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Abstract

We consider the problem of estimating a latent point process, given the

realization of another point process. We establish an expression of the

conditional distribution of a latent Poisson point process given the observation

process when the transformation from the latent process to the observed process

includes displacement, thinning and augmentation with extra points. Our

original analysis is based on an elementary and self-contained random measure

theoretic approach. This simplifies and complements previous derivations given

in [5], [6].
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1. Introduction

Spatial point processes occur in a wide variety of scientific disciplines including

environmetrics, epidemiology and seismology; see [1] and [7] for recent books on the

subject. In this paper, we are interested in scenarios where the spatial point process of

interest is unobserved and we only have access to another spatial point process which is

obtained from the original process through displacement, thinning and augmentation

with extra points. Such problems arise in forestry [3], [4] but our motivation for this

work stems from target tracking applications [5], [6], [9]. In this context, we want

to infer the number of targets and their locations; this number can vary as targets

enter and exit the surveillance area. We only have access to measurements from a

sensor. Some targets may not be detected by the sensor and additionally this sensor

also provides us with a random number of false measurements.

From a mathematical point of view, we are interested in the computation of the

conditional distributions of a sequence of random measures with respect to a sequence

of noisy and partial observations given by spatial point processes. Recently a few

articles have addressed this problem. In a seminal paper [5], R. Mahler has proposed

an original and elegant multi-object filtering algorithm known as the PHD (Probability

Hypothesis Density) filter which relies on a first order moment approximation of the

posterior. The mathematical techniques used by R. Mahler are essentially based

on random finite sets techniques including set derivatives and probability generating

functionals. In a more recent article [6], S.S. Singh, B.N. Vo, A. Baddeley and S. Zuyev

have clarified some important technicalities concerning the use of the derivatives of

the joint probability generating functionals to characterize conditional distributions.

They have proposed a simplified derivation of the PHD filter and have extended this

algorithm to include second moment information. An alternative way to obtain such

conditional distributions appeared in [2] and, using Janossy densities, in [8].

The main contribution of this article is to propose an original analysis based on

a self-contained random measure theoretic approach. The elementary techniques de-

veloped in this paper complement the more traditional random finite sets analysis

involving symmetrization techniques or related to other technicalities associated with

the computation of moment generating functions derivatives.
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The rest of this article is organized as follows. In section 2 we first present a static

model associated to a pair of signal-observation Poisson point processes. We establish

a functional representation of the conditional distribution of a Poisson signal process

w.r.t. noisy and partial observations. The proof is elementary. It is extended in

section 3 to dynamic models in order to establish the PHD equations [5], [6]. We end

this introductory section with some standard notations used in the paper.

We denote respectively by M(E), P(E) and B(E), the set of all finite positive

measures on some measurable space (E, E), the set of all probability measures, and the

Banach space of all bounded and measurable real-valued functions. For µ ∈ M(E) and

f ∈ B(E), we let µ(f) =
∫

µ(dx) f(x) be the Lebesgue integral. The Dirac measure

at a ∈ E is denoted δa. We also denote by µ⊗p the product measure of µ ∈ M(E) on

the product space Ep.

Let G : x ∈ E 7→ G(x) ∈ [0,∞) be a bounded non-negative potential function then

ΨG(η) ∈ P(E) denotes the probability measure admitting a density G(x)/η(G) with

respect to a measure η ∈ M(E).

For every sequence of points x = (xi)1≤i≤k in E and every 0 ≤ p ≤ k, we denote

by mp(x) the occupation measure of the first p coordinates mp(x) =
∑

1≤i≤p δxi . For

p = 0, we use the convention m0(x) = 0, the null measure on E. We recall that a

bounded and positive integral operator f 7→ L(f) from B(E2) into B(E1) is such that

the functions

x 7→ L(f)(x) =

∫

E2

L(x, dy)f(y)

are E1-measurable and bounded for some measures L(x, .) ∈ M(E2). These operators

also generate a dual operator µ 7→ µL from M(E1) into M(E2) defined by (µL)(f) =

µ(L(f)). A Markov kernel is obtained when L(x, ·) ∈ P(E) for any x.

In this article, we shall add an auxiliary “death” state c to the state space E1 and

another auxiliary “death” state d to the state space E2 . The functions f ∈ B(E1) are

extended to the augmented space E1∪{c} by setting f(c) = 0. Similarly, the functions

f ∈ B(E2) are extended to the augmented space E2 ∪ {d} by setting f(d) = 0.
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2. Conditional distributions for Poisson processes

Assume the unobserved point process is a finite Poisson point process X =
∑

1≤i≤N δXi

with intensity measure γ on some measurable state space (E1, E1). We set η(dx) =

γ(dx)/γ(1). The observed point process consists of a collection of random observations

directly generated by a random number of points of X plus some random observations

unrelated to X .

To describe more precisely this observed point process, we let α be a measurable

function from E1 into [0, 1] and we consider a Markov transition L(x, dy) from E1 to

E2. Given a realization of X , every random point X i = x generates with probability

α(x) an observation Y ′i on E2 with distribution L(x, dy); otherwise it goes into a death

state d. Hence α (x) measures the “detectability” degree of x. In other words, a given

point x generates a random observation in E′
2 = E2 ∪ {d} with distribution

Ld(x, dy) = α(x) L(x, dy) + (1 − α(x)) δd(dy). (1)

The resulting point process is the random measure
∑

1≤i≤N δY ′i on the augmented

state space E′
2.

In addition to this point process we also observe an additional, and independent of

X , Poisson point process
∑

1≤i≤Nc
δY ′i

c
with intensity measure ν on E2; this is known

as the clutter noise in multitarget tracking.

In other words, we obtain a process on E′
2 given by the random measure

Y ′ =
∑

1≤i≤N

δY ′i +
∑

1≤i≤Nc

δY ′i
c

.

The state d being unobservable, the observed point process is the random measure Y

on E2 given by

Y =
∑

1≤i≤N

1E2
(Y ′i) δY ′i +

∑

1≤i≤Nc

δY ′i
c

= Y ′ − Nd δd =
∑

1≤i≤M

δY i

where Nd =
(∑

1≤i≤N 1d(Y
′i)

)
corresponds to the number of undetected/dead points,

and M = N − Nd + Nc is the number of observed points.

Let X ′ = X + Ncδc be defined on E′
1 = E1 ∪ {c} where c is some cemetery state

associated with clutter observations. We present in the following proposition an explicit

integral representation of a version of the conditional distributions of Y ′ given X and

X ′ given Y.
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Proposition 2.1. A version of the conditional distribution of Y ′ given X is given for

any function F ∈ B (M(E′
2)) by

E (F (Y ′) |X ) = e−ν(1)
∑

k≥0

1

k!

∫

(E′

2)
k+N

F (mk(y′
c) + mN(y′)) ν⊗k(dy′

c)

N∏

i=1

Ld(X
i, dy′i)

(2)

We further assume that ν ≪ λ and L(x, .) ≪ λ, for any x ∈ E1, for some reference

measure λ ∈ M(E2), with Radon Nikodym derivatives given by

g(x, y) =
dL(x, .)

dλ
(y) and h(y) =

dν

dλ
(y) (3)

and such that h(y) + γ(αg(., y)) > 0, for any y ∈ E2.

In this situation, a version of the conditional distribution of X ′ given the observation

point process Y is given for any function F ∈ B (M(E′
1)) by

E (F (X ′) |Y )

= e−γ(1−α)
∑

k≥0

γ(1 − α)k

k!

∫

(E′

1)
k+M

F (mk(x′) + mM (x)) Ψ(1−α)(η)⊗k (dx′)

M∏

i=1

Q
(
Y i, dxi

)

(4)

where Q is a Markov transition from E2 into E′
1 defined by the following formula

Q(y, dx) = (1 − β(y)) Ψαg(.,y)(η)(dx) + β(y) δc(dx) (5)

with

β(y) =
h(y)

h(y) + γ(αg(., y))
. (6)

Proof:

The proof of the first assertion in Eq. (2) is elementary, thus it is skipped. We provide

here a proof of the second result given in Eq. (4). First, we observe that the random

measure

Z =
∑

1≤i≤N

δ(Xi,Y ′i) +
∑

1≤i≤Nc

δ(c,Y ′i
c ) =

∑

1≤i≤N+Nc

δ(Zi
1
,Zi

2
) (7)

is a Poisson point process in E′ = E′
1 × E′

2. More precisely, the random variable

N + Nc is a Poisson random variable with parameter κ = γ(1) + ν(1), and (Zi
1, Z

i
2)i≥0



6 F. Caron, P. Del Moral, A. Doucet and M. Pace

is a sequence of independent random variables with common distribution

Γ(d(z1, z2)) = η′(dz1)L
′(z1, dz2) with κη′ = γ(1) η + ν(1) δc ,

L′(z1, dz2) = 1E1
(z1) Ld(z1, dz2) + 1c(z1) ν(dz2) with ν(dz2) = ν(dz2)/ν(1) .

From the joint distribution Γ(d(z1, z2)), we can obtain the conditional distribution

L′
η′(z2, dz1) of Z1 given Z2 = z2 using the easily checked reversal formula, i.e. the

Bayes rule

η′(dz1)L
′(z1, dz2) = (η′L′) (dz2) L′

η′(z2, dz1).

This yields

L′
η′(z2, dz1) = 1d(z2) Ψ(1−α)(η)(dz1) + 1E2

(z2) Q(z2, dz1).

Hence we can conclude that for any function F ∈ B(M(E′
1))

E (F (Z1) |Z2 ) =

∫

(E′

1)
N+Nc

F (mN+Nc
(z1))

N+Nc∏

i=1

L′
η′

(
Zi

2, dzi
1

)

where Zj stands for the j-th marginal of Z, with j ∈ {1, 2}. The end of the proof

is now a direct consequence of the fact that (Z1,Z2) = (X ′,Y ′), E (F (X ′) |Y ) =

E (E (F (X ′) |Y ′ ) |Y ) and

E (F (Y ′) | Y ) = e−γ(1−α)
∑

k≥0

γ(1 − α)k

k!
F (kδd + Y)

for any function F ∈ B(M(E′
2)) as Nd follows a Poisson distribution of parameter

γ(1 − α). This ends the proof of the proposition. �

The expressions of the conditional expectations of linear functionals of the random

point processes X ′ and X given the point process Y follow straightforwardly from the

previous proposition. Recall that f (c) = 0 by convention.

Corollary 2.1. For any function f ∈ B(E′
1) we have

E (X ′(f) | Y) = E (X (f) | Y)

= e−γ(1−α)
∑

k≥0

γ(1 − α)k

k!

(
k Ψ(1−α)(η) (f) +

∫
Y(dy)Q (f) (y)

)

= γ((1 − α)f) +

∫
Y(dy) (1 − β(y)) Ψαg(.,y)(η)(f) . (8)
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In particular, the conditional expectation of the number of points N in X given the

observations is given by

E (N |Y) = E (X (1) | Y) = γ(1 − α) + Y (1 − β) . (9)

3. Spatial filtering models and probability hypothesis density equations

We show here how the results obtained in proposition 2.1 and corollary 2.1 allows

us to establish directly the PHD filter equations [5], [6].

In what follows the parameter n is interpreted as a discrete time index. We consider

a collection of measures µn ∈ M(E1) and a collection of positive operators Rn+1 from

E1 into E1.

We then define recursively a sequence of random measures Xn and Yn on E1 and E2

as follows. The initial measure X0 is a Poisson point process with intensity measure

γ0 = µ0 on E1. Given a realization of X0, the corresponding observation process Y0

on E2 is defined as in section 2 with a detection function α0 on E1, a clutter intensity

measure ν0, and some Markov transitions Ld,0 and L0 defined as in (1) and satisfying

(3) for some reference measure λ0 and some functions h0 and g0. From corollary 2.1,

we have for any function f ∈ B(E1)

γ̂0(f) =E (X0(f) | Y0)

= γ0((1 − α0)f) +

∫
Y0(dy) (1 − β0(y)) Ψα0g0(.,y)(γ0)(f)

with a function β0 defined as in Eq. (6) by substituting (α0, h0, g0) to (α, h, g). Given

a realization of the pair random sequences (Xp,Yp), with 0 ≤ p ≤ n, the pair of

random measures (Xn+1,Yn+1) is defined as follows. We set Xn+1 to be a Poisson

point process with intensity measure γn+1 defined by the following recursions for any

function f ∈ B(E1)

γ̂n(f) =γn((1 − αn)f) +

∫
Yn(dy) (1 − βn(y)) Ψαngn(.,y)(γn)(f)

γn+1 =γ̂nRn+1 + µn+1

In the context of spatial branching processes, µn stands for the intensity measure of

a spontaneous birth model while Rn+1 represents the first moment transport kernel
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associated with a spatial branching type mechanism. For example, assume that each

point X i
n = x at time n dies with probability ρ(x) or survives and evolves according

to a Markov kernel Kn+1 from E1 into E1 then Rn+1 corresponds to

Rn+1 (x, dx′) = (1 − ρ(x)) Kn+1 (x, dx′) .

It is also possible to modify Rn+1 to include some spawning points [5], [6], [9]. In

addition, given a realization of Xn+1, the corresponding observation process Yn+1 is

defined as in section 2 with a detection function αn+1 on E1, a clutter intensity measure

νn+1, and some Markov transitions Ld,(n+1) and Ln+1 defined as in (1) and satisfying

(3) for some reference measure λn+1 and some functions hn+1 and gn+1. We let Nc,n

be the number of death states c associated with clutter observations at time n and Mn

be the number of observations at time n.

The following elementary corollary proves that the PHD filter propagates the first

moment of the multi-target posterior distribution of the filtering model defined above.

This is a direct consequence of proposition 2.1 and corollary 2.1.

Corollary 3.1. An integral version of the conditional distribution of X ′
n = Xn +

Nc,nδc given the filtration FY
n = σ (Yp, 0 ≤ p ≤ n) generated by the observation point

processes Yp =
∑

1≤i≤Mp
δY i

p
, from the origin p = 0 up to the current time p = n, is

given for any function F ∈ B (M(E′
1)) by the following formula

E
(
F (X ′

n)
∣∣FY

n

)
= e−γn(1−αn)

∑

k≥0

γn(1 − αn)k

k!

∫

(E′

1)
k+Mn

F (mk(x′) + mMn
(x)) Ψ(1−αn)(γn)⊗k (dx′)

Mn∏

i=1

Qn

(
Y i

n, dxi
)

with the Markov transitions

Qn(y, dx) = (1 − βn(y)) Ψαngn(.,y)(γn)(dx) + βn(y) δc(dx) .

In particular, the random measures γn and γ̂n defined below coincide with the first

moment of the random measures Xn given the sigma-fields FY
n−1 and FY

n ; that is, for

any function f ∈ B(E1), we have

γn(f) = E
(
Xn(f) | FY

n−1

)
and γ̂n(f) = E

(
Xn(f) | FY

n

)
.
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