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Abstract Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC)
methods are the two most popular classes of algorithms used to sample from general
high-dimensional probability distributions. The theoretical convergence of MCMC
algorithms is ensured under weak assumptions, but their practical performance is
notoriously unsatisfactory when the proposal distributions used to explore the space
are poorly chosen and/or if highly correlated variables are updated independently.
We show here how it is possible to systematically design potentially very efficient
high-dimensional proposal distributions for MCMC by using SMC techniques. We
demonstrate how this novel approach allows us to design effective MCMC algo-
rithms in complex scenarios. This is illustrated by a problem of Bayesian inference
for a stochastic kinetic model.

1 Introduction

Assume that we are interested in sampling from a probability distribution π (x)

where x = (x1, . . . ,xT ) for some T > 1. For ease of presentation, we assume that
each xi ∈ X for some space X . For complex problems, it is impossible to sample
directly from π (x).
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The standard MCMC approach consists of sampling long realisations of ergodic
Markov chains with invariant distribution π(x). The Metropolis-Hastings (MH) al-
gorithm is the main known generic mechanism to define such updates. It requires
the choice of proposal distributions that sample possible states for the Markov
chain which are either accepted or rejected. A popular application of this principle
consists, for example, of repeatedly updating in turn the lower-dimensional com-
ponents xi of x conditional upon the remaining components x−i = (x1, . . . ,xi−1,

xi+1, . . . ,xT ). The size reduction often allows for a better choice of local proposal
distributions. Although this strategy can result in an improvement over the full up-
dating of x in one block, it can still be ineffective when highly dependent compo-
nents are not updated simultaneously.

SMC methods are an alternative to MCMC methods where a swarm of samples,
named particles, evolves towards the distribution of interest according to a combina-
tion of importance sampling (IS) and resampling; see [6] for a collection of articles
on the subject and [11, chapters 3 and 4]. Where traditional IS would try to directly
produce weighted samples to approximate π (x), and most likely fail for the same
reason that an independent MH (IMH) algorithm would fail, SMC methods decom-
pose the problem of sampling from π (x) into a series of “simpler” sub-problems.
We introduce a sequence of intermediate “bridging” probability distributions of in-
creasing dimension {πn (xn) ,n = 1, . . . ,T −1} with xn = (x1,x2, . . . ,xn) ∈X n, then
we sequentially sample approximately from π1 (x1) ,π2 (x2) , . . . ,πT −1 (xT −1) and
πT (x) = π(x). As is the case for MCMC algorithms this dimension reduction usu-
ally allows for the design of better proposal distributions. In this paper we present
a recent addition to the Monte Carlo toolbox named Particle MCMC (PMCMC)
which aims to take advantage of the differing strengths of MCMC and SMC meth-
ods.

The rest of this paper is organised as follows. In Section 2, we briefly review
SMC methods and discuss some of their properties. In Section 3 we present the
particle IMH sampler, a recently developed IMH update targeting π (x) which has
the capability of using SMC approximations of π (x) as a proposal mechanism [1].
In Section 4, we review extensions of this basic update to the case where we are
interested in sampling from π (θ,x) on Θ ×X T : the particle marginal MH sampler
and the particle Gibbs sampler. As shown in [1], such updates are of particular
interest in the context of inference in state-space models, but their relevance is not
limited to such models. Connections to previous work are discussed in Section 5.
Finally in Section 6, we demonstrate the performance of the methodology in the
context of inference in a stochastic kinetic model. Space constraints prevent us from
detailing all the results and proofs; we refer the reader to [1] for details.

2 Sequential Monte Carlo Methods

We briefly review here the principle of SMC methods to sample from a given
target π (x). We first introduce an artificial sequence of bridging distributions
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{πn (xn) ;n = 1, . . . ,T −1} of increasing dimension and define πT (xT ) = π (x).
Each distribution is assumed known up to a normalising constant, that is

πn (xn) = γn (xn)

Zn

,

where γn : X n → R
+ can be evaluated pointwise, but Zn is unknown. We will use

the notation Z for ZT . An SMC algorithm also requires us to specify an importance
distribution q1 (x1) on X in order to initialise the recursion at time 1 and a family of
proposal distributions {qn (xn|xn−1) ;n = 2, . . . ,T } in order to extend xn−1 ∈ X n−1

by sampling xn ∈X conditional upon xn−1 at time instants n = 2, . . . ,T . Guidelines
on how to best select qn (xn|xn−1) are well known, and the main recommendation
is to use the conditional distribution πn (xn|xn−1) or an approximation [6], [11].
An SMC algorithm also involves a resampling procedure of the N particles, which
relies on a family of probability distributions {r( ·|w),w ∈ [0,1]N } on {1, . . . ,N}N .
The resampling step is usually necessary as in most applications the variance of the
importance weights would otherwise typically increase exponentially with n.

The algorithm proceeds as follows to produce a sequence of samples {Xi
n, i =

1, . . . ,N} for n = 1, . . . ,T . Note that we adopt below the convention that whenever
the index i is used we mean “for all i ∈ {1, . . . ,N}.” Further on, we also use the stan-
dard convention whereby capital letters are used for random variables while lower
case letters are used for their values. We also use the notation Wn = (

W 1
n , . . . ,WN

n

)

and An = (
A1

n, . . . ,A
N
n

)
.

Sequential Monte Carlo Algorithm
n = 1

• Sample Xi
1 ∼ q1(·).

• Update and normalise the weights

w1
(
Xi

1

) = γ1(Xi
1)

q1(Xi
1)

, Wi
1 = w1

(
Xi

1

)

∑N
k=1 w1

(
Xk

1

) . (1)

For n = 2, . . . ,T

• Sample An−1 ∼ r (·|Wn−1).

• Sample Xi
n ∼ qn( ·|X

Ai
n−1

n−1 ) and set Xi
n = (X

Ai
n−1

n−1 ,Xi
n).

• Update and normalise the weights

wn

(
Xi

n

) = γn

(
Xi

n

)

γn−1

(
X

Ai
n−1

n−1

)
qn

(
Xi

n

∣
∣∣X

Ai
n−1

n−1

) , W i
n = wn

(
Xi

n

)

∑N
k=1 wn

(
Xk

n

) . (2)

The variable Ai
n−1 plays an important role in our formulation of SMC methods, and

represents the index of the “parent” at time n− 1 of particle Xi
n for n = 2, . . . ,T .

The vector An is thus a random mapping defined on {1, . . . ,N} → {1, . . . ,N}N , and
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Fig. 1 Example of ancestral lineages generated by an SMC algorithm for N = 5 and T = 3. The
lighter path is X2

1:3 = (X3
1,X4

2,X2
3) and its ancestral lineage is B2

1:3 = (3,4,2).

the resampling procedure is thus interpreted here as being the operation by which
child particles at time n choose their parent particles at time n − 1 according to a
probability r(·|Wn−1) dependent on the parents’ weights Wn−1, or “fitness.” The in-
troduction of the variables An allows us to keep track of the “genealogy” of particles
and is necessary to describe precisely one of the algorithms introduced later on (see
Section 4). For this purpose, for i = 1, . . . ,N and n = 1, . . . ,T we introduce Bi

n the
index the ancestor particle of Xi

T at generation n had at that time. More formally for
i = 1, . . . ,N we define Bi

T := i and for n = T −1, . . . ,1 we have the following back-

ward recursive relation Bi
n := A

Bi
n+1

n . As a result for any i = 1, . . . ,N we have the

identity Xi
T = (X

Bi
1

1 ,X
Bi

2
2 , . . . ,X

Bi
T −1

T −1 ,X
Bi

T

T ) and Bi
T = (Bi

1,B
i
2, . . . ,B

i
T −1,B

i
T = i)

is the ancestral ‘lineage’ of a particle. This is illustrated in Figure 1.
This SMC algorithm provides an approximation of π (x) and its normalising con-

stant Z given by

π̂ (x) =
N∑

i=1

Wi
T δXi

T
(x) and Ẑ =

T∏

n=1

[
1

N

N∑

i=1

wn

(
Xi

n

)
]

. (3)

The validity of the algorithms presented here relies on a set of very weak assump-
tions. First we require the importance weight functions wn (xn) to be properly de-
fined; i.e. the supports of the proposals cover the supports of the targets. Second it
also relies on the following assumptions on the resampling procedure.

Let Oi
n = ∑N

k=1 I
{
Ak

n = i
}

be the number of offspring of particle i at time n.
Then for any i = 1, . . . ,N and n = 1, . . . ,T the resampling scheme must satisfy the
following unbiasedness condition

E
[
Oi

n|Wn

] = NWi
n . (4)
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In fact in practice, for computational efficiency, On = (
O1

n, . . . ,ON
n

)
is typically

drawn first (i.e. without explicit reference to An) according to a probability distri-
bution s(·|Wn) such that (4) holds and the offspring then matched to their parents.
For example, the simplest unbiased resampling algorithm consists of sampling On

according to a multinomial distribution of parameters (N,Wn). More sophisticated
schemes such as residual resampling [11] and stratified resampling [9] also sat-
isfy (4). Once On has been sampled, this is followed by a deterministic allocation
procedure of the child particles to the parents, which defines a new set of indices
e.g. the O1

n first child particles are associated to the parent particle number 1, i.e.

A1
n = 1, . . . ,A

O1
n

n = 1, likewise for the O2
n following child particles and the parent

particle number 2, i.e. A
O1

n+1
n = 2, . . . ,A

O1
n+O2

n
n = 2 etc.

Further on, we will impose the slightly stronger unbiasedness condition

r
(
Ai

n = k|Wn

) = Wk
n . (5)

Note that even if (4) holds then (5) is not necessarily satisfied, for example by the
standard deterministic allocation procedure, but this property can be easily enforced
by the addition of a random permutation of these indices. As we shall see our in-
dexing system makes the writing of the probability distributions underpinning our
algorithms extremely simple.

Many sharp convergence results have been established for SMC methods includ-
ing Lp-bounds, central limit theorems, large deviations results etc.; see [4] for a
detailed overview of these results.

3 Particle Independent MH Sampler

The aim of this review is to outline how SMC approximations of π(x) can be used
as proposal distributions for MCMC algorithms. It is natural to suggest the use of
the unconditional distribution of a particle generated by an SMC algorithm targeting
π(x) as a proposal distribution for an IMH algorithm targeting π(x). This is likely
to result in a very efficient IMH algorithm as discussed in the previous section. It
is easy to sample from this unconditional distribution by running an SMC targeting
π(x) to obtain π̂(x) given in (3) and then sample from π̂ (x). However, computing
the MH acceptance ratio of such a MH update would then require us to be able to
evaluate

q (x) = E
(
π̂(x)

)
, (6)

where the expectation is with respect to all the variables used to generate π̂ (x): this
is practically impossible. We show below how it is possible to bypass this problem.
We would like to stress at this point the fact that we do not believe that the PIMH
algorithm on its own is a practically relevant alternative to standard SMC approxi-
mations of π(x). However its pedagogical value should become clear below while
one should bear in mind that, as it is the case with standard IMH type updates, such
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an update can be of interest when used in conjunction with other MCMC updates. In
order to illustrate the simplicity of the implementation of our approach we describe
a particular instance of the methodology in order to sample from π(x), where x is
updated in one single block.

3.1 Algorithm

In order to sample from π(x) the particle IMH (PIMH) sampler proceeds as follows
(with the notation of Section 2, in particular (3)):

Particle Independent Metropolis-Hastings Sampler
Initialization, m = 0

• Run an SMC algorithm targeting π(x), sample X(0) ∼ π̂ (·) and compute Ẑ (0).

At iteration m ≥ 1

• Run an SMC algorithm targeting π(x), sample X∗ ∼ π̂ (·) and compute Ẑ∗.
• With probability

1∧ Ẑ∗

Ẑ (m−1)
, (7)

set X(m) = X∗ and Ẑ (m) = Ẑ∗, otherwise set X(m) = X(m−1) and Ẑ (m) = Ẑ (m−1).

The output of the algorithm is the chain {X(m)}m≥0. Note the interesting property
that the acceptance probability (7) converges to 1 as N → ∞ since both Ẑ∗ and
Ẑ (m−1) are consistent estimates of the unknown normalising constant Z, under
weak assumptions.

3.2 Extended Proposal and Target Distributions

We show here the surprising result that the invariant distribution of the PIMH sam-
pler is π (x) for any N ≥ 1. The key to establish this result is to reformulate the
PIMH as a standard IMH sampler defined on an extended state-space with a suit-
able invariant distribution.

Sampling from the proposal q (x) in (6) requires sampling π̂(x) then drawing one
particle XT from π̂ (x) by setting X = XK

T where Pr
(
K = k| π̂ (x)

) = Wk
T . Denoting

for n = 1, . . . ,T the set of N simulated X -valued random variables at time n as
Xn := (

X1
n, . . . ,X

N
n

) ∈ XN , then the joint probability distribution of all the random
variables used in the proposal distribution is

q (k, x̄1, . . . , x̄T ,a1, . . . ,aT −1) = wk
T ψ (x̄1, . . . , x̄T ,a1, . . . ,aT −1) (8)
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where wk
T is a realization of WK

T and

ψ (x̄1, . . . , x̄T ,a1, . . . ,aT −1)

:=
(

N∏

i=1

q1
(
xi

1

)
)

T∏

n=2

(

r (an−1|wn−1)

N∏

i=1

qn(x
i
n

∣∣x
ai
n−1

n−1 )

)

is the distribution of all the random variables generated by the SMC sampler de-
scribed in Section 2, which is defined on X T N ×{1, . . . ,N}(T −1)N+1. We now de-
fine, on the same space, the following artificial target probability distribution

π̃ (k, x̄1, . . . , x̄T ,a1, . . . ,aT −1) (9)

= π
(
xk
T

)

NT

ψ (x̄1, . . . , x̄T ,a1, . . . ,aT −1)

q1(x
bk

1
1 )

∏T
n=2 r(bk

n−1|wn−1)qn(x
bk
n

n |xbk
n−1

n−1 )

= π
(
xk
T

)

NT

∏T

i=1,i 	=bk
1

q1(x
i
1)

∏T −1

n=1
r(a

−bk
n

n−1|wn−1,b
k
n)

∏T

i=1,i 	=bk
n

qn(x
i
n

∣∣x
ai
n−1

n−1 )

where we have used the notation a
−bk

n

n−1 = an−1\{abk
n

n−1}. By construction, we have
XK

T ∼ π under π̃ and it is easy to check that

π̃ (k,x1, . . . ,xT ,a1, . . . ,aT −1)

q(k,x1, . . . ,xT ,a1, . . . ,aT −1)
= 1

NT

π
(
xk
T

)

wk
T q1(x

bk
1

1 )
∏T

n=2 r(bk
n−1|wn−1)qn(x

bk
n

n |xbk
n−1

n−1 )

= 1

NT

π
(
xk
T

)

q1(x
bk

1
1 )

T∏

n=2
qn(x

bk
n

n |xbk
n−1

n−1 )
T∏

n=1
w

bk
n

n

=
π

(
xk
T

) T∏

n=1

(
1
N

∑N
m=1 wn

(
xm
n

))

q1(x
bk

1
1 )

T∏

n=2
qn(x

bk
n

n |xbk
n−1

n−1 )
T∏

n=1
wn(x

bk
n

n )

= Ẑ

Z
.

In the calculations above we have used (5) on the second line whereas the final result
is obtained thanks to the definitions of the incremental weights (1)–(2) and of the
normalising constant estimate (3). This allows us to conclude that the PIMH sam-
pler is a standard IMH sampler of target distribution π̃ (k, x̄1, . . . , x̄T ,a1, . . . ,aT −1)

and proposal distribution q(k,x1, . . . ,xT ,a1, . . . ,aT −1). This indeed follows by the
definition of q(k,x1, . . . ,xT ,a1, . . . ,aT −1) and the last calculation above which ex-
plains the form of the acceptance probability of the PIMH. This IMH sampler is
automatically irreducible and aperiodic as we have made the assumption that the
importance weight functions wn (xn) are properly defined.
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3.3 Structure of the Invariant Distribution and Alternative
Algorithm

To better understand the structure of the artificial target π̃ , we explain here how we
would sample from it. The algorithm follows straightforwardly from (9).

• Sample uniformly on {1, . . . ,N}T an ancestral lineage BK
T = (

BK
1 ,BK

2 , . . . ,BK
T

)
.

Recall that we have BK
T = K , BK

n := A
BK

n+1
n .

• Sample XK
T = (X

BK
1

1 ,X
BK

2
2 , . . . ,X

BK
T −1

T −1 ,X
BK

T

T ) ∼ π . Obviously we cannot do this,
which is why we are using MCMC in the first place.

• Sample all the remaining variables conditional upon
(
XK

T ,BK
T

)
according to their

conditional distribution under π̃ .

Sampling from this conditional distribution under π̃ can be achieved using the

following conditional SMC algorithm. We recall that A
−BK

n

n−1 = An−1\{ABK
n

n−1}.

Conditional Sequential Monte Carlo Algorithm
n = 1

• For i 	= BK
1 , sample Xi

1 ∼ q1(·).
• Compute w1

(
Xi

1

)
and normalise the weights Wi

1 ∝ w1
(
Xi

1

)
.

For n = 2, . . . ,T

• Sample A
−BK

n

n−1 ∼ r(·|Wn−1,A
BK

n

n−1).

• For i 	= BK
n , sample Xi

n ∼ qn( ·|X
Ai

n−1
n−1 ) and set Xi

n = (X
Ai

n−1
n−1 ,Xi

n).
• Compute wn

(
Xi

n

)
and normalise the weights Wi

n ∝ wn

(
Xi

n

)
.

In the case of multinomial resampling, denoting B (a,b) the binomial distribu-
tion of parameters (a,b), B+ (a,b) the binomial distribution of similar parameters
restricted to {1, . . . ,N} and M(a,b) the multinomial distribution, an efficient ap-

proach to sample A
−BK

n

n−1 ∼ r(·|Wn−1,A
BK

n

n−1) proceeds as follows.

• Sample O
BK

n

n−1 ∼ B+
(
N,W

BK
n

n−1

)
.

• Allocate randomly O
BK

n

n−1 − 1 parent indexes uniformly in {1, . . . ,N}\{
BK

n

}

and set these parents equal to BK
n−1.

• For i 	= BK
n compute W

i

n−1 ∝ Wi
n−1 with

∑N
i=1,i 	=BK

n
W

i

n−1 = 1 and denote

Wn−1 these N −1 weights.

• Sample On−1\
{
O

BK
n

n−1

}
∼ M

(
N −O

BK
n

n−1,Wn−1

)
.

• Allocate randomly the associated parent indexes uniformly
in {1, . . . ,N}\{

indexes with parents equal to BK
n−1

}
.
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This procedure follows directly from the fact that On−1 ∼ M(N,Wn−1) so the

marginal distribution of O
BK

n

n−1 is B
(
N,W

BK
n

n−1

)
and, conditional upon O

BK
n

n−1, we have

On−1\
{
O

BK
n

n−1

}
∼ M

(
N −O

BK
n

n−1,Wn−1

)
. Finally conditional upon O

BK
n

n−1 ≥ 1 we

have O
BK

n

n−1 ∼ B+
(
N,W

BK
n

n−1

)
.

Note that an alternative to the PIMH algorithm to sample from π (x) con-
sists of alternating a conditional SMC step to update π̂(x) and a step to sam-
ple

(
XK

T ,BK
T

)
from π̂(x). For any N ≥ 1, this algorithm admits π (x) as invari-

ant distribution as it is just a (collapsed) Gibbs sampler of invariant distribution
π̃ (k, x̄1, . . . , x̄T ,a1, . . . ,aT −1). Contrary to the PIMH, it is here necessary to have
N ≥ 2 to ensure irreducibility of this sampler.

3.4 Using All the Particles

The standard estimate of
∫
f (x)π(x)dx for M MCMC iterations is 1

M

∑M
m=1f (X(m)).

A possible criticism of the PIMH is that in the implementation above we generate N

particles at each iteration m of the MCMC algorithm to decide whether to accept or
reject one single candidate. This might appear wasteful. However, it can be shown
that the estimate

1

M

M∑

m=1

(
N∑

i=1

Wi
T (m)f (Xi

T (m))

)

converges also towards
∫

f (x)π (x)dx as M → ∞ where {Wi
T (m),Xi

T (m)} cor-
responds to the set of normalized weights and particles used to compute Ẑ (m).
Following [8] it is also possible to propose an estimate which recycles the candidate
populations of particles rejected by the PIMH; see [1] for details.

4 Particle Marginal MH Sampler and Particle Gibbs Sampler

We now consider the case where we are interested in sampling from a distribution

π (θ,x) = γ (θ,x)

Z

with γ : Θ ×X T → R
+ assumed known pointwise and Z a possibly unknown nor-

malising constant, independent of θ ∈ Θ . For many statistical models of practical
interest x can be high dimensional (e.g. a vector of latent variables of the size of a
large dataset) and the conditional distribution π (x|θ) is non-standard. We have

π (x|θ) = γ (θ,x)

γ (θ)
, π (θ) = γ (θ)

Z



54 Christophe Andrieu, Arnaud Doucet, and Roman Holenstein

where γ (θ) = ∫
X T γ (θ,x)dx is typically unknown. We propose here two strategies

to sample from π (θ,x). The first strategy consists of using a particle approximation
of an MH algorithm updating simultaneously θ and x. The second strategy consists
of using a particle approximation of the Gibbs sampler sampling from π (x|θ) and
π (θ |x) .

Both strategies will rely on the use of an SMC algorithm in order to pro-
pose approximate samples from π (x|θ) and approximately compute its normalis-
ing constant γ (θ). Hence we need to consider a family of bridging distributions
{πn (xn|θ) ;n = 1, . . . ,T −1} where

πn (xn|θ) = γn (θ,xn)

Zθ
n

(10)

and πT (xT |θ) = π (x|θ) and a family of proposal distributions {qθ
n (xn|xn−1)} that

defines sampling of xn ∈ X conditional upon xn−1 ∈ X n−1 and θ . Note that Zθ
T =

γ (θ).

4.1 Particle Marginal MH Sampler

Consider a MH algorithm of target distribution π (θ,x). Assume for the time being
that sampling from π (x|θ) for any θ ∈ Θ is feasible and recall the standard de-
composition π (θ,x) = π (θ)π (x|θ). In such situations it is natural to suggest the
following form of proposal distribution for an MH update

q
( (

θ∗,x∗)∣∣(θ,x)
) = q

(
θ∗∣∣θ

)
π

(
x∗|θ∗) ,

for which the proposed x∗ is perfectly “adapted” to the proposed θ∗, and the only
degree of freedom of the algorithm is q (θ∗|θ), suggesting that the algorithm ef-
fectively targets the marginal distribution π (θ) as the MH acceptance ratio is given
by

1∧ π (θ∗,x∗)
π (θ,x)

q ( (θ,x)|(θ∗,x∗))
q ( (θ∗,x∗)|(θ,x))

= 1∧ γ (θ∗)
γ (θ)

q(θ |θ∗)
q(θ∗|θ)

. (11)

This algorithm is appealing since the difficult problem of sampling from π (θ,x) is
reduced to that of sampling from π (θ) which is typically defined on a much smaller
space and for which the design of proposal density is usually easier. Unfortunately,
as discussed earlier, sampling exactly from π (x|θ) is rarely feasible and γ (θ) is
rarely known analytically, preventing the use of the above “idealized” Marginal MH
(MMH) algorithm. It is natural to propose a Particle MMH (PMMH) algorithm
which is a particle approximation of this “ideal” MMH algorithm using an SMC
approximation of both samples from π (x|θ) and of its normalising constant γ (θ).
The PMMH algorithm proceeds as follows.
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Particle Marginal Metropolis-Hastings Sampler
Initialization, m = 0

• Set randomly θ (0) .

• Run an SMC algorithm targeting π (x|θ (0)), sample X(0) ∼ π̂ ( ·|θ (0)) and compute
γ̂ (θ (0)).

At iteration m ≥ 1

• Sample θ∗ ∼ q ( ·|θ (m−1)).
• Run an SMC algorithm targeting π (x|θ∗), sample X∗ ∼ π̂ ( ·|θ∗) and compute γ̂ (θ∗).
• With probability

1∧ γ̂ (θ∗)
γ̂ (θ (m−1))

q ( θ (m−1)|θ∗)
q ( θ∗|θ (m−1))

(12)

set θ (m) = θ∗, X(m) = X∗, γ̂ (θ (m)) = γ̂ (θ∗), otherwise set θ (m) = θ (m−1), X(m) =
X(m−1), γ̂ (θ (m)) = γ̂ (θ (m−1)) .

Under very weak assumptions, the acceptance ratio (12) converges to (11) as
N → ∞. However more remarkably it can be established, using a reasoning very
similar to that used for the PIMH algorithm, that this algorithm admits π (θ,x) as
invariant distribution for any N ≥ 1.

4.2 Particle Gibbs Sampler

A popular alternative to the MH algorithm to sample from π (θ,x) consists of using
the Gibbs sampler. Numerous implementations rely on the fact that sampling from
the conditional distribution π (θ |x) is feasible and thus the potentially tedious design
of a proposal for θ can be bypassed. We will assume that this is the case here.
Sampling from π (x|θ) is typically impossible so we propose the following particle
approximation.

Particle Gibbs Sampler
Initialization, m = 0

• Set randomly θ (0).
• Run an SMC algorithm targeting π (x|θ (0)), sample X(0) ∼ π̂ (·|θ (0)) and denote B(0)

its ancestral lineage.

At iteration m ≥ 1

• Sample θ (m) ∼ π (·|X(m−1)).
• Run a conditional SMC algorithm for θ (m) consistent with X(m−1) ,B(m−1), sample

X(m) ∼ π̂ (·|θ (m)) and denote B(m) its ancestral lineage.

Under very weak assumptions, the interesting feature of this algorithm is that it
admits π (θ,x) as invariant distribution for any N ≥ 1. Contrary to the PIMH and the
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PMMH algorithms, it is however necessary to have N ≥ 2 to ensure irreducibility
of the Particle Gibbs (PG) sampler.

5 Extensions and Discussion

For ease of presentation, we have limited our description to one of the simplest SMC
algorithms. However numerous more sophisticated algorithms have been proposed
in the literature over the past fifteen years to improve on such basic schemes. In
particular, in many applications of SMC, the resampling step is only performed
when the accuracy of the estimator is poor. Practically, this is assessed by looking
at the variability of the weights using the so-called Effective Sample Size (ESS)
criterion [11, pp. 35–36] given at time n by

ESS =
(

N∑

i=1

(
Wi

n

)2

)−1

.

Its interpretation is that inference based on the N weighted samples is approximately
equivalent to inference based on ESS perfect samples from the target. The ESS takes
values between 1 and N and we resample only when it is below a threshold NT

otherwise we set Wi
n ∝ Wi

n−1 wn

(
Xi

n

)
. We refer to this procedure as dynamic re-

sampling. All the strategies presented in the previous sections can also be applied in
this context. The PIMH and PMMH can be implemented in the dynamic resampling
context without any modification. However, the PG is more difficult to implement
as the conditional SMC step requires simulating a set of N − 1 particles not only
consistent with a “frozen” path but also consistent with the resampling times of the
SMC method used to generate the “frozen” path [1].

The PIMH algorithm presented in Section 3 is related to the Configurational-
Biased Monte Carlo (CBMC) method which is a very popular method in molecular
simulation used to sample long proteins [7]. Similarly to the PIMH sampler, the
CBMC algorithm samples N particles and uses resampling steps. However, the re-
sampling step used by the CBMC algorithm is such that a single particle survives, to
which a new set of N offspring is then attached. Using our notation, this means that
the CBMC algorithm corresponds to the case where Ai

n = A
j
n for all i,j = 1, . . . ,N

and A1
n ∼ r(·|Wn) i.e. at any time n, all the children share the same and unique

parent particle. The problem with this approach is that it is somewhat too greedy
and that if a “wrong” decision is taken too prematurely then the proposal will be
most likely rejected. It can be shown that the acceptance probability of the CBMC
algorithm does not converge to 1 for T > 1 as N → ∞ contrary to that of the
PIMH algorithm. It has been more recently proposed in [3] to improve the CBMC
algorithm by propagating forward several particles simultaneously in the spirit of
the PIMH algorithm. However, contrary to us, the authors in [3] propose to kill or
multiply particles by comparing their weights wn

(
Xi

n

)
with respect to some pre-

specified lower and upper thresholds; i.e. the particles are not interacting and their
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number is a random variable. In simulations, they found that the performance of this
algorithm was very sensitive to the values of these thresholds. Our approach has the
great advantage of bypassing the delicate choice of such thresholds. In statistics, a
variation of the CBMC algorithm known as the Multiple-Try Method (MTM) has
been introduced in the specific case where T = 1 in [10]. The key of our methodol-
ogy is to build efficient proposals using sequential and interacting mechanisms for
cases where T � 1: the sequential structure might be natural for some models (e.g.
state-space models) but can also be induced in other scenarios in order to take ad-
vantage of the potential improvement brought in by the interacting mechanism [5].
In this respect, both methods do not apply to the same class of problems.

6 Application to Markov Jump Processes

We consider here a discretely observed stochastic kinetic Lotka-Volterra (LV)
model. This model is often used to describe biochemical networks which exhibit
auto-regulatory behaviour; see [12] for a thorough description of these models and
their applications to system biology. Having access to noisy biochemical data, our
objective is to perform Bayesian inference for the kinetic rate constants of the LV
models

The LV model describes the evolution of two species X1
t (prey) and X2

t (predator)
which are continuous-time non-negative integer-valued processes. In a small time
interval (t, t +dt], there are three possible transitions for the Markov Jump Process
(MJP) Xt = (

X1
t ,X

2
t

)

Pr
(
X1

t+dt=x1
t +1,X2

t+dt=x2
t

∣∣x1
t ,x2

t

) = αx1
t dt +o(dt) ,

Pr
(
X1

t+dt=x1
t −1,X2

t+dt=x2
t +1

∣∣x1
t ,x2

t

) = β x1
t x2

t dt +o(dt) ,

Pr
(
X1

t+dt=x1
t ,X2

t+dt=x2
t −1

∣∣x1
t ,x2

t

) = γ x2
t dt +o(dt) ,

corresponding respectively to prey reproduction, predator reproduction and prey
death, and predator death. We assume that we only have access to a noisy estimate

of the number of preys Yn =X1
nΔ +Wn with Wn

i.i.d.∼ N
(
0,σ 2

)
. We are interested

here in making inferences about the kinetic rate constants θ = (α,β,γ ) which are
assumed to be a priori distributed as

α ∼ G(1,10), β ∼ G(1,0.25), γ ∼ G(1,7.5)

where G is the Gamma distribution [12, pp. 188–189]. The initial populations
X1

0,X
2
0 are assumed to be uniformly distributed in the interval {20,21, . . . ,80}.

We are interested in the posterior distribution p(xT ,θ |yT ) where
xT = (

x0,x2Δ,. . . ,x(T −1)Δ

)
and yT = (y0,y1, . . . ,yT −1). This inference problem

has already been addressed in [2]. In this paper, the authors propose a sophisticated
reversible jump MCMC algorithm and a block updating strategy to sample from
p(xT ,θ |yT ). The reversible jump MCMC is used to sample the continuous-time
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process Xt (and its unknown number of transitions) in the interval [0, (T −1)Δ]
whereas the block updating strategy attempts to update Xt for t ∈ [(k −1)Δ,kΔ]
using a sensible proposal. The authors note that both “algorithms suffered sig-
nificant mixing problems”. We use here the PMMH algorithm with πn (xn|θ) =
p(xn|yn,θ). For the SMC proposals, we simply use the prior of Xt from which
it is easy to sample using Gillespie’s algorithm [12, pp. 188–189]. For the param-
eters, we use a Gaussian random walk proposal whose parameters were estimated
in a short preliminary run. We could have alternatively used an adaptive MCMC
strategy. We generated T = 50 observations by simulating the MJP using Gille-
spie’s algorithm with parameters α = 2, β = 0.05, γ = 1.5, Δ = 0.2, σ 2 = 4 and
X1

0 = X2
0 = 40; see Figure 2. We ran the algorithms for 100,000 iterations with a

burn-in of 20,000. For N = 1000, the average acceptance rate of the PMMH sampler
was 36%. The results are displayed in Figure 3.

Fig. 2 Lotka-Volterra data. The number of prey X1
t and predators X2

t are shown in dotted and solid
lines, respectively. The squares indicate the observations Yn.

In Figure 4, we display the autocorrelation function (ACF) for the parameters
(α,β) for various N . We can see that N = 500 is sufficient in this case for obtaining
good performance and that increasing N does not improve the performance of the
PMMH algorithm.

7 Conclusion

We have presented a new class of MCMC algorithms which rely on proposal distri-
butions built using SMC methods. One of the major advantages of this approach is



Particle Markov Chain Monte Carlo for Efficient Numerical Simulation 59

Fig. 3 Histograms and scatter plots of the sampled parameters. The straight lines on histograms
represent the true values of the parameters.

Fig. 4 Autocorrelation of the parameter α (left) and β (right) for the PMMH sampler for various
numbers N of particles.

that it systematically builds high-dimensional proposal distributions whilst requiring
the practitioner to design only low-dimensional proposal distributions. It offers the
possibility to simultaneously update large vectors of dependent random variables.
The lower the variance of the SMC estimates of the normalising constants, the bet-
ter the performance of these algorithms. This strategy is computationally expensive
but to some extent unavoidable and useful in complex scenarios for which standard
proposals are likely to fail.

We believe that many problems in statistics where SMC methods have already
been used could benefit from PMCMC methods. We have already successfully used
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this methodology to fit complex continuous-time Lévy-driven stochastic volatility
models and Dirichlet process mixtures [1]. Note that in the former case proposing
samples from the prior distribution is the only known approach, which can lead to
poor results when using standard MCMC algorithms. The CBMC method, to which
our approach is related, is a very popular method in computational chemistry and
physics which has been widely used for molecular and polymer simulation [7], and
PMCMC algorithms might also prove useful in these areas.

References

1. Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. Journal
of the Royal Statistical Society Series B, to appear.

2. Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.L.: Bayesian inference for a discretely observed
stochastic kinetic model. Statistics and Computing 18, 125–135 (2008)

3. Combe, N., Vlugt, T.J.H., Wolde, P.R., Frenkel, D.: Dynamic pruned-enriched Rosenbluth
method. Molecular Physics 101, 1675–1682 (2003)

4. Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with
Applications, Springer-Verlag, New York (2004)

5. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society Series B 68, 411–436 (2006)

6. Doucet, A., Freitas, de J.F.G., Gordon, N.J (eds.): Sequential Monte Carlo Methods in Prac-
tice. Springer-Verlag, New York (2001)

7. Frenkel, D., Smit, B.: Understanding Molecular Simulation. 2nd edition, Academic Press,
Orlando (2002)

8. Frenkel, D.: Waste-recycling Monte Carlo. In Computer simulations in condensed matter:
from materials to chemical biology, Lecture Notes in Physics 703, Springer Berlin, 127–138
(2006)

9. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models.
Journal of Computational and Graphical Statistics 5, 1–25 (1996)

10. Liu, J.S., Liang, F., Wong, W.H.: The use of multiple-try method and local optimization in
Metropolis sampling. Journal of the American Statistical Association 95, 121–134 (2000)

11. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer Verlag, New York (2001)
12. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC Press,

Boca Raton (2006)



Particle Markov chain Monte Carlo for Effi cient Simulation -
Erratum

The procedure described pages 52 and 53 after the conditional SMC algorithm to sample effi ciently in
the multinomial case in incorrect. DenotingM (a,b) the multinomial distribution, the correct approach to

sample A−BK
n

n−1 ∼ r(·|Wn−1, A
BK
n

n−1) proceeds as follows.

• Sample On−1 ∼M (N − 1,Wn−1) then set O
BK
n−1

n−1 = O
BK
n−1

n−1 + 1.
• Sample the indices of the N − 1 ‘free’offspring uniformly on the set {1, ..., N} \

{
BKn−1

}
.
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