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Abstract State-space models are a very general class of time series capable of modeling
dependent observations in a natural and interpretable way. While optimal state estimation
can now be routinely performed using SMC (sequential Monte Carlo) methods, on-line static
parameter estimation largely remains an unsolved problem. In Andrieu and Doucet [2003] it was
proposed to use a pseudo-likelihood approach. This pseudo-likelihood can be optimised directly
using a stochastic gradient algorithm, but we focus on an on-line Expectation-Maximization
(EM). We present here novel simple recursions that allow us to estimate confidence intervals
on-line and develope new theoretical results concerning the pseudo-likelihood estimate. More
precisely we characterise the loss of efficiency compared to that of the maximum likelihood
estimate, and also quantify the bias of the estimate in cases where the pseudo-likelihood needs
to be approximated. We show in a tractable situation requiring no Monte Carlo simulation that
these theoretical results accurately predict performance, pointing to their practical relevance.

1. INTRODUCTION
This paper is concerned with the on-line estimation of
static parameters in non-linear non-Gaussian state-space
models. More precisely, we consider models of the following
form. For any parameter θ ∈ Θ, the hidden/latent state
process {Xn;n ≥ 1} ⊂ XN is a Markov process, character-
ized by its Markov transition probability density fθ (x�|x),
i.e. X1 ∼ νθ and for n ≥ 1,

Xn+1| (Xn = x) ∼ fθ ( ·|x) . (1)
As indicated by its name {Xn} is observed, not directly,
but through another process {Yn;n ≥ 1} ⊂ YN. The obser-
vations are assumed to be conditionally independent given
{Xn}, and their common marginal probability density is
of the form gθ (y|x) ; i.e. for 1 ≤ n ≤ m,

Yn| (X1, . . . , Xn = x, . . . ,Xm) ∼ gθ ( ·|x) . (2)
We give here an example used throughout this paper.

Example 1. SV model Shephard and Pitt [1997]

Xn+1 = φXn + σvVn+1, Vn
i.i.d.∼ N (0, 1)

Yn = β exp (Xn/2)Wn, Wn
i.i.d.∼ N (0, 1) ,

where Θ = (−1, 1)×R+ ×R+ and θ =
�
φ,σ2

v ,β
2
�

denotes
the static parameter vector.

When the static parameter θ is known, sequential inference
on the process {Xn} is typically based on the sequence of
joint posterior densities {pθ (x1:n|Y1:n)} which each sum-
marizes all the information collected about X1:n up to
time n. Optimal filtering is concerned with the sequential
estimation of these densities, for which sequential Monte
Carlo (SMC) methods [Doucet et al., 2001, Del Moral,
2004] have shown to be suitable. We focus in this paper
on the on-line estimation of the static parameter θ. More
precisely, assuming that there is a “true” parameter value
θ∗ generating the data {Yn} (i.e. θ∗ is the “best” value of
θ ∈ Θ to explain the observations, in a sense made clear

later on) and that this value is unknown, our aim is to com-
pute point estimates of θ∗ from {Yn} in an on-line manner.
This problem appears in numerous applications. First, in
most real-world scenarios θ∗ is indeed unknown and needs
to be estimated. Second, on-line estimation is often the
only realistic solution when the amount of data to be
processed is large. Although apparently simpler than the
optimal filtering problem, the static parameter estimation
problem has proved to be much more difficult; no closed
form solutions are, in general, available, even for linear
Gaussian and finite state-space hidden Markov models.
There have already been numerous attempts to solve it
in statistics and related fields. The paper is organized as
follows. In Section 2, we introduce a family of pseudo-
likelihood functions. We establish some novel theoretical
properties of the maximum pseudo-likelihood estimator,
including the loss of efficiency inherent to the use of a
pseudo-likelihood function. The results are expressed in
terms of some properties of the model considered and
parameters of the pseudo-likelihood. In Section 3, we intro-
duce a simple on-line EM algorithm in order to maximise
the pseudo-likelihood function. We also develop novel and
computationally efficient recursions that allow us to obtain
on-line estimates of confidence intervals for our estimate.
Finally, we demonstrate the performance of these methods
via computer simulations on an example in Section 4 and
show numerically that our theory accurately predicts what
is observed in practice.

2. PSEUDO-ML METHODS

We present here an alternative strategy to the static
parameter estimation problem, which aims to produce
point estimates of θ∗ rather than a series of estimates of
the posterior densities {p(θ|Y1:n)}. As a result no particle
method is required in the parameter space, and it should
also be pointed out that SMC methods in the state-
space X are, in general, also not necessary. The most
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natural approach to point estimation for the parameter θ∗
consists of recursively maximizing the series of likelihoods
{p(Y1:n|θ)}. We start this section with a discussion in
which we highlight the difficulties associated with this
type of strategy and this leads us to instead focus on a
pseudo-likelihood approach which is, as we shall see, well
suited to Monte Carlo approximations (Subsection 2.1).
In Subsection 2.2 we study some theoretical aspects of
such estimators, which we demonstrate to be of practical
relevance on an example for which sophisticated numerical
methods are not needed. We postpone the development
of efficient algorithm to maximise the pseudo-likelihood
to Section 3, where we describe a gradient algorithm in
brief, and then focus mainly on on-line EM (Expectation-
Maximization) type algorithms which has the advantage
of numerical stability.

2.1 Likelihood and pseudo-likelihood functions

The log-likelihood function corresponding to model (1)-(2)
is given, for n ≥ 1 observations by

log pθ (Y1:n) =
n�

k=1

log pθ (Yk|Y1:k−1) , (3)

with the convention Y1:0 = ∅. Under ergodicity assump-
tions discussed in Subsection 2.2, it can be shown that the
average log-likelihood is given by

lim
n→∞

n−1 log pθ (Y1:n) = l (θ) ,

(see e.g. Andrieu and Doucet [2003]). It can be shown
that the set of global maxima of this function includes the
true value θ∗. Based upon this remark, one can suggest
the use of stochastic gradient algorithms to maximize
l (θ); see Andrieu et al. [2004] for a review. This strat-
egy suffers from two limitations. First, it requires one to
estimate the derivative of the optimal filter with respect
to θ. Non-standard SMC methods are required to estimate
this signed measure and their robust implementation has
a computational complexity in O

�
N2

�
, where N is the

number of samples used for the SMC [Poyiadjis et al.,
2011]. Second it can be difficult to properly scale the
gradient components. More elegant and robust algorithms
can be proposed that rely on on-line versions of the EM
algorithm [Del Moral et al., 2010]. To circumvent these
problems it has been proposed in Andrieu and Doucet
[2003], Andrieu et al. [2004] to introduce another contrast
function which is a pseudo-likelihood function akin to the
approach suggested in Rydén [1997] for the particular
case of finite state space HMMs, for which no numeri-
cal integration is required (the pseudo-likelihood used is
refered to in that paper as “split-data likelihood”) and
for which no efficient on-line algorithm was suggested. It
has been shown (see Section 3) that this pseudo-likelihood
can be optimised either using a gradient algorithm, or in
numerous situations using an efficient on-line EM algo-
rithm. The pseudo-likelihood is defined as follows. For-
mally, consider for a given time lag L ≥ 1 and any k ≥ 0
“blocks” Xk = XkL+1:(k+1)L and Yk = YkL+1:(k+1)L of
{Xn} and {Yn}. We will assume further on that for any
θ ∈ Θ the transition kernel fθ(x�|x) admits an invariant
density πθ (x) and that the initial density of X1 is given
by νθ (x) = πθ (x); this assumption is satisfied for Example
1 where πθ (x) = N

�
x; 0,σ2

�
1− φ2

�−1
�
. Because of this

stationarity assumption, the vectors {Xk,Yk} are identi-

cally distributed and their common density is given by
pθ (xk, yk) =

πθ(xkL+1)gθ(ykL+1|xkL+1)

(k+1)L�

i=kL+2

fθ(xi|xi−1)gθ(yi|xi) .

(4)
The likelihood of a block Yk of observations is given by

pθ (Yk) =

ˆ
XL

pθ (xk,Yk) dxk , (5)

and we define the log pseudo-likelihood for m blocks of
observations by

lL(θ,Y0:m−1) :=
1

L

m−1�

k=0

log pθ (Yk) , (6)

which, compared to the true likelihood, essentially ignores
the dependence between data blocks. Note it would also
be possible to consider overlapping blocks of the form
(Y1:L, Y2:L+1, ..., YmL−L+1:mL) . The developments above
parallel those of the classical scenario where the obser-
vations {Yk} are independent and, as a result, the joint
pseudo-likelihood is the product of its marginals. The
parameter L should be large enough to ensure iden-
tifiability. Note also that there will be here an effi-
ciency/computational complexity trade-off associated with
L. As L increases, the maximum pseudo-likelihood esti-
mate properties will become comparable to that of the
standard ML estimate (see Subsection 2.2) but as we shall
see this might result in more complex and computationally
intensive algorithms. Under ergodicity assumptions dis-
cussed in Subsection 2.2, the average log pseudo–likelihood
satisfies

lim
m→∞

1

m
lL(θ,Y0:m−1) =: lL (θ) , (7)

where
lL (θ) :=

ˆ
YL

log (pθ (y)) pθ∗(y)dy . (8)

It can be shown that the set of parameters maximizing
lL (θ) includes the true parameter Rydén [1997]. This
follows from the fact that maximizing lL (θ) is equivalent
to minimizing the following Kullback-Leibler divergence

KL (θ, θ∗) = lL (θ∗)− lL (θ) ≥ 0 . (9)

2.2 Theoretical properties of the pseudo-ML estimator

Before turning in Section 3 to practical procedures to
efficiently optimise lL(θ) online, we study here some of the
asymptotic properties of the maximum pseudo-likelihood
estimate obtained by maximising lL (θ) as L increases.
Some results for pseudo-likelihood approaches are already
available in the literature but our model is significantly
different. First we quantify the loss of efficiency introduced
by the use of the pseudo-likelihood lL(θ) in place of the
“true” log-likelihood l(θ). More precisely, under assump-
tions implying that a central limit theorem (CLT) holds
for both the sequence of maximum likelihood estimators
{θ̂∗n} and the sequence of pseudo maximum likelihood
estimators {θ̂∗n(L)}, i.e. there exist covariance matrices Σ
and ΣL such that√

n(θ̂∗n − θ∗) →D N (0,Σ) ,
√
nL(θ̂

∗
nL

(L)− θ∗) →D N (0,ΣL) ,
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where nL ∈ {kL, k ≥ 1} (expressions for Σ and ΣL

are given in our technical report) we seek to characterise
the loss of efficiency of the pseudo-likelihood approach
developed in this paper, i.e. we compare Σ and ΣL in
terms of the invariant density πθ of the process {Xn},
the block length L and constants that characterise the
ergodic properties of the process {Xk, Yk} and the associ-
ated filtering process (Theorem 1). While it is known that
under regularity conditions ΣL − Σ is a positive definite
matrix, our result provides us with a bound on the rate
of convergence of ΣL to Σ as L increases, which appears
to accurately predict what can be observed in simple
scenarios where a direct analysis is possible (see Subsection
2.2.2). We stress here on the fact that for brevity we do
not prove the validity of the aforementioned CLTs, which
however follow from our assumptions, but rather focus on
an upper bound on |Σ− ΣL|. Note also that considering
the additional variance introduced by the Monte Carlo na-
ture of the procedures developed in Section 3 is beyond the
scope of the present paper. It would furthermore depend
on the sampling procedure used within the on-line EM
algorithm and require additional technical developments.
Second we consider the practically important situation
where the invariant density πθ is not tractable (hence pre-
venting the practical maximisation of lL(θ)) and replaced
in the expression for lL(θ) by an approximation µθ (see
Subsection 3.3 for a discussion of this issue), leading to
an approximate pseudo log-likelihood lL(µθ, θ). Denoting
θ∗(µθ∗ , L) the assumed maximiser of lL(µθ, θ), a natural
question of practical relevance is that of the magnitude of
the error |θ∗(µθ∗ , L) − θ∗| introduced by such an approx-
imation in terms of the quality of the approximation µθ

and the block length L. Theorem 2 provides an answer
to this question, which seems to be of practical relevance
as illustrated on an example which lends itself to direct
analysis (see Subsection 2.2.2). The proofs of the theorems
can be found in our companion paper. We illustrate the
relevance of our theoretical results in a situation for which
our assumptions are satisfied and where inference does not
require (Monte Carlo based) numerical approximation and
optimisation techniques developed later on in the paper.
Assumptions and results Note that for simplicity of
exposition we will assume that all the probability distri-
butions considered here have a density with respect to the
Lebesgue or counting measure on the space concerned; this
does not significantly affect the generality of our results.

(A1) Conditions on Θ and the likelihood:

(1) Θ is a compact set,
(2) θ∗ is a unique strong global maximum of l(θ) and

belongs to the interior of Θ, denoted by
◦
Θ,

(3) l(θ) is twice continuously differentiable on
◦
Θ and

H(θ∗) := −∇2l(θ∗) is positive definite.

(A2) We assume that fθ and gθ are twice continuously
differentiable and that there exist f

0
, g

0
> 0 and

f̄0, ḡ0, f̄1, ḡ1, f̄2, ḡ2 < +∞ such that for all x, x� ∈
X,y ∈ Y and θ ∈ Θ

f
0
≤ fθ(x

�|x) ≤ f̄0, g0 ≤ gθ(y|x) ≤ ḡ0, (10)
|∇ log fθ(x

�|x)| < f̄1, |∇ log gθ(y|x)| < ḡ1 ,

|∇2 log fθ(x
�|x)| < f̄2 and |∇2 log gθ(y|x)| < ḡ2 .

In addition ∇2 log fθ(x�|x) and ∇2 log gθ(y|x) are
assumed continuous in θ, uniformly in x, x�, y ∈ X2 ×
Y. We further assume that X1 ∼ πθ where πθ is the
invariant density of fθ.

The assumption X1 ∼ πθ could be suppressed because
of the previous ergodicity assumptions but simplifies the
proofs. The conditions above will typically only hold in
situations where X and Y are compact or finite spaces.
These conditions can be weakened in order to consider
unbounded spaces; see e.g. Kleptsyna and Veretennikov
[2008]. However, this is at the expense of substantial
additional technical complications that would distract us
here from the essence of the proof: our primary aim here
is to keep the level of technicality as low as possible while
providing meaningful results that support both intuition
and practice. In addition, we do not expect our final
results to be significantly modified under such weaker
conditions, except when geometric forgetting (see below)
is not satisfied, in which case slower rates of convergence to
zero (as a function of L) in Theorem 1 and Theorem 2 are
to be expected. The loss of efficiency occurring when using
lL(θ) instead of l(θ) can be characterised by the following
theorem.
Theorem 1. Assume (A1)-(A2). Then there exist L0 ≥ 0
and C ∈ (0,+∞) such that for any L ≥ L0

|Σ− ΣL| ≤ C
���
�
∇2l (θ∗)

�−2
���

log(L)2

L log(ρ)2
.

Here ρ is an upper bound on the forgetting properties of
{Xk} conditional upon {Yk}, that is the ability of the
optimal filter to forget its initial condition. The loss of
efficiency of the estimator compared to the maximum like-
lihood estimate vanishes as L increases (at a rate approxi-
mately inversely proportional) and depends on the mixing
properties of the model. In particular as ρ → 0, we recover
the standard textbook independent case while when ρ → 1
the loss of efficiency increases. Note also the dependence
on ∇2l (θ∗) which results in a tighter bound for “more
informative” models. Again we denote θ∗(µθ∗ , L) a generic
maximum of the resulting approximate pseudo-likelihood
lL(µθ, θ) where πθ is replaced by µθ. The following result
quantifies the bias of this estimate.
Theorem 2. Assume (A1)-(A2). Then there exist L0 ≥ 1,
C ∈ (0,+∞) and ρ ∈ [0, 1) such that for any L ≥ L0 and
µθ ∈ P(X) (differentiable with respect to θ)

|θ∗(µθ∗ , L)− θ∗|

≤ C

L(1− ρ)

���
�
∇2l (θ∗)

�−1
��� (�µθ∗ − πθ∗�+ �∇µθ∗ −∇πθ∗�)

where �·� is the total variation norm.

Again ρ characterises the forgetting properties of {Xk}
conditional upon {Yk}. This result confirms the intuition
that the bias introduced when using µθ instead of πθ in
the pseudo-likelihood vanishes with L large (and we show
that the rate is in fact 1/L) but also depends on how close
µθ∗ is to πθ∗ and the ergodicity properties of {Xk} given
{Yk}.
Illustration of the relevance of the theory We illustrate
our theoretical results through simple numerical simula-
tions for which none of the Monte Carlo simulation tech-
niques developed later on for more complex and realistic
scenarios is required. The example is a finite state-space
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hidden Markov model with two underlying states {1, 2}
and four observations states {1, 2, 3, 4}. Such models, and
of course more elaborated versions, are used in bioin-
formatics where the four observed states correspond to
the amino-acids A,G,C, T . We consider two scenarios for
which π = (2/3, 1/3) and the second largest eigenvalue λ
of the transition matrix is either equal to 0.4 or 0.8. The
emission matrix is taken to be�

0.1 0.3 0.4 0.2
0.3 0.2 0.4 0.1

�
,

and assumed known, i.e. the estimation focused on the
transition matrix of the underlying chain. We compare
the theoretical upper bound in theorem 1 for a manually
adjusted constant C to ensure good fit (computing the
precise constant C in Theorem 1 is beyond the scope
of this paper) to a numerical evaluation of |Σ− ΣL| for
L = 2, 4, 8, 16, 32 and 64, on simulated data. The results,
presented in Fig. 1, suggest that our theory (the rate of
convergence in L) is relevant given its ability to predict
what is observed in practice. Note that it might at first
sight seem surprising to find that the curve corresponding
to λ = 0.4 is above that of λ = 0.8, both in light of our
upper bound in Theorem 1 and the expected monotonicity
of ρ(λ). However one should bear in mind that ∇2l (θ∗)
is itself a function of λ. In fact in the present situation
our numerical results show that

��∇2l (θ∗,λ = 0.4)
�� � 10×��∇2l (θ∗,λ = 0.8)

��.

10 20 30 40 50 60
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λ=0.8

Adjusted log(L)2/L

Figure 1. |Σ−ΣL| as a function of L for the discrete HMM
example.

In order to illustrate our theoretical result in Theorem 2
we chose µ = (1/3, 2/3). In Fig 2 we present |θ(µ,L) −
θ∗| obtained with the wrong initial distribution µ for
L = 4, 8, 16, 32 and 64 (maximisation was performed using
the first version of the on-line EM algorithm presented in
Section 3, but any good method would do). In order to
ease comparison with our theory, we have superimposed
the function C/L suggested by Theorem 2 : it is clear
that our theory is relevant and seems to even provide
interesting bounds for even reasonably low values of L.
Note finally that this result can be helpful in practice in
order to select L e.g. if θ(µ,L) is left virtually unchanged
when L is changed to, say, 2L, then we might have good
reasons to think that |θ(µ,L)− θ∗| is small.

3. ON-LINE ALGORITHMS
In Andrieu and Doucet [2003] it has been proposed
to maximise lL (θ) recursively using on-line EM tech-
niques. Whereas the maximization of the true average
log-likelihood function requires complex SMC methods in
order to either evaluate the filter derivative or estimate
expectations with respect to distributions defined on Xn at
time n, the key advantage (detailed further) of the average

0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

|θ(
µ,L

)−
θ* |

|

λ = 0.4

adjusted
1/L

λ = 0.8

Figure 2. |θ(µ,L)− θ∗| as a function of L for the discrete
HMM example.

log pseudo-likelihood function is that it only requires the
estimation of expectations with respect to distributions
defined on XL. For the purpose of illustration we briefly
discuss a direct steepest descent algorithm to minimize the
Kullback-Leibler divergence KL (θ, θ∗) given in (9). Under
regularity assumptions, the gradient with respect to θ of
the cost function is given by

∇lL (θ) =

ˆ
YL

∇ log (pθ (y)) pθ∗(y)dy . (11)

An analytic expression for this gradient is rarely available,
and we can resort to a stochastic approximation technique,
i.e. replace (11) with an (possibly asymptotically) unbi-
ased estimate of this gradient. This can be achieved by
noting two key points. First, Fisher’s identity yields for
any k ≥ 0,

∇ log pθ (Yk) = Eθ [∇ log pθ (Xk,Yk)|Yk] ,

where the expectation is with respect to pθ (xk|Yk) defined
in (4). When this expectation cannot be computed in
closed-form we can resort to Monte Carlo methods (see
developments later). Second, the observations {Yk} are
distributed according to pθ∗(y) and can therefore be used
as Monte Carlo samples to compute the integral in (11).
We will not detail this approach any further here, but will
focus on on-line EM type algorithms as they are more
numerically stable and widely applicable to models used
in practice.
3.1 On-line EM algorithm

To introduce the on-line EM, we first present an “ideal”
batch EM algorithm to minimize KL (θ, θ∗) with respect
to θ or equivalently to maximize lL (θ) (more details are
provided in Andrieu and Doucet [2003]). At iteration k+1,
given an estimate θk of θ∗, we maximize for θk+1

Q (θ, θk) =

ˆ
XL×YL

log (pθ (x, y)) pθk (x|y) pθ∗(y)dxdy .

(12)
Now for any θ ∈ Θ

Q (θk+1, θk)−Q (θk, θk) = KL (θk, θ
∗)−KL (θk+1, θ

∗)

+

ˆ
XL×YL

log

�
pθk+1 (x|y)
pθk (x|y)

�
pθk (x|y) pθ∗(y)dxdy

and since the second term on the rhs is negative by
Jensen’s inequality, we see that an iteration of this “ideal”
EM algorithm decreases the value of KL (θ, θ∗), and the
stationary points correspond to the zeros of KL (θ, θ∗).
In practice for the models which we will consider, it is
necessary to compute a set of sufficient statistics Φ (θk, θ∗)
at time k in order to compute Q. Given Φ (θk−1, θ∗), it is
possible to maximize Q (θ, θk−1) analytically when L ≥ 2
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and find θk = Λ(Φ (θk−1, θ∗)) where Λ (·) is problem de-
pendent. We notice here that the minimal value L required
will in many situations be given by the smallest L such
that Λ (·) is defined unambiguously. In practice, Q (θ, θk−1)
cannot be computed as the expectations appearing in the
expression for Φ (θk, θ∗) are with respect to a measure
dependent on the unknown parameter value θ∗. However,
this ideal batch algorithm can be approximated using the
following on-line scheme. Indeed, thanks to the ergodic-
ity and stationarity assumptions, the observations {Yk}
provide us with samples from pθ∗(y) which can be used for
the purpose of Monte Carlo integration. More precisely we
recursively approximate the sufficient statistics Φ (θk, θ∗)
with the following update, given here at time k,

Φ̂k = (1− γk) Φ̂k−1 + γkEθk−1(Ψ (Xk,Yk)|Yk) , (13)

where Eθk−1 (φ(Xk)|Yk) denotes the expectation of φ

with respect to pθk−1 (xk|Yk). We then substitute Φ̂k for
Φ (θk, θ∗) and obtain θk = Λ(Φ̂k). If θk was constant and
γk = k−1 then Φ̂k would simply compute the arithmetic
average of {Eθk−1(Ψ (Xk,Yk)|Yk)}, and converge towards
Φ (θk, θ∗) by ergodicity. In fact, under mild appropri-
ate conditions, convergence is in general ensured for any
non-increasing positive stepsize sequence {γk} such that�

γk = ∞ and
�

γ2
k < ∞; we can select γk = C.k−α

where C > 0 and α ∈
�
1
2 , 1

�
thanks to the theory of

stochastic approximation e.g. Benveniste et al. [1990]. To
summarize, the vector of sufficient statistics Φ̂−1 is arbi-
trarily initialized and the on-line EM algorithm proceeds
as follows for the data block indexed by k ≥ 0.

E-step Φ̂k = (1− γk)Φ̂k−1 + γkEθk−1 (Ψ (Xk,Yk)|Yk) .

M-step θk = Λ(Φ̂k) .

In scenarios where Eθk (Ψ (Xk,Yk)|Yk) does not admit
an analytical expression, a further Monte Carlo approx-
imation can be used. Assume that a good approximation
qθk−1 (xk|Yk) of pθk−1 (xk|Yk) is available and that it is easy
to sample from qθk−1 (xk|Yk). In this case the E-step of the
algorithm presented above can be altered as follows.

E-step X(i)
k ∼ qθk−1 (·|Yk) compute import. weights, W (i)

k .

Φ̂k = (1− γk)Φ̂k−1 + γk
�N

i=1 W
(i)
k Ψ(X(i)

k ,Yk) ,

As N increases the importance sampling approximation
converges towards the true expectation. Note that as such
the algorithm above leads to asymptotically biased esti-
mates, but that this can be easily corrected by consid-
ering instead the following recursion for the estimation
of the conditional expectation F̂k = (1 − γk)F̂k−1 +

γk
1
N

�N
i=1 W

(i)
k Ψ(X(i)

k ,Yk) and N̂k = (1 − γk)N̂k−1 +

γk
1
N

�N
i=1 W

(i)
k and let Φ̂k = F̂k/N̂k. As an alternative to

importance sampling, we can use SMC techniques to ap-
proximate this expectation. We stress here on the fact that
in this context, the path degeneracy issue is easily dealt
with since L is fixed, and very often of small dimension.
Observe also that it might be possible to sample exactly
from pθk−1 (xk|Yk) using rejection sampling. In this case,
it is not necessary to use a large number N of samples and
a single sample is sufficient. Indeed it is only necessary
to produce unbiased estimates of Eθk−1 (Ψ (Xk,Yk)|Yk).

In applications where the number of data is limited, the
on-line EM may not have ‘time’ to converge. In such
scenarios, it is possible to pass through the data repeatedly
until convergence is observed. Assuming we have access to
m blocks of L data, the resulting algorithm maximizes
lL(θ,Y0:m−1) given by (6). We will demonstrate in Section
4 that this approach can be an attractive alternative to
MCMC as it is computationally typically much cheaper.
3.2 On-line confidence intervals estimation

We present here novel and simple recursions that al-
low us to estimate the asymptotic covariance matrix of
the estimate of θ∗, in an on-line manner. We can show
that ΣL = H−1

L (θ∗) GL(θ∗) H−1
L (θ∗) where HL(θ∗) and

GL(θ∗)−HL(θ∗) can be rewritten as
1

L
E
�
E [∇ log pθ∗(X0,Y0)|Y0] E [∇ log pθ∗(X0,Y0)|Y0]

T
�

and for any n ≥ 1, with En := E [∇ log pθ∗(Xn,Yn)|Yn]

2

L
E
�
En

+∞�

k=1

E [∇ log pθ∗(Xn−k,Yn−k)|Yn−k]

�
.

We first focus on the recursive estimation of the second
term on the rhs in the expression for GL(θ∗) above. Let
∆k denote an estimator of E [∇ log pθ∗(Xk,Yk)|Yk]. The
expression for the second part of the expression for GL(θ∗)
suggests the following recursions to estimate GL(θ∗) on-
line

Ḡk = (1− γk)Ḡk−1 + γk
1

2

�
∆k∆̄

T
k−1 + ∆̄k−1∆

T
k

�

∆̄k = ∆k + γ∆̄k−1 , (14)
with Ḡ0 and ∆̄0 arbitrarily initialised (Ḡ0 positive definite
though) and γ ∈ (0, 1) (but close to 1). The sequence
{Ḡk} is a sequence of asymptotically biased estimators of
GL(θ∗), but of finite variance. The bias vanishes as γ →
1, but at the expense of increased variance. Estimating
HL(θ∗) is straightforward and follows from the recursion

H̄k = (1− γk)H̄k−1 + γk∆k∆
T
k .

However in light of the expression for ΣL and in order
to reduce computational complexity it is preferable to
directly estimate the inverse of HL(θ∗). This can still be
achieved in an on-line manner using the matrix inversion
lemma, which yields the simple recursion

H̄−1
k = (1− γk)

−1H̄−1
k−1 −

γk
(1− γk)2

H̄−1
k−1∆k∆T

kH̄
−1
k−1

1 + γk

1−γk
∆T

kH̄
−1
k−1∆k

.

(15)
It is possible to simplify this expression further by consid-
ering first order terms in γk only, for γk << 1. The output
of recursions (14) and (15) can be combined to produce
estimates of ΣL. In practice θ∗ needs to be replaced with an
estimator in order to estimate ∆k: possible natural choices
include θk, θk+τ for some τ > 0 for example.
3.3 Discussion

Although the procedure described sofar covers a large class
of problems (in particular it covers the commonly used lin-
ear Gaussian models with non-linear observation equation
Shephard and Pitt [1997]), in situations where πθ is not
known analytically the “exact” on-line EM algorithm de-
scribed above cannot be exactly implemented. We outline
here simple solutions, motivated by the result of Theorem
2 which suggests that the bias can be reduced by increasing
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L or minimising the discrepancy between πθ and µθ. A
straightforward solution might consist of approximating πθ

with a parametric family {µβ} for some parameter β. This
distribution can be fitted to approximate samples from πθ

obtained by simulation of a long Markov chain {Xk} with
transition probability fθ. A particularly interesting choice
of {µβ} relies on the identity

´
X πθ(x�)fθ(x|x�)dx� = πθ(x)

which suggests the estimator, known as the look-ahead
estimator, µθ(x) = M−1

�M
k=1 fθ(x|Xk), again for {Xk}

sampled from the transition fθ and some M > 0. This
estimator is however random. An original solution we
much prefer consists of using

µθ(x1) :=

ˆ
XM

µ(x−M )
1�

k=−M+1

fθ(xk|xk−1)

for some µ ∈ P(X) and M > 0. This choice is attractive
in two respects : (a) the parameter M allows one to
modulate the bias introduced by the approximation (b) the
approach is computationally particularly interesting since
the resulting joint likelihood pθ(x0, y0, µθ) is the marginal
of pθ(x−M :1, x0, y0, µθ). As a result the EM algorithm or
gradient algorithm described earlier can be used on this
extended latent variable model, leading to the optimisation
of lL(µθ, θ), for µθ arbitrarily close to πθ for an appropriate
choice of M . In a similar vein we can suggest replacing πθ

with the filtering distribution calculated sofar. In this case
the “asymptotic” criterion implicitly optimised is of the
above and corresponds precisely to the maximum likeli-
hood estimator for L = 1. Unfortunately in practice, the
combined estimation and maximisation of the Q function
(12) involved in the implementation of the EM algorithm
might be too difficult. A pragmatic approach can consist
of ignoring the expression for the filter in the calculations
required.

4. APPLICATION TO STOCHASTIC VOLATILITY
We apply our algorithm to a stochastic volatility model
in Example 1. The importance sampling density qθ is
chosen to be a Gaussian approximation of p̄θ as described
in [Shephard and Pitt, 1997]. We first demonstrate the
performance of our algorithm on a large simulated data
set, T = 2, 500, 000 data points, with parameters φ = 0.8,
σ2
v = 0.1 and β2 = 1. The algorithm was ran with L = 10,

N = 10 and γk = 0.01 for k ≤ 5000 and γk = 1/(k −
5000).75 for k > 5000 and the results presented in below.
We used the Polyak-Ruppert averaging procedure in order
to reduce the variance of our estimates and correspond to
the smoothed (in time) estimates. Confidence intervals can
be estimated on-line, using the recursions (14) and (15)
in Subsection 3.2. We then turned to a real dataset, the
returns for pound sterling/US dollar used in Shephard and
Pitt [1997]. We ran the algorithm through the dataset 250
times with L = 10 and obtained the following values: φ̂ =
0.968± 0.016, σ̂2 = 0.035± 0.005 and β̂2 = 0.144± 0.009
(i.e. β̂ = 0.38± 0.3) which are consistent, especially for φ
and σ2, with the posterior means obtained by Shephard
and Pitt [1997] in a Bayesian setup, where the parameters
were assigned priors.
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