ, then Q((λ(t), θ), (λ(t), θ(t−1))) w.r.t. to θ. The

resulting algorithm is a special instance of the Expectation Conditional Maximization

(ECM) algorithm (Meng and Rubin, 1993). We obtain

λ
(t)
i =

a− 1 + wi

b+
∑

1≤i ̸=j≤K

{
θ(t−1)nij

θ(t−1)λ
(t−1)
i +λ

(t−1)
j

+
nji

θ(t−1)λ
(t−1)
j +λ

(t−1)
i

} for i = 1, . . . , K, (14)

θ(t) =
aθ − 1 + c

bθ +
∑

1≤i̸=j≤K
nij λ

(t)
i

θ(t−1)λ
(t)
i +λ

(t)
j

. (15)

For a = aθ = 1 and b = bθ = 0, i.e. if we use flat priors, this EM algorithm is similar to
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the MM algorithm proposed in (Hunter, 2004, pp. 389).

Using the same latent variables, we can sample from the posterior distribution of

(λ, θ, Z) using the Gibbs sampler which updates iteratively Z, λ and θ as follows at

iteration t:

• For 1 ≤ i ̸= j ≤ K s.t. nij > 0, sample

Z
(t)
ij |D,λ(t−1), θ(t−1) ∼ G

(
nij, θ

(t−1)λ
(t−1)
i + λ

(t−1)
j

)
. (16)

• For i = 1, . . . , K, sample

λ
(t)
i |D, θ(t−1), Z(t) ∼ G

a+ wi, b+ θ(t−1)
∑

j ̸=i|nij>0

Z
(t)
ij +

∑
j ̸=i|nij>0

Z
(t)
ji

 . (17)

• Sample

θ(t)|D,λ(t), Z(t) ∼ G

aθ + c, bθ +
K∑
i=1

λ
(t)
i

∑
j ̸=i|nij>0

Z
(t)
ij

 . (18)

3.2 Model with ties

If we now want to allow for ties in pairwise comparisons, we can use the following model

proposed by Rao and Kupper (1967)

Pr(i beats j) =
λi

λi + θλj

, (19)

Pr(i ties j) =
(θ2 − 1)λiλj

(λi + θλj)(θλi + λj)
(20)

where θ > 1. The log-likelihood function for (λ, θ) is given by

ℓ(λ, θ) =
∑

1≤i̸=j≤K

[
wij log

λi

λi + θλj

+
tij
2
log

(θ2 − 1)λiλj

(θλi + λj)(λi + θλj)

]
=

∑
1≤i̸=j≤K

[
sij log

λi

λi + θλj

+
tij
2
log(θ2 − 1)

]

where tij = tji is the number of ties between i and j and sij = wij + tij.

For 1 ≤ i ̸= j ≤ K such that sij > 0, let us introduce the latent variables Z = {Zij}
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which are such that

p (z|D,λ) =
∏

1≤i̸=j≤K|sij>0

G(zij; sij, λi + θλj)

which yields the following complete log-likelihood

ℓc(λ, θ) = T log(θ2−1)+
∑

1≤i̸=j≤K|sij>0

[sij log λi − (λi + θλj)zij + (sij − 1) log zij − log Γ(sij)]

(21)

where T = 1
2

∑
1≤i̸=j≤K tij is the total number of ties. Using independent priors for λ and

θ, i.e. p (λ, θ) = p (λ) p (θ), where p (λ) is defined as (4) and

θ ∼ G(aθ, bθ), (22)

where θ = θ − 1, then we obtain

Q((λ, θ) , (λ∗, θ∗)) = EZ|D,λ∗,θ∗ [ℓc(λ, θ)] + log p (λ, θ)

≡ T log(θ2 − 1) + (aθ − 1) log(θ − 1)− bθθ

+
∑

1≤i ̸=j≤K

sij

(
log λi −

λi + θλj

λ∗
i + θ∗λ∗

j

)
+

K∑
i=1

[(a− 1) log λi − bλi]

and we recover once again the minorizing function in (Hunter, 2004, pp. 389-390) for

a = 1 and b = 0. Once more we cannot maximize Q((λ, θ) , (λ∗, θ∗)) analytically w.r.t

(λ, θ) but we can use an ECM strategy and successively maximize Q w.r.t. λ conditional

on θ(t−1), then maximize w.r.t. θ conditional on λ(t). This yields the following procedure

• For i = 1, . . . , K, set

λ
(t)
i =

(
a− 1 +

∑
j ̸=i

sij

)[
b+

∑
j ̸=i

sij

λ
(t−1)
i + θ(t−1)λ

(t−1)
j

+
θ(t−1)sji

θ(t−1)λ
(t−1)
i + λ

(t−1)
j

]−1

.

(23)

• Set

θ(t) =
1

2

(
aθ − 1 + 2T

c(t) + bθ

)(
1 +

√
1 + 4 (c(t) + bθ)

aθ − 1 + c(t) + bθ
(aθ − 1 + 2T )2

)
(24)
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where

c(t) =
∑

1≤i̸=j≤K

sijλ
(t)
j

λ
(t)
i + θ(t−1)λ

(t)
j

. (25)

Using the same latent variables, we can sample from the posterior distribution of

(λ, θ, Z) using the following Gibbs sampler which updates iteratively Z, λ and θ as follows

at iteration t:

• For 1 ≤ i ̸= j ≤ K s.t. sij > 0, sample

Z
(t)
ij |D,λ(t−1), θ(t−1) ∼ G

(
sij, λ

(t−1)
i + θ(t−1)λ

(t−1)
j

)
. (26)

• For i = 1, . . . , K, sample

λ
(t)
i |D, θ(t−1), Z(t) ∼ G

a+
∑
j ̸=i

sij, b+
∑

j ̸=i|sij>0

Z
(t)
ij + θ(t−1)

∑
j ̸=i|sij>0

Z
(t)
ji

 . (27)

• Sample

θ(t)|D,λ(t), Z(t) ∼ p(θ|D,λ(t), Z(t)) (28)

where

p(θ|D,Z, λ) ∝ (θ2− 1)T (θ− 1)aθ−1 exp

−
bθ +

∑
1≤i̸=j≤K|sij>0

Zij

 θ

 1θ>1. (29)

It is possible to sample from (29) exactly. By performing a change of variable θ = θ−1,

we obtain

p(θ|D,Z, λ) ∝ (θ
2
+ 2θ)T (θ)aθ−1 exp

−
bθ +

∑
1≤i ̸=j≤K|sij>0

Zij

 θ

 (30)

which is a mixture of Gamma distributions.

3.3 Group comparisons

Consider now that we have n pairwise comparisons between teams. For each comparison

i = 1, . . . , n, let T+
i ⊂ {1, . . . , K} be the winning team and T−

i ⊂ {1, . . . , K} the losing
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team where T+
i ∩T−

i = ∅ and Ti = T+
i ∪T−

i . Recently Huang et al. (2006) have proposed

the following model

Pr(T+
i beats T−

i ) =

∑
j∈T+

i
λj∑

j∈Ti
λj

. (31)

The log-likelihood function for λ is thus given by

ℓ(λ) =
n∑

i=1

log
∑

j∈T+
i

λj

− log

(∑
j∈Ti

λj

) .

For i = 1, ..., n we introduce the latent variables Z = {Zi} and C = {Ci} such that

p (z, c|D,λ) = p (z|D,λ)P (c|D,λ)

with

p (z|D,λ) =
n∏

i=1

E

(
zi;
∑
j∈Ti

λj

)
,

Pr (c|D,λ) =
n∏

i=1

λci∑
j∈T+

i
λj

with ci ∈ T+
i

where E (x;α) is the exponential density of argument x and rate parameter α. It follows

that the complete log-likelihood is given by

ℓc(λ) =
n∑

i=1

[
log λci −

(∑
j∈Ti

λj

)
zi

]
. (32)

The Q function associated to the EM algorithm is given by

Q(λ, λ∗) = EZ,C|D,λ∗ [ℓc(λ)] + log p (λ)

≡
n∑

i=1

∑
j∈T+

i

[
log λj

λ∗
j∑

k∈T+
i
λ∗
k

−
∑

j∈Ti
λj∑

j∈Ti
λ∗
j

]
+

K∑
k=1

[(a− 1) log λk − bλk]

≡
K∑
k=1

[(
a− 1 + λ∗

k

n∑
i=1

αik∑
j∈T+

i
λ∗
j

)
log λk − λk

(
b+

n∑
i=1

γik∑
j∈Ti

λ∗
j

)]

where αik = 1 if k ∈ T+
i and 0 otherwise and γik = 1 if k ∈ Ti and 0 otherwise. It follows
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that the EM update is given by

λ
(t)
k =

a− 1 + λ∗
k

∑n
i=1

αik∑
j∈T+

i
λ
(t−1)
j

b+
∑n

i=1
γik∑

j∈Ti
λ
(t−1)
j

. (33)

Using the same latent variables, we obtain a data augmentation sampler to sample

from p (λ, z, c|D) by iteratively sampling (Z,C) and λ. This proceeds as follows at iter-

ation t:

• For i = 1, ..., n, sample

Z
(t)
i |D,λ(t−1) ∼ E

(∑
j∈Ti

λ
(t−1)
j

)
,

Pr
(
C

(t)
i = k|D,λ(t−1)

)
=

λ
(t−1)
k∑

j∈T+
i

λ
(t−1)
j

, k ∈ T+
i .

(34)

• For k = 1, . . . , K, sample

λ
(t)
k |D,Z(t), C(t) ∼ G

(
a+

n∑
i=1

δ
k,C

(t)
i
, b+

n∑
i=1

γikZ
(t)
i

)
(35)

where δu,v = 1 if u = v and 0 otherwise.

4 Multiple comparisons

We now consider the popular Plackett-Luce model (Luce, 1959; Plackett, 1975) which is an

extension of the Bradley-Terry model to comparisons involving more than two elements.

Assume that pi ≤ K individuals are ranked for comparison i where i = 1, ..., n. We write

ρi = (ρi1, . . . , ρipi) where ρi1 is the first individual, ρi2, the second, etc. The Plackett-Luce

model assumes

Pr(ρi|λ) =
pi∏
j=1

λρij∑pi
k=j λρik

=

pi−1∏
j=1

λρij∑pi
m=j λρim

. (36)

For i = 1, . . . , n and j = 1, . . . , pi − 1, we introduce the following latent variables

Z = {Zij}

p (z|D,λ) =
n∏

i=1

pi−1∏
j=1

E(zij;
pi∑

m=j

λρim) (37)
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which leads to the complete log-likelihood

ℓc(λ) =
n∑

i=1

pi−1∑
j=1

[
log λρij −

(
pi∑

m=j

λρim

)
zij

]
. (38)

The Q function associated to the EM algorithm is given by

Q(λ, λ∗) = EZ|D,λ∗ [ℓc(λ)] + log p (λ)

≡
n∑

i=1

pi−1∑
j=1

[
log λρij −

∑pi
m=j λρim∑pi
m=j λ

∗
ρim

]
+

K∑
k=1

[(a− 1) log λk − bλk]

which is once again equivalent to the majorizing function in (Hunter, 2004, pp. 398) for

a = 1, b = 0. It follows that the EM algorithm is given at iteration t by

λ
(t)
k = (a− 1 + wk)

[
b+

n∑
i=1

(
pi−1∑
j=1

δijk∑p
m=j λ

(t−1)
ρim

)]−1

(39)

where wk is the number of rankings where the kth individual is not in the last ranking

position and δijk is defined as

δijk =

 1 if k ∈ {ρij, . . . , ρipj}

0 otherwise

i.e. δijk is the indicator of the event that individual k receives a rank no better than j in

the ith ranking.

To sample from p (λ, z|D), we can use the following data augmentation sampler. At

iteration t, this proceeds as follows:

• For i = 1, ..., n, for j = 1, . . . , pi − 1, sample

Z
(t)
ij |D,λ(t−1) ∼ E(

pi∑
m=j

λ(t−1)
ρim

). (40)

• For k = 1, . . . , K, sample

λ
(t)
k |D,Z(t) ∼ G(a+ wk, b+

n∑
i=1

pi−1∑
j=1

δijkZ
(t)
ij ). (41)
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Using the same augmentation (37) together with additional latent variables, EM and

Gibbs samplers can be defined for further extensions of these models such as mixtures of

Plackett-Luce models (Gormley and Murphy, 2008).

5 Discussion

5.1 Identifiability

Consider the basic Bradley-Terry model and its extensions to group comparisons and

multiple comparisons. Let us define

Λ =
K∑
i=1

λi and πi =
λi

Λ

and write π := {πi}Ki=1. The likelihood is invariant to a rescaling of the vector λ so the

parameter Λ is not likelihood identifiable and

p(π,Λ|D) = p(π|D)p(Λ).

From (4), it follows that π ∼ D(a, . . . , a) where D is the Dirichlet distribution and

Λ ∼ G(Ka, b), hence

ΛMAP =
aK − 1

b
.

To improve the mixing of the MCMC algorithms in this context, an additional sam-

pling step can be added where we normalize the current parameter estimate λ(t) and then

rescale them randomly using a prior draw for Λ.

• For i = 1, . . . , K, set λ
∗(t)
i =

λ
(t)
i∑K

j=1 λ
(t)
j

Λ(t) where Λ(t) ∼ G(Ka, b).

This step can drastically improve the mixing of the Markov chain. However, if we are

only interested in the normalized values π of λ then this additional step is useless.

As an alternative, it is also possible to consider an EM algorithm for the basic

Bradley-Terry model which does not require the introduction of a scale parameter. As-

sume π ∼ D(a, . . . , a). In order to construct a complete data likelihood for which

the Dirichlet distribution is a conjugate prior, let us introduce latent variables Mij,

15



Cij = (Cij1, . . . , CijMij
) for 1 ≤ i ̸= j ≤ K such that nij > 0

Mij ∼ NB(nij, πi + πj),

Pr (Cijk = l) =
πl∑

n̸=i,j πn

for k = 1, . . .Mij and l ̸= i, j

where NB(r, p) is the negative binomial distribution. The complete log-likelihood is given

by

ℓc(π) =
K∑
i=1

K∑
j=1,j ̸=i

wij log πi +
K∑
i=1

K∑
j=1,j ̸=i

∑
k ̸=i,j

[
log

(
nij +mij − 1

nij − 1

)
+ rijk log πk

]
(42)

where rijk is the number of cijl, l = 1, . . . ,mij that take value k. Omitting the terms

independent of π, the Q function is given by

Q(π, π∗) = EM |D,π∗
[
EC|D,M,π∗ [ℓc(π)]

]
+ log p (π)

≡ EM |D,π∗

[
K∑
i=1

K∑
j=1,j ̸=i

wij log πi +
K∑
i=1

K∑
j=1,j ̸=i

∑
k ̸=i,j

log

(
nij +Mij − 1

nij − 1

)

+Mij
π∗
k∑

l ̸=i,j π
∗
l

log πk

]
+ log p (π)

≡
K∑
i=1

K∑
j=1,j ̸=i

wij log πi +
K∑
i=1

K∑
j=1,j ̸=i

∑
k ̸=i,j

nij
π∗
k

π∗
i + π∗

j

log πk + (a− 1)
K∑
i=1

log πk + C

≡
K∑
k=1

(wk + π∗
k

K∑
i=1,i̸=k

K∑
j=1,j ̸=i,k

nij

π∗
i + π∗

j

log πk) + (a− 1)
K∑
i=1

log πk + C

where C is a term independent of π. It follows that the EM update is given by

π
(t)
k ∝ a− 1 + wk + π

(t−1)
k

K∑
i=1,i ̸=k

K∑
j=1,j ̸=i,k

nij

π
(t−1)
i + π

(t−1)
j

(43)

with
∑K

k=1 π
(t)
k = 1. Although the above EM algorithm does not rely on unidentifiable

scaling parameters, it suffers from a slow convergence rate. When πk takes small values,∑
i̸=k

∑
j ̸=k

nij

πi+πj
is large and it slows down the convergence of the EM algorithm. The

same augmentation can be used to define a Gibbs sampler, but the same slow mixing

issues arise for the Markov chain.

16



5.2 Hyperparameter estimation

The prior (4) is specified by the hyperparameters a and b. However, the inverse scale

parameter b is not likelihood identifiable so there is no point assigning a prior to it.

However it might be interesting to set a prior p(a) on a and estimate it from the data.

Given λ, we have

p (a|λ) ∝ p (a)

(
bK

K∏
i=1

λi

)a

︸ ︷︷ ︸
l1(a)

Γ−K(a)︸ ︷︷ ︸
l2(a)

.

It is possible to sample from this density using auxiliary variables U1, U2 as described in

(Damien et al., 1999). We introduce

p (a, u1, u2|λ) ∝ p (a) I {u1 < l1 (a)} I {u2 < l2 (a)} .

A Gibbs sampler can now be implemented to sample from p (a, u1, u2|λ). We can directly

sample from the full conditionals of U1 and U2

U1|λ ∼ U (0, l1 (a)) , U2|λ ∼ U (0, l2 (a))

where U (α, β) is the uniform distribution on (α, β). The full conditional of a given u1, u2

is given by

p (a|λ, u1, u2) ∝ p (a) IA1∩A2 (a)

where

Ai = {a : li (a) > ui} .

Alternatively we can update a using a M-H random walk on log(a). We can propose

a⋆ = exp(σ2
az)a where Z ∼ N (0, 1) and a⋆ is accepted with probability

min

1,
p(a⋆)

p(a)

(
Γ(a)

Γ(a⋆)

)K
(
bK

K∏
i=1

λi

)a⋆−a
 .
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6 Further extensions

6.1 Random graphs with a given degree sequence

A model closely related to Bradley-Terry has been proposed for undirected random graphs

with K vertices (Holland and Leinhardt, 1981; Chatterjee et al., 2010; Park and Newman,

2004). In this model, graphs with the same degree sequence (d1, . . . , dK), where di is the

degree of node i, are supposed to be equiprobable. It can be formalized by saying that the

degree sequence is a sufficient statistic for a probability distribution on graphs (Chatterjee

et al., 2010).

In this model, we have rij = 1 if there is an edge between i and j for 1 ≤ i < j ≤ K

and it is assumed that

Pr(rij = 1) =
λiλj

1 + λiλj

where λk > 0 for k ∈ {1, . . . , K}. Given the observations D = {rij}1≤i<j≤K , the log-

likelihood function for λ is given by

ℓ(λ) =
∑

1≤i<j≤K

[rij log (λiλj)− log (1 + λiλj)] .

We introduce the following latent variables Z = {Zij}1≤i<j≤K such that

p (z|D,λ) =
∏

1≤i<j≤K

E(zij;λi +
1

λj

).

The complete log-likelihood is given by

ℓc(λ) =
∑

1≤i<j≤K

[
rij log λi − (1− rij) log λj − (λi +

1

λj

)zij

]
(44)

The Q function associated to the EM algorithm is given by

Q(λ, λ∗) = EZ|D,λ∗ [ℓc(λ)] + log p (λ)

≡
K∑
i=1

{
log λi

[
(a− 1) +

∑
j>i

rij −
∑
j<i

(1− rij)

]
− λi

(
b+

∑
j>i

1

λ∗
i +

1
λ∗
j

)
− 1

λi

∑
j<i

1

λ∗
j +

1
λ∗
i

}
.

Solving ∂Q(λ, λ∗)/∂λi = 0 requires solving a quadratic equation. For sake of brevity, we

do not present these details here.

18



Once again, we can define a data augmentation sampler to sample from p (λ, z|D) by

iteratively sampling Z and λ. This proceeds as follows at iteration t:

• For 1 ≤ i < j ≤ K, sample

Z
(t)
ij

∣∣∣D,λ(t−1) ∼ E(λ(t−1)
i +

1

λ
(t−1)
j

). (45)

• For i = 1, ..., K, sample

λ
(t)
i |D,Z(t) ∼ GIG

(
2

(∑
j>i

Z
(t)
ij + b

)
, 2
∑
j<i

Z
(t)
ij , a+

∑
j>i

rij −
∑
j<i

(1− rij)

)
. (46)

Here GIG (α, β, γ) denotes the generalized inverse Gaussian distribution (see e.g.

(Barndorff-Nielsen and Shephard, 2001)) whose density for an argument x is proportional

to

xγ−1 exp {− (αx+ β/x) /2} .

Algorithms to sample exactly from this distribution are available.

6.2 Choice models

Other extensions of the Bradley-Terry model are the choice models introduced by Restle

(1961) and Tversky (1972a,b) in psychology; see also (Wickelmaier and Schmid, 2004;

Görür et al., 2006). In these models, we are given a set of n elements. To each element

i is associated a set of K features represented by a binary vector fi ∈ {0, 1}K . The

probability that element i is chosen over element j is given by

πij =

∑K
k=1 λkfik(1− fjk)∑K

k=1 λkfik(1− fjk) +
∑K

k=1 λkfjk(1− fik)

where λk > 0 is a weight representing the importance of feature k. The term
∑K

k=1 λkfik(1−

fjk) corresponds to the sum of the weights of features possessed by object i but not object

j. EM and Gibbs algorithms can be derived by following the same construction as with

group comparisons.
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6.3 Categorical data

Let consider the following original model for categorical data analysis

Pr(Yi = k) =

∑p
j=1 exp(Xij)λkj∑K

l=1

∑p
j=1 exp(Xij)λlj

=
exp(Xi)

Tλk∑K
l=1 exp(Xi)Tλl

(47)

where Xi ∈ Rp is a vector of covariates and λk ∈ Rp
+ for k = 1, . . . , K. This model could

be used as an alternative to the multinomial logit model (Agresti, 1990). By introducing

latent variables Zi ∼ E
(∑K

l=1 exp(Xi)
Tλl

)
, we can define EM and Gibbs algorithms resp.

to maximize the posterior distribution of the parameters λk and sample from it when the

prior is given by (4).

7 Experimental results

In all the above models, the parameter b is just a scaling parameter on λk. As the

likelihood is invariant to a rescaling of the λk, this parameter does not have any influence

on inference. Hence to ensure that the MAP estimate satisfies
∑K

k=1 λ̂k = 1, we set

b = Ka− 1 henceforth as explained in section 5. We demonstrate our algorithms on one

synthetic and two real-world data sets.

7.1 Synthetic Data

We first study the Plackett-Luce model, comparing experimentally the mixing properties

of the Gibbs sampler relative to a slightly modified version of the M-H algorithm proposed

by Gormley and Murphy (2009). In this latter paper, the authors propose to update the

skill parameters simultaneously using the following proposal distribution1 at iteration t

for k = 1, . . . , K, λ⋆
k ∼ G

(
a+ wk, b+

n∑
i=1

(
pi−1∑
j=1

δijk∑p
m=j λ

(t−1)
ρim

))

We simulated 500 dataset of n rankings of K = 4 individuals, for various values of n with

a = 5. For each dataset, 10,000 iterations of the Gibbs sampler presented in section 4 were

1The authors actually use a normal approximation of the gamma distribution, and work with nor-
malized data. To obtain similar algorithms, we consider unnormalized data.
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run. The sample lag-1 autocorrelation was then computed for the four skill parameters.

For a given sample size n, the mean value over skill parameters and simulated data is

reported on Figure 1 together with 90% confidence bounds. The algorithm of Gormley

and Murphy (2009) performs reasonably well when the sample size is large, which is the

case for the voting data they considered, but poorly for small sample sizes.
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Figure 1: Sample lag-1 autocorrelation as a function of the sample size n for the Gibbs
sampler and a modified version of the M-H algorithm of Gormley and Murphy (2009).

7.2 Nascar 2002 dataset

NASCAR is the primary sanctioning body for stock car auto racing in the United States.

Each race involves 43 drivers. During the 2002 season, 87 different drivers participated in

36 races. Some drivers participated in all of the races while others participated in only one.

We propose to apply the Plackett-Luce model with gamma prior on the parameters. The

NASCAR dataset2 has been studied by Hunter (2004), who noted that the MLE cannot

be found for the original data set, as the likelihood has no maximizer. Assumption 1

in (Hunter, 2004) is not met as four drivers placed last in each race they entered, and

therefore had to be removed. This does not need to be done if we follow a Bayesian

approach.

We first focus here on predicting the outcome of the next race based on the previous

ones, starting from race 5, evaluating the performances with the test log-likelihood (TLL);

2The data can be downloaded from http://www.stat.psu.edu/ dhunter/code/btmatlab/
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i.e. we compute for i = 5, . . . , 35

TLL(i) = log Pr(ρi+1|λ̂(i))

where ρi is the ranking of race i and λ̂(i) is the MAP/posterior mean estimate obtained

with races 1 to i.

The mean value and 90% confidence bounds of TLL are represented in Figure 2

w.r.t. the value of a for the EM algorithm. The EM algorithm was initialized using

(λ
(0)
1 , . . . , λ

(0)
87 ) = ( 1

87
, . . . , 1

87
). The Gibbs sampler was initialized at the same value and

the parameter a was assigned a flat improper prior, initialized at the value 1 and sampled

as described in section 5.2. We ran 50,000 iterations with 2,000 burn-in. As detailed

in Section 5, only the normalized weights πi are likelihood identifiable. The mean test

log-likelihood obtained with the posterior mean estimate of the normalized weights is also

represented in Figure 2.
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Figure 2: Test log-likelihood on the Nascar 2002 dataset. From race 5 to 35, we compute
the log-likelihood of the next race based on the MAP/posterior mean estimates. Mean
(solid blue line) and 90% interval (dashed blue line) of the test log-likelihood with MAP
estimates is represented w.r.t. to the parameter a. The black dotted line represents the
test log-likelihood obtained with a uniform prior. The dash-dot red line represents the
mean test log-likelihood using the posterior mean estimate of the normalized weights,
with a flat prior on a.

Skill ratings are usually represented on the real line, and we use the following one-

to-one mapping βi = log πi − log 1/87. The marginal posterior densities of the repa-

rameterized skill ratings for the first four drivers according to their average place are

reported in Figure 3. The Bayesian approach can effectively capture the uncertainty in
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the skill ratings of the drivers. ML and posterior mean estimates together with standard

deviations of the marginal posteriors are reported in Table 1 for the first ten and last

ten drivers according to average place. As explained above, MLE cannot be performed

with the full set of drivers, and skills estimates are not available for the four drivers who

always finished at the last place.

Table 1: Top ten and bottom ten drivers according to average place, along with ML and
posterior mean estimates of the skill parameters in β space. Marginal posterior standard
deviations are also provided.

Average ML Posterior Posterior
Driver Races place estimate Mean Std
P. Jones 1 4.00 2.79 0.14 0.53
S. Pruett 1 6.00 2.25 0.12 0.53
M. Martin 36 12.17 0.71 0.85 0.17
T. Stewart 36 12.61 0.47 0.66 0.17
R. Wallace 36 13.17 0.70 0.84 0.17
J. Johnson 36 13.50 0.58 0.74 0.17
S. Marlin 29 13.86 0.37 0.55 0.19
M. Bliss 1 14.00 0.87 0.05 0.53
J. Gordon 36 14.06 0.38 0.58 0.17
K. Busch 36 14.06 0.29 0.51 0.17

...
M. Shepherd 5 41.20 -1.81 -1.11 0.41

K. Shelmerdine 2 41.50 -1.68 -0.81 0.50
A. Cameron 1 42.00 -1.36 -0.50 0.55
D. Marcis 1 42.00 -1.34 -0.49 0.54
D. Trickle 3 42.00 -1.67 -0.94 0.45
J. Varde 1 42.00 -1.51 -0.55 0.55

A. Hillenburg 2 43.00 — -1.46 0.69
G. Bradberry 1 43.00 — -1.09 0.69
J. Hedlesky 1 43.00 — -1.02 0.68
R. Renfrow 1 43.00 — -1.04 0.70

7.3 Chess data

Rating the skills of chess players is of major practical interest. It allows organizers of a

tournament to avoid having strong players playing against each other at early stages, or to

restrict the tournament to players with skills above a given threshold. The international

chess federation adopted the so-called “Elo” system which is based on the Bradley-Terry

model (Elo, 1978). For historical considerations about the chess rating system, the reader
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Figure 3: Marginal posterior distribution for the modified skill ratings βi of the first 4
drivers according to their average place. P. Jones and S. Pruett only participated in 1
race each, while M. Martin and T. Stewart participated in 36 races.

should refer to Glickman (1995).

We consider here game-by-game chess results over 100 months, consisting of 65,053

matches between 8631 players3. The outcome Ei of each game i is either win (+1), tie

(+0.5) or loss (0). We estimate the parameters of the Bradley-Terry model with ties

presented in section 3.2 on the first 95 months and then compute the expected outcome

Êi ∈ [0, 1] of the games of the last 5 months. The hyperparameters for the tie parameter

θ are set to aθ = 1, bθ = 0. Given the large sample size, it is not possible to sample

from Eq. (29) as the number of elements in the mixture is very large. We therefore use a

M-H step with a normal random walk proposal of standard deviation 0.1. The root mean

squared error, defined by √√√√ 1

nt

nt∑
i=1

(
Ei − Êi

)2
where nt = 11182 is the number of games in the last 5 months, is reported for predic-

tions based on MAP estimates and full Bayesian prediction based on the Gibbs sampler

outcomes, for different values of the hyperparameter a. We also report the results of

the Gibbs sampler outcome when a is assigned a flat prior. EM and Gibbs samplers

were initialized at (λ
(0)
1 , . . . , λ

(0)
8631) = ( 1

8631
, . . . , 1

8631
) and θ(0) = 1.5. The Gibbs samplers

were run with 10,000 iterations and 1,000 burn-in iterations. The results are reported in

Figure 4. The results demonstrate the benefit of penalizing the skill rating parameters

3Chess data can be downloaded from http://kaggle.com/chess
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and the improvement brought up by a full Bayesian analysis. In Figure 5 we also report

the autocorrelation function associated to the parameter θ and the skill parameters with

largest mean values. The Markov chain displays good mixing properties.
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Figure 4: Test root mean square error on the chess dataset for different values of the
parameter a. Based on an history of 95 months, we predict the outcome of the games of
the last 5 months.

8 Conclusion

The Bradley-Terry model and its generalizations arise in numerous applications. We

have shown here that most of the MM algorithms proposed in Hunter (2004) can be

reinterpreted as special cases of EM algorithms. Additionally we have proposed original

EM algorithms for some recent generalizations of the Bradley-Terry models. Finally

we have shown how the latent variables introduced to derive these EM algorithms lead

straightforwardly to Gibbs sampling algorithms. These elegant MCMC algorithms mix

experimentally well and outperform a recently proposed M-H algorithm.
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(c) Tie parameter θ
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Figure 5: Autocorrelation functions for (a-b) the two skill parameters with largest mean
values, (c) the parameter θ and for (d) the hyperparameter a. The fast decrease indicates
that the Markov chain mixes well. The parameters θ and a are updated with a M-H step
which explains their relatively low mixing.

9 Supplementary material

Matlab files for Bayesian inference with generalized Bradley-Terry models: Zip

file containing Matlab files to apply EM algorithms and Gibbs samplers for the fol-

lowing models: Bradley-Terry model (with or without ties, with or without home

advantage), Plackett-Luce model. A README file describes the different files in

the archive. (BayesBT.zip, zip file)
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Görür, D., Jäkel, F., and Rasmussen, C. (2006). A choice model with infinitely many latent
features. In International Conference on Machine Learning.

Guiver, J. and Snelson, E. (2009). Bayesian inference for Plackett-Luce ranking models. In
International Conference on Machine Learning.

Hastie, T. and Tibshirani, R. (1998). Classification by pairwise coupling. Annals of Statistics,
26:451–471.

Holland, P. and Leinhardt, S. (1981). An exponential family of probability distributions for
directed graphs. Journal of the American Statistical Association, 76:33–65.

Huang, T.-K., Weng, R., and Lin, C.-J. (2006). Generalized Bradley-Terry models and multi-
class probability estimates. Journal of Machine Learning Research, 7:85–115.

Hunter, D. (2004). MM algorithms for generalized Bradley-Terry models. The Annals of Statis-
tics, 32:384–406.

Lange, K., Hunter, D., and Yang, I. (2000). Optimization transfer using surrogate objective
functions (with discussion). Journal of Computational and Graphical Statistics, 9:1–59.

Liu, J. (2001). Monte Carlo Methods for Scientific Computing. Springer-Verlag: New York.

Luce, R. (1959). Individual choice behavior: A theoretical analysis. Wiley.

Luce, R. (1977). The choice axiom after twenty years. Journal of Mathematical Psychology,
15:215–233.

27



Meng, X.-L. and Rubin, D. (1993). Maximum likelihood estimation via the ECM algorithm: A
general framework. Biometrika, 80:267–278.

Park, J. and Newman, M. (2004). The statistical mechanics of networks. Physical Review E,
70:066117.

Plackett, R. (1975). The analysis of permutations. Applied Statistics, 24:193–202.

Rao, P. and Kupper, L. (1967). Ties in paired-comparison experiments: A generalization of the
Bradley-Terry model. Journal of the American Statistical Association, 62:194–204.

Restle, F. (1961). Psychology of judgement and choice. New-York: Wiley.

Tversky, A. (1972a). Choice by elimination. Journal of Mathematical Psychology, 9:341–367.

Tversky, A. (1972b). Elimination by aspects: a theory of choice. Psychological Review, 79:281–
299.

Wickelmaier, F. and Schmid, C. (2004). A Matlab function to estimate choice model parame-
ters from paired-comparison data. Behavior Research Methods, Instruments and Computers,
36:29–40.

Zermelo, E. (1929). Die berechnung der turnier-ergebnisse als ein maximumproblem der
wahrscheinlichkeitsrechnung. Math. Z., 29:436–460.

28


