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Abstract

In many scenarios, a state-space model depends on a parameter which needs to be inferred from
data. Using stochastic gradient search and the optimal filter first-order derivatives, the parameter can
be estimated online. To analyze the asymptotic behavior of such methods, it is necessary to establish
results on the existence and stability of the optimal filter higher-order derivatives. These properties are
studied here. Under regularity conditions, we show that the optimal filter higher-order derivatives exist
and forget initial conditions exponentially fast. We also show that the same derivatives are geometrically
ergodic.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

State-space models, also known as continuous-state hidden Markov models, are a powerful
and versatile tool for statistical modeling of complex time-series data and stochastic dynamic
systems. These models can be viewed as a discrete-time Markov process which are observed
only through noisy measurements of their states. In this context, one of the most important
problems is the optimal estimation of the current state given the noisy measurements of the
current and previous states. This problem is known as optimal filtering. Optimal filtering has
been studied in a number of papers and books; see, e.g., [3,4,9] and references therein.
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In many applications, a state-space model depends on a parameter whose value needs to
be inferred from data. When the number of data points is large, it is desirable, for the sake
of computational efficiency, to infer the parameter recursively (i.e., online). In the maximum
likelihood approach, recursive parameter estimation can be performed using stochastic gradient
search, where the underlying gradient estimation is based on the optimal filter and its
first-order derivatives; see, e.g., [10,15,17]. In [17], it has been shown that the asymptotic
behavior of recursive maximum likelihood estimation in finite-state hidden Markov models is
closely related to the analytical properties, higher-order differentiability and analyticity, of the
underlying log-likelihood rate. In view of the recent results on stochastic gradient search [20],
a similar relationship is likely to hold for state-space models. However, to apply the results
of [20] to recursive maximum likelihood estimation in state-space models, it is necessary to
establish results on the higher-order differentiability of the log-likelihood rate for these models.
Since the log-likelihood rate for state-space models is a functional of the optimal filter, the
analytical properties of this rate are tightly connected to the existence and stability of the
optimal filter higher-order derivatives. Hence, one of the first steps to carry out asymptotic
analysis of recursive maximum likelihood estimation in state-space models is to establish results
on the existence and stability of these derivatives. To the best of our knowledge, this problem
has never been addressed before and the results presented here fill this gap in the literature on
optimal filtering.

In this paper, the optimal filter higher-order derivatives and their existence and stability
properties are studied. Under standard stability and regularity conditions, we show that these
derivatives exist and forget initial conditions exponentially fast. We also show that the optimal
filter higher-order derivatives are geometrically ergodic. The obtained results cover state-space
models met in practice and are one of the first stepping stones to analyze the asymptotic
behavior of recursive maximum likelihood estimation in non-linear state-space modes [18].

The paper is organized as follows. In Section 2, the existence and stability of the optimal
filter higher-order derivatives are studied and the main results are presented. In Section 3, the
main results are used to study the analytical properties of log-likelihood for state-space models.
An example illustrating the main results is provided in Section 4. In Sections 5-8, the main
results and their corollaries are proved.

2. Main results

2.1. State-space models and optimal filter

To specify state-space models and to formulate the problem of optimal filtering, we use the
following notation. For a set Z in a metric space, B(Z) denotes the collection of Borel subsets
of Z.d, > 1 and dy, > 1 are integers, while X" € B(R%) and Y € BR®). P(x,dx’) is a
transition kernel on X, while Q(x, dy) is a conditional probability measure on ) given x € X.
(£2, F, P) is a probability space. Then, a state-space model can be defined as an X x Y-valued
stochastic process {(X,, Y,)}n>0 on (§2, F, P) which satisfies

P (X1, Yos1) € BlXom You) = f I5(x, y)Q(x, dy)P(X,, dx)

almost surely for any B € B(X x V) and n > 0. {X,},>0 are the unobservable states, while
{Y,}n>0 are the observations. One of the most important problems related to state-space models
is the estimation of the current state X, given the state-observations Yp.,. This problem is
known as filtering. In the Bayesian approach, the optimal estimation of X, given Y., is based
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on the (optimal) filtering distribution P(X, € dx,|Y1.,,). As P(x,dx’) and Q(x, dy) are rarely
available in practice, the filtering distribution is usually computed using some approximate
models.

In this paper, we assume that the model {(X,, ¥;)},>0 can be accurately approximated by
a parametric family of state-space models. To define such a family, we rely on the following
notation. Let d > 1 be an integer, while © C R? is a bounded open set. P(X) is the set of
probability measures on X, while u(dx) and v(dy) are measures on X and ) (respectively).
po(x’|x) and gg(y|x) are functions which map 6 € @, x,x’ € X, y € Y to [0, 00) and satisfy

/Pe(x/lx)u(dX’) = /Qe(yIX)V(dy) =1

for all 6 € O, x € X. With this notation, a parametric family of state-space models can
be defined as an X' x Y-valued stochastic process {(X%*, Y?*)} _on (2, F, P) which is
parameterized by 0 € O, A € P(X) and satisfies

P(xg* ¥ e B) = / / I(x, Y)ao(y1Mx)V(dy),

n>0

P (v e 8|52 75) = [ [ 1ne anO1ope X dovan

almost surely for any B € B(X x Y) and n > 0.
To show how the filtering distribution is computed using approximate model
{(x8*, Yf’*)}wo, we use the following notation. ry(y, x’|x) is the function defined by

ro(y, x'|x) = qo(y|x") po (x| x) (1)

for0 € O, x,x' € X, y € ), while rg’,‘;”(x’|x) is the function recursively defined by

ro %) = rp(ymars X'%), g x) = / ro(yngts X' X"y (" )u(dx") (2)

for n > m > 0 and any sequence y = {y,},>1 in Y. py'J'(x|1) and Pj'}"(dx|2) are the function
and the probability measure defined by

frg’f;”(xlx/))»(dx’)
Ty e u(dxa(dx’)

for B € B(X), » € P(X), while Pj'J"(%) is a ‘short-hand’ notation for Pj')"(dx|A). Then, it
can easily be shown that P(,”fy‘"()») is the filtering distribution, i.e.,

pExln) = PJ"(B) = f PRI Dpdxy  (3)
B

Pyy(BIy) = P (x,f’* eB|Y)} = yl;n)

foreach 8 € O, B € B(X), A € P(X), n > 1 and any sequence y = {y,},>1 in V. In this
context, A can be interpreted as the initial condition of the filtering distribution Pp"}"(%).

2.2. Optimal filter higher-order derivatives

Let p > 1 be an integer. Throughout the paper, we assume that py(x’|x) and gs(y|x) are
p-times differentiable in 6 for each 6 € 6, x,x' € X, y € ).

I To evaluate the values of 6 for which {(Xz*)‘, Y,‘f’)‘)}n>0 provides the best approximation to {(X,, Y,)},>0.
we usually rely on the maximum likelihood principle. For further details on maximum likelihood estimation in
state-space and hidden Markov models, see e.g., [3,9] and references cited therein.
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To define the higher-order derivatives of the optimal filter, we use the following notation.
Np is the set of non-negative integers. 0 is the element of Ng whose all components are zero.
For o = (a1, ...,09) € N4, B = (B, ..., Ba) € NI, relation B < & is taken component-wise,
ie., B <« if and only if o; < B; for each 1 < i < d. For the same «, # satisfying f < «,
(“) denotes the multinomial coefficient

B
a\ (o ay
<ﬂ)_(ﬂ1)'”(ﬁd>'
For o = (ay,...,a9) € Ng, 0 = (01, ...,64) € O, notation || and 9 stand for

9lel

ol =o;+ -+ a4, oY = —a
ol = N R Vi

d(p) is the number elements in set { : & € N, |a| < p}, i.e.,

" (d+k—1
d(p)zZ( o )

k=0
M (X) is the set of finite signed measures on X. L£(X) is the set of d(p)-dimensional finite
signed vector measures on X’. The components of an element of £(X) are indexed by multi-
indices in Ng’ and ordered lexicographically. More specifically, an element A of £(X’) can be
denoted by

A:{Aa:aeNg,|a|§p}, 4)

where 1y € M (X) is referred to as the component & of A. The components of A follow
lexicographical order, i.e., A, precedes Ag if and only if o; < B;, a; = B; for some i and
each j satisfying 1 <i <d, 1 < j < i, where ¢ = (ay,...,249), B = (B1, ..., Ba). For
A € My(X), ||A| denotes the total variation norm of A. For A € L(X), || A| denotes the total
variation norm of A induced by the [, vector norm, i.e.,

[ All = max {[|Ae]l : & € Ng, || < p}

for A specified in (4). Lo(X) is the set of d(p)-dimensional finite vector measures whose
component 0 is a probability measure (i.e., A specified in (4) belongs to Lo(X) if and only if
A € P(X)).

We need a few additional notation: rg" },(x|k) and sg"y(xM) are the functions defined by

oc) re Pixlng) )

’g’y(’“'k)zf roCr, AN, s, = ) (ﬂ T8 o ho)aldx’)

d
ﬂeNO
B=a

for0 € O,x € X,y € Y, € My(X), A = {rg:BeN Bl < p} € Lo(X), « € N,
| < p. fg"fy(xl)») is the function recursively defined by

fa (xI0) = s ,(x]0), (6)

fE ) =sE ey — Y (;)fg‘f)m/l) / se PO Iy, (7

BeNg\(@)
B=a
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where the recursion is in |a|.” R;‘qy(dxM), S;y(dxlk) and Fg"fy(dxlk) are the elements of
M;(X) defined by

RE (BJ3) = f e (clu(dx), % (BI) = / 5 (I, (®)
B B

Fg(BIA) = / Jory (x1A)p(dx) 9)
B

for B € B(X), while Ry (), Sg"‘yy(/l), Fa"fy(/l) are a ‘short-hand’ notation for Ry (dx|2),
Sg (dx|x), Fg (dx|)) (respectively). (RE (1), (Sg,(4)) and (Fg (A)) are the quantities defined
b ; .

(RE ,(V) = RE (X2, (S5, (D) =S5, (XM, (F (D)= F (X0 (10)
Fy,,(A) is the element of Ly(X) defined by
Fy () = {F§ (A): @ € Nj, || < p}, (11)

where Fe"fy(/l) is the component & of Fy ,(A). Fa’f'y:"(/l) is the element of Ly(X) recursively
defined by

Fyim(Ay = A, ) = B, (F3E0(A)) (12)
forn > m > 0 and a sequence y = {y,},=1 in V. f5';""(x|4) is the function defined for
n>m >0 by

Fom Iy = £, (L Fr N A)). (13)
& ={&¥ ra e N{, || < p} is the element of Lo(X) defined by

ENB)=MB), EXB)=0 (14)

for B € B(X), » € P(X), a € Ng, 1 < |a| < p, where 8? and & are (respectively) the
component 0 and the component o of &;.

We will show in Theorem 2.1 that Fg’;”(/l) is the vector of the optimal filter derivatives of
the order up to p. More specifically, we will demonstrate

F&m™(BIE,) = o P (xfjA € B Yl = y.:n)

for each @ € O, B € B(X), » € P(X), @ € N4, |a| < p, n > 1 and any sequence y = {y,}n>1
in Y.

2.3. Existence and stability results

We analyze here the existence and stability of the optimal filter higher-order derivatives.
The analysis is carried out under the following assumptions.

Assumption 2.1. There exists a real number ¢ € (0, 1) and for each 6 € O, y € ), there
exists a measure uy(dx|y) on X such that 0 < uy(X|y) < oo and

ena(Bly) < / oy, X () < %3'”
B

for all x € X, B € B(X).

2 In ), fgy(xlk) is the initial condition. At iteration k of (7) (1 <k < p), function f(;’fv(xlk) is computed for

multi-indices « € Ng, || = k using the results obtained at the previous iterations.
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Assumption 2.2. There exists a function ¢ : ) — [1, 0co) such that

|0 re(y, x| < (W) re(y, x'1x) (15)
forall 0 € O, x,x’ € X, y € Y and any multi-index o € Ng \ {0}, |¢| < p.

Assumption 2.3. There exists a function ¢ : Y x X — [1, 0o) such that

ro(y, x'|x) < ¢(y, x"), /qﬁ(y,x”)u(dx//) < o0
forallf € O, x,x’ e X, ye ).

Assumption 2.1 is a standard strong mixing condition for state-space models. It en-
sures that the optimal filter Pj')"(1) forgets its initial condition A exponentially fast (see
Proposition 5.2). In this or a similar form, Assumption 2.1 is a crucial ingredient in many
results on optimal filtering and statistical inference in state-space and hidden Markov models
(see e.g., [1,2,5,6,8,10-12,16,17]; see also [3,4,9] and references cited therein). Assumption 2.2
can be considered as an extension of [11, Assumption B] and [19, Assumption 3.2] to the
optimal filter higher-order derivatives. It ensures that the higher-order score functions

I ro(y, x'|x)

re(y, x'|x)
are well-defined and uniformly bounded in 6, x, x’. Together with Assumptions 2.1 and 2.3,
Assumption 2.2 guarantees that the higher-order derivatives of the optimal filter P"y"(})
exist and forget their initial conditions exponentially fast (see Theorems 2.1 and 2.2).
Assumptions 2.1-2.3 hold if X is a compact set and g(y|x) is a mixture of Gaussian densities
(see the example studied in Section 4).

Our results on the existence and stability of the optimal filter higher-order derivatives are
presented in the next two theorems.

Theorem 2.1 (Higher-Order Differentiability). Let Assumptions 2.1-2.3 hold. Then, pm:"(x|k)
and P;"(B|A) are p-times differentiable in 6 for each 6 € ©, x € X, B € B(X), A € P(X)
n > m > 0 and any sequence y = {y,},>1 in Y. Moreover, we have

¥ oy (xIM) = fo)""(xI1ED, 35 Py (BIA) = Fy)""(BIEy) (16)

for any multi-index a € N, || < p.

Theorem 2.2 (Forgetting). Let Assumptions 2.1 and 2.2 hold. Then, there exist real numbers
T €(0,1), K € [1,00) (depending only on p, &) such that

n P
I Fpy" (DIl < Kll/lll”( Z w(yk)) ) (17)
k=m+1
n P
5 (A) — F (DI < Ko7 | A = AT[[ALAT+ 1 A'1D” ( Z Iﬁ(yk)) (18)
k=m+1

forall6 € O, A, A" € Lo(X), n > m > 0 and any sequence y = {y,},>1 in Y.

Theorems 2.1 and 2.2 are proved in Sections 7 and 5, respectively. According to
Theorem 2.1, the filtering density p’””(xlk) and the filtering distribution Pé’f;,”(dxl)») are
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p-times differentiable in 6. The same theorem also shows how their higher-order derivatives
can be computed recursively using mappings fi (x| 4), Fg',(A). According to Theorem 2.2,
the filtering distribution and its higher-order derivatives Fp""(A) forget their initial conditions
exponentially fast.

In the rest of the section, we study the ergodicity properties of the optimal filter higher-order
derivatives. To do so, we use the following notation. Z is the set defined by Z = A’ x Y x Lo(X).
Pg(x, y, A) is a function which maps 0 € O, x € X,y € Y, A € Lo(X) to R. y(z) is another
notation for @o(x, y, A), i.e., $p(z) = Dy(x, y, A) for z = (x, y, A). {z04} _, and {Z04)
are stochastic processes defined by

n>0 n>0

20N = (X, Yo, (D), Z07" = (Xust, Yagr, FSH(AD).

for n > 0, where Y = {Y,,},,>1. Ilp(z, dz’) and II,(z, d7) are the kernels on Z defined by
Ily(z, B) = //IB(X', V', Foy(A)Q(x', dy")P(x,dx"),
IIy(z, B) = // Ig(x',y', Foy(M))Qx', dy)P(x, dx")

for B € B(Z) and z = (x,y, A). Then, it is easy to show that {Zﬁ’A},,Zo and {Zz*/l}nzo
are homogeneous Markov processes whose transition kernels are Ily(z, dz’) and Iy(z, d7)),
respectively.

To analyze the ergodicity properties of {Z%4},=o and {Z?*},=0, we rely on following
assumptions.

Assumption 2.4. There exist a probability measure 7(dx) on X and real numbers 6 € (0, 1),
Ky € [1, o0) such that

|P"(x, B) — n(B)| < K"
forall x e X, B e B(X),n>0.

Assumption 2.5. There exit a function ¢ : X x Y — [1, o0) and a real number g € [0, c0)
such that

| Do(x,y, D < olx, AT,
| Po(x, y, A) — Po(x, y, )| < x, pIIA = ANIA] + 1 A"]H?

forall0 € O, x e X, ye Y, A, A € Ly(X).
Assumption 2.6. There exists a real number L € [1, 00) such that

/fp(X, WY (MQ(x,dy) < Lo (19)
for all x € X, where r = p(p +q + 1).

Assumption 2.4 ensures that the Markov process {(X,, Y,)},>0 is geometrically ergodic
(for further details, see e.g., [14]). Assumption 2.5 is related to function ®y(x, y, A) and its
analytical properties. It requires @y(x, y, A) to be locally Lipschitz continuous in A and to grow
at most polynomially in the same argument. Assumption 2.6 corresponds to the conditional
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mean of ¢(X,, Y,)¥"(Y,) given X, = x.° In this or a similar form, Assumptions 2.4—
2.6 are involved in many results on the stability of the optimal filter and the asymptotic
properties of maximum likelihood estimation in state-space and hidden Markov models (see
e.g. [1,6,11,12,17,18]; see also [3,4] and references cited therein).

Our results on the ergodicity of {ZZ'A}nZ() and {22'/1}112() are presented in the next theorem.

Theorem 2.3 (Ergodicity). Let Assumptions 2.1-2.6 hold. Moreover, let s = p(q + 1). Then,
there exist functions ¢g, ¢pg mapping 0 € 6 to R such that

o = lim (11" P)(2). o = lim (11" P)o(2)

for all 0 € O, z € Z. There also exist real numbers p € (0, 1), L € [1, 00) (depending only
oneg, 8, p, q, Ko, Lo) such that

(11" ®)p(2) — dol < Lp"[AI, 11" @)p(2) — gol < Lo"y" MIIAI*

for all 6 € O, xe X, yeY Ae Lo(X),n>1and z = (x,y, A). Here (II" P)y(z) and
(11" D)y(z2) are the functions defined by

(" B)s(2) = / STz d2), (" B)y(z) = / &y 1 (2. d2).

Theorem 2.3 is proved in Section 6. According to this theorem, Markov processes {Z04} _
and {Z4} _ are geometrically ergodic. As F{s(A) is a component of Z{4 and Z{4, the
optimal filter and its higher-order derivatives are geometrically ergodic, too.

The optimal filter and its properties have extensively been studied in the literature. However,
to the best of our knowledge, the existing results do not provide any information about the
existence and stability of the optimal filter higher-order derivatives. Theorems 2.1-2.3 fill this
gap in the literature on optimal filtering. More specifically, these theorems extend the existing
results on the optimal filter first-order derivatives (in particular those of [7], [11] and [19])
to the higher-order derivatives. In Section 3, we use Theorems 2.1-2.3 to study the analytical
properties of the log-likelihood rate for state-space models. Moreover, in [18], we use the same
theorems to analyze the asymptotic behavior of recursive maximum likelihood estimation in
state-space models.

3. Analytical properties of log-likelihood rate

In this section, the results presented in Section 2 are used to study the higher-order
differentiability of the log-likelihood rate for state-space models. In addition to the notation
specified in Section 2, the following notation is used here, too. Let g4 (yi.4|A) be the function
defined by

aoum = [ [ [ (]‘[m(yk,mxkl)) () - u(dx)(dxo) 0)
k=1

for6 € O, yi,...,y, € VY, A € P(X), n > 1. Then, the average log-likelihood for state-space
model {(X,, ¥,)},>0 is defined as

1
ln(ea )") = E (; logQ(g(YlnM)) 9

3 Assumption 2.6 holds under the following conditions: (i) X is compact, (ii) ¢(x,y) is continuous in (x,y)
and polynomial in y, (iii) ¥(y) is polynomial and (iv) go(y|x) is Gaussian in y and continuous in (@, x, y).
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while the corresponding likelihood rate is the limit lim,_, », [,(0, ). To analyze the analytical
and asymptotic properties of [,(6, 1), we rely on the following assumptions.

Assumption 3.1. There exists a function ¢ : )) — [1, 00) such that

llog 1o (X < @(y)
for all 0 € O, y € ), where ug(dx|y) is specified in Assumption 2.1.

Assumption 3.2. There exists a real number M, € [1, co) such that

/(ﬂ()’)lﬁ"(y)Q(x, dy) < Mo, / V' (O(x, dy) < My
for all x € X, where u = p(p + 1), v =2p(p + 1) and ¥ (y) is specified in Assumption 2.2.

Assumptions 3.1 and 3.2 are related to the conditional measure uy(dx|y) and its properties.
In this or similar form, these assumptions are involved in a number of result on the asymptotic
properties of maximum likelihood estimation in state-space and hidden Markov models
(see [2,7,8,16,17]; see also [3] and references cited therein).

Our results on the higher-order differentiability of log-likelihood rate for state-space models
are provided in the next theorem.

Theorem 3.1. Let Assumptions 2.1-2.4, 3.1 and 3.2 hold. Then, there exists a function
[ : © — R which is p-times differentiable on © and satisfies 1(6) = lim,_, 1,(6, 1) for
all 9 € B, A € P(X).

Theorem 3.1 is proved in Section 7. The theorem claims that the log-likelihood rate
lim, ., [,(6, A) is well-defined for each 0 € @, A € P(X). It also claims that this rate is
independent of A and p-times differentiable in 6.

In the context of statistical inference, the properties of log-likelihood rate for state-space and
hidden Markov models have been studied in a number of papers (see [2,7,8,16,17]; see also [3]
and references cited therein). However, the existing results do not address the higher-order
differentiability of this rate. Theorem 3.1 fills this gap in the literature. Theorem 3.1 is also
relevant for asymptotic properties of maximum likelihood estimation in state-space models [18].
The same theorem can also be used to study the higher-order statistical asymptotics for the
maximum likelihood estimation in time-series models (for further details on such asymptotics,
see e.g. [13,21]).

4. Example

To illustrate the main results, we use them to study optimal filtering in non-linear state-space
models. Let © and d have the same meaning as in Section 2, while & C R4 is an open set

satisfying cl1© C ©. We consider the following state-space model:
Xphy = Ag(X0 ) + Bo(Xg DU, Yh = Co(X0M) + Do(Xp M)WV, n=0. (2D

Here, 6 € @, A € P(X) are the parameters indexing the model (21). Ap(x) and By(x) are
functions mapping 6 € O, x € R% (respectively) to R% and R%*% (d, has the same meaning
as in Section 2). Cy(x) and Dy(x) are functions mapping 6 € O, x € R% (respectively) to
R% and R®*% (d, has the same meaning as in Section 2). XJ* is an R%-valued random
variable defined on a probability space ({2, F, P) and distributed according to A. {U,},>0 are
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R -valued i.i.d. random variables which are defined on (£2, F, P) and have marginal density
r(u) with respect to Lebesgue measure. {V,},=0 are R%-valued i.i.d. random variables which
are defined on ({2, F, P) and have marginal density s(v) with respect to Lebesgue measure.
We also assume that Xg’k, {U,}n>0 and {V,,},>0 are (jointly) independent.

In addition to the previously introduced notation, the following notation is used here, too.
Po(x’|x) and gy(y|x) are the functions defined by

r(By ()& — Ag(x)))
|detBy (x)|

s (D7 (x)(y — Co(x)))
|detDg (x)]

Po(x'|x) = . qe(ylx) =
for & € 6, x,x' € Réx, y € R% (provided By(x) and Dy(x) are invertible). py(x’|x) and
qo(y|x) are the functions defined by

r (By ' (0)(x' — Ag(x))) 1x(x)
Lot (B ()" — Ag(x))) dx"
s (D7 (x)(y — Co(x))) 1y()
Sy s (Dg @) = Co(x))) dy'

(X, Y have the same meaning as in Section 2). It is easy to conclude that pg(x’|x) and gy(y|x)
are the conditional densities of Xzfl and Y%+ (respectively) given X%* = x. It is also easy
to deduce that py(x’|x) and gg(y|x) accurately approximate py(x’|x) and gg(y|x) when X and
Y are sufficiently large (i.e., when balls of a sufficiently large radius can be inscribed in X,
V). pe(x’|x) and gg(y|x) can be interpreted as truncations of py(x’|x) and gg(y|x) to sets X
and Y (i.e., model specified in (22), (23) can be considered as a truncation of model (21) to
X, Y). This or similar truncation is involved (implicitly or explicitly) in the implementation of
any numerical approximation to the optimal filter for the model (21).

The optimal filter based on the truncated model (22), (23) is studied under the following
assumptions.

po(x'|x) = (22)

qo(y|x) = (23)

Assumption 4.1.  r(x) > 0 and s(y) > 0 for all x € R%, y € R%. Moreover, By(x) and
Dy(x) are invertible for each 6 € 6, x € R%.

Assumption 4.2. r(x) and s(y) are p-times differentiable for all x € R%, y € R%, where
)4 Z~1. Moreover, Ag(x), Bg(x), Co(x) and Dy(x) are p-times differentiable in 6 for each
0 e 6O, x e Rix,

Assumption 4.3. 3%r(x) and 8%s(y) are continuous for each x € R%, y € R% and any multi-
index & € Ng, o] =p. Moreover, 35 Ag(x), 95 By(x), 95 Co(x) and 95 Dg(x) are continuous in
(0, x) for each 0 € O, x € R%, y € R% and any multi-index « € N¢, lae] < p.

Assumption 4.4. X and ) are compact sets with non-empty interiors.

Assumption 4.5. X is a compact set with a non-empty interior, while ) = R% . Moreover,
there exists a real number K, € [1, o0) such that

s() < Ko, [0%s()| < Kos()(L + [lyID'™

for all y € R% and any multi-index & € N¢, || < p.
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Assumption 4.6. There exists a real number L, € [1, 0o) such that

llog s(y)| < Lo(1 + [|y[)?
forall y e Y.

Assumptions 4.1-4.6 cover several classes of non-linear state-space models met in practice
— e.g. they hold for a class of stochastic volatility and dynamic probit models. Moreover, these
assumptions include non-linear state-space models in which the observation noise {V,,},>¢ is a
mixture of Gaussian distributions. Other models satisfying Assumptions 4.1—4.6 can be found
in [3,9] (see also references cited therein).

Our results on the optimal filter for model (22), (23) and its higher-order derivatives read
as follows.

Corollary 4.1. (i) Let Assumptions 4.1-4.4 hold. Then, all conclusions of Theorems 2.1 and
2.2 are true.
(ii) Let Assumptions 2.4, 2.5 and 4.1-4.4 hold. Moreover, assume

su/[‘:/go(x, YO(x,dy) < oo, 24)

where @(x,y) is specified in Assumption 2.5. Then, all conclusions of Theorem 2.3 are true.
(iii) Let Assumptions 2.4 and 4.1-4.4 hold. Then, all conclusions of Theorem 3.1 are true.

Corollary 4.2. (i) Let Assumptions 4.1-4.3 and 4.5 hold. Then, all conclusions of
Theorems 2.1 and 2.2 are true.
(ii) Let Assumptions 2.4, 2.5, 4.1-4.3 and 4.5 hold. Moreover, assume

sup f oG, )+ [lyID* Qx, dy) < oo, (25)

where r and ¢(x,y) are specified in Assumptions 2.5 and 2.6. Then, all conclusions of
Theorem 2.3 are true.
(iii) Let Assumptions 2.4, 4.1-4.3, 4.5 and 4.6 hold. Moreover, assume

sup f (1 + Iy Q(x, dy) < oo, 26)

where v is specified in Assumption 3.2. Then, all conclusions of Theorem 3.1 are true.

Corollaries 4.1 and 4.2 are proved in Section 8.

5. Proof of Theorem 2.2

In this section, we use the following notation. z is the real number defined as T = (1—¢%)'/2.
Gog,y(X, 1) is the element of M (X)) defined by

RY, &) RY (R, (V)

Go.y(h, 1) = 7
’ (RD, ) (RY, W)
foro € @,y e, A€ PX), A e MX). TG""’},‘B(A) is the element of M (X) defined by
) RS Pirg) RS Prg)
T ) = o - F;',ym)( s ) (28)

(Rg,y()‘())> (Rg,y()‘“»
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for A ={i, :y eN{, |yl < p} € Lo(X), @, B € N, B < a, || < p. Gf (A) and Hf (A)
are the elements of M (X)) defined by

va(A) = GO,)‘O‘-O’ Aa)s (29)
H:’}(/l) = Z (‘;) T;fyﬁ(/l) - Z (;) Fgfgyy(A)(Sg,;ﬂ(A)) (30)
peNG\(e) BeNd\(0.0)
B=a B<a

Here and throughout the paper, we rely on the convention that gep 1s zero whenever B = §.
Then, using (5)—(10), it is straightforward to verify

RS P .
SROEDY (“) 90>—f‘ Fe () =S,M— Y F(fy(/l)(S&yﬂ(/l)). (31)
pend B/ (Rj,Go) BeN\l)

B=a B<a

Hence, we get Fy (A) = S) (4) = R ,(10)/(R] ,(%o)) and

R) [(ha) (R, ()  RY (&) R, (Lo)RE ,(Aa))
T“’,u A = 5Y _ FO A ,y — Y _ Y 5 Y — Goc 7 A .
oy (D (RS (10)) o )(Rg,y()\o)) (RY ,(10)) (R (o))’ oD
Consequently, (28)—(31) imply
RS P (RSP ()
Sg () = F (D(SE () = (“) (9— — F) ()=
=IO = 2 g )i~
B=a
-y (;) TP = G+ (;) k).
BeNG BeNG\la}
B=a B<a
(32)

Then, (29) — (31) yield

F(A) = 8§ (4) = F) (D(Sg (D)= F;‘fy(A)(sg;ﬂ(A)) = Gy (A + H ().

BENd (0,0}
B=a

(33)
In addition to the previously introduced notation, the following notation is used here, too.
Gg’f:y"()n, A) is the element of M (X) recursively defined by

GimGo,3) =% GI(L 1) = Ga,, (ng’y:"—l()\), Gyl (4, X)) (34)

for6 € ©, A € P(X), A € My(X), n > m > 0 and a sequence y = {y,}s=1 in V. V;;""(4)
and Wy',""(A) are the elements of M,(X) defined by

Vo (A) = Gy (s Aa), W) = Hé’fyn(Fg"fy:"_l(/l)) (35)
for A ={ig: B €N, 1Bl < p} € Lo(X), ¢ € NI, |a| < p. @y and @,"" are the quantities
defined by

n n
@;}n:m =1, Wym:m =1, @ym:n =(n—m) Z ), y—/;n:n — Z U (k).

k=m+1 k=m+1
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M, (A) is the function defined by
. d
My (A) = max {|[Ag] : B € NG, B < a}.

Ko(A, A') and Ly(A, A') are the functions defined by

Ko(A, Ay = min{l, My(A = A)},  Lo(A, A') = My(A) + My (A) (36)
for A, A" € L(X). Lyy (4, A" and My (A) are the functions defined by
LA, A = (La(A, A)YB™) 0 MDA = (Ma(A) w)"")"™ (37)

forn >m > 0.

Remark. Throughout this and subsequent sections, the following convention is applied.
Diacritic " is used to denote a locally defined quantity, i.e., a quantity whose definition holds
only within the proof where the quantity appears.

Lemma 5.1. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number C; € [1, 00)
(depending only on ¢) such that

R ()
(R3., )
Ry, ) R§ ()

(Ri, ) (Rg, )

forall® € ©, y €Y, A, € P(X), A, X € M(X) and any multi-index o € N¢, |a| < p.

< Cr (WO A, (38)

= GO (IA =1+ 1% = 1) (39)

Proof. Throughout the proof, we rely on the following notation. C; is the real number defined
by C; = &~ (¢ is specified in Assumption 2.1). 8, y are any elements in @, ) (respectively).
A, A/ are any elements of P(X), while A, A" are any elements in M (X). & is any element of
N¢ satisfying |ee| < p.

Owing to Assumption 2.1, we have

(RY, (1) = / / oy ¥ IR > Eptg(X]y). (40)

Moreover, due to Assumptions 2.1 and 2.2, we have
&5, 0] = [ [ fagracr. o] ey i)

< W) / / oy, 2o’y [21(dx)

<& @O [Mpe(X]y). (41)
Combining (40), (41), we get
(R9. )

‘ <e 2 (YN Al (42)
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Consequently, we have

RS,() L) ‘< |Re, G- R, G| | Re G [(RE 0) - (RS, )
(R), ) (R, G))| —  (R§,() (RY OO)RE, ()
I L) L) | R
(RS, () (RS ,(W)(R5., ()
= e @D (A =20+ 1A = AN 43)

Then, (38), (39) directly follow from (42), (43). O

Lemma 5.2. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number C, € [1, 00)
(depending only on p, ¢) such that

[t ] < o one# gl (44)
[s5, D = €2 Y @GN iy, 45)
yeNg
’ Teo,t;ﬂ(/l) - Teo,l’yﬂ(/l’) < G W) P (Ihg — Al + ko — 2pl12511) - (46)
|2, () = 55, )] < C2 DT WD (I — A, 1+ 120 — 21125 1) 47)
yeNg

forall6 € 6,y €Y, A={k, 1y eNj, |yl < p} € Lo(X), A/ ={}, .y eN{,|y| < p} e
Lo(X) and any multi-indices o, B € N¢, B < o, |&t| < p.

Proof. Throughout the proof, we rely on the following notation. C; is the real number defined
by C, = 2PC; (C is specified in Lemma 5.1). 6, y are any elements in ©, ) (respectively),
while A = {Ay cyeNd |yl < p}, A= {k;, cy eNd |yl < p}. a, B are any elements of Ng
satisfying 8 < «, || < p.
Since ZyeNg (;) =2 Lemma 5.1 and (31) imply
y=a

o Rg;y()ky) _
Se (| < ——— | <2"lc A . 48
IS5l = ZN (y) R G| = IZN WO Ay (48)
ys::? yso?

As Fgo’y(/l) = Rg’y()ho)/<Rg’y()\0)) € P(X), the same arguments and (28) yield

RSP np) (RS P (np) R P )

7%8A Oy TP L EY () |l R by 7P

ol = | | 1PN Gy | = | o)
<2C; ()P apll. (49)

Then, (44), (45) directly follow from (48), (49).
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Using Lemma 5.1 and (31), we conclude

|s2,) - sz, < > (“)

e Gy)  Re ()

s VY (RY, ) (RY, ()
<27C Y N (I = A+ ko = AglIAL ) . (50)
yeNg
y=a

Relying on the same arguments and (28), we deduce

_ & e R Fop

13k -
H 4= (Rg,y()»o)) (R 9,y()‘0)>

Gy

L)
(RS, ()
(R P ) (RSP ()
(RS, (o)) <R3,y<%>>‘
Rg’;ﬁ(xﬂ) Ry (x )
(R9., (o)) (ngu )

+ [ F2 D - B,

+ |72,

RY) (ko) 95 0) Lop
(RS, ()] (RS ) <R3 eth)
<20 (WD (Ilhg — Al + 2o — Agll AR - (51)

Then, (46), (47) directly follow from (50), (51). O

Proposition 5.1. Ler Assumption 2.1 hold. Then, there exists a real number C3 € [1, 00)
(depending only on ¢) such that

|Gizo. b)) < e

|G i - Gy,

<G (JA= K|+ =] 12

forall 6 € O, A, A € P(X), Y= M(X), n > m > 0 and any sequence y = {y}n>1 in Y
(t is defined at the beginning of Section 5).

Proof. See [19, Lemmas 6.6, 6.7]. U

Proposition 5.2.  Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number
C4 € [1, 00) (depending only on €) such that

HFOmn Omn

< Cut? MK (A, A)

forall0 € O, A, A" € Lo(X), n = m > 0 and any sequence y = {yn}n>1 in Y (T is defined at
the beginning of Section 5).
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Proof. Let 6 be any element of @, while y = {y,},>; is any sequence in ). Moreover, let
A= {)»3 1B € N, 1Bl < p}, A = {A;g S Ng, 1Bl < p} be any elements of Ly(X'), while
n,m are any integers satisfying n > m > 0.

Using (3), (9), we conclude Pm’"“(xo) =F, 1 G0, Py () = F, (ry) and

9 Ym+1
Piy T 00 = By, (P Ow) s BT O0) = B, (P 04)) -
Comparing this with (12), we get
Foy™(4) = Py (), Foy™(4) = P{y" (h)
(i.e., 0'" "(/1) F, 0'""(/1’) are the filtering distributions initialized by X9, Ay). Consequently,

[19, Theorem 3.1] 1mphes that there exists a real number C4 € [1, 00) (depending only on &)
such that

H Omn Omn

< C4t? "™ g — Al = C4t? ™K o(A, A). O (52)

Lemma 5.3. Let Assumptions 2.1 and 2.2 hold. Then, we have

amn(A) amil(A)+ Z Gkn( Omk(A) W(;z,:vm:k(A)> (53)

k=m+1

forall 0 € O, A € Lo(X), n > m > 0, any multi-index a € N¢ || < p and any sequence
Y = {yu}ln=1 in Y. Here and throughout the paper, we rely on the convention that Y j_. is zero
whenever j < i.

Proof. Throughout the proof, the following notation is used. 6 is any element of ©, while
A= {)»,g B e Ng, IB] < p} is any element of L£o(X). m is any non-negative integer, while o
is any element of Ng satisfying || < p.y = {yu}n>1 1S any sequence in ).

We prove (53) by induction in n. Owing to (12), (34), (35), we have

Fp" () = hay V") = GEY (s he) = Aa

Hence, (53) is true when n = m. Now, suppose that (53) holds for some integer n satisfying
n > m. As Gy y(A, A) is linear in A, we then get

G“‘nﬂ( EQ A FE ) = G,y (FY (). Vi ()
+ Z Gﬂ,yn+1< Om"(A) G ( 0mk(A) ng’ym:k(/l))). 1)
k=m+1

Since Pm"(ko) = Fg‘ym:"(/l) (for further details, see the proof of Proposition 5.2), (34), (35)
imply

Goyyer (FA" O, VIS () = Gy (PG, G Gra, 2)) = G (o, )
— Vgof_;,m:’l+l(A). (55)
Moreover, due to (12), we have

Omn(A) 0kn( Omk(/l))—ng;l(FO,;nk(A))
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(for further details, see again the proof of Proposition 5.2). Consequently, (34), (35) yield
Goyer (Fiy" (1. GES (Bl (), Wi ()
= Goypo (PE (FQO,;’“"(A)) LG (Elon, Wi ()

:G{;;-H ( Omk(A) amk(A)) (56)
for n > k > m. Similarly, (34) implies
W;:vm:nJrl(A) — Gg;l:n-&-l ( 0 m: n+1(A) ng,},m:n+1(/l)) ) (57)

Combining (54)—(56), we get

Ge.y,,_H ( Omn(A) amn(A)) amn+l(A)+ Z Gkn-H < Omk(A) amk(A)>
k=m+1
Consequently, (29), (30), (33), (57) imply

Foy ) = B (B ) = G (FST0) + HE, L (F )
= Ge’ynﬂ ( 0mn(A) F;:‘,m'll(/l)> + W;:‘,m'nJrl(A)

n+1
— V;f;m:n+1(A) + Z Gk n+1 ( Omk(A) Wgu,,ym:k(A))
k=m+1

Hence, (53) is true for n+1. Then, the lemma directly follows by the principle of mathematical
induction. O

Proposition 5.3.  Let Assumptions 2.1 and 2.2 hold. Then, for each multi-index o € N¢,
|| < p, there exists a real numbers A, € [1, 00) (depending only on p, ¢) such that

g

< AaM, (A), (58)

HFamn otmn(A/)

< T ALK (A, ALY (A, A) (59)

forall0 € O, A, A" € Lo(X), n = m > 0 and any sequence y = {y,},>1 in Y (T is defined at
the beginning of Section 5).

Proof. Throughout the proof, the following notation is used. 6 is any element of ©, while
Y = {yu}n>1 is any sequence in ). Cl, C2, C3 are the real numbers defined by

~ 4P CyC3Cy . Cl . G
1= 5,7 o~ 2= ’ 3= C3C4

2(1 —72)’ 4r
(C,, C3, Cy4 are spemﬁgd in Lemma 5.2 and Propositions 5.1, 5.2). A, is the real number
defined by A, = exp(8C7(Jee|* + 1)) for o € NJ. Then, it easy to show

Ad Aa Aa A(!
S ——= =<7 AyAey=——o=—=
exp(8C?) ~ 8C? exp(8C?) ~ 8C?

for e Ng\{a},y e NI\ (0,0}, B <,y <.
Since F"””(A) = A (due to (12)), (58), (59) are trivially satisfied when n = m > 0. For
n > m > 0, we prove (58), (59) by the mathematical induction in |e|. As Fom"(/l) € P(X),

(60)
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Proposition 5.2 implies that when || = O (i.e., & = 0), (58), (59) are true for all A, A" € Ly(X),
n,m € Ny fulfilling n > m > 0. Now, the induction hypothesis is formulated: Suppose that
(58), (59) hold for some ! € Nyand all A, A’ € Lo(X),n,m € Ny, ¢ € Ng satisfying 0 </ < p,
n >m > 0, |e| < I. Then, to prove (58), (59), it is sufficient to show (58), (59) for any
A, A e Lo(X), n,m e Ny, a € Ng fulfilling n > m > 0, |e| = [ + 1. In what follows in the
proof, A = {Ay @ € N, || < p}, A’ = {), : ¢ € NI, |a| < p} are any elements of Lo(X).
8 is any element of N, while « is any element of Ng satisfying |a| = [ + 1. B, y are any
elements of Ng \ {ae} fulfilling B <, y < &. n, m are any integers satisfying n > m > 0.

Since B < a, B # «, we have |B| < |a|] — 1 = [. As (58), (59) are trivially satisfied for
n = m, the induction hypothesis imply

[ ol [Es ]
max

. , : < Ay, (61)
m: m: / 14
M;,’yk(/l) M”"(/l )
|F2 e - B en)
} ; < 2k=m)p B A A 62
L;g’f(/l, /1’) =T Y J’( ’ ) ( )
for k > m > 0. Moreover, since |y + &| = |y| + |8] and M, (A) > 1, (37) yields
m:n—1 m:n M:’nf&y(/l) m:n m:n m:n
M=NA) < M) < —2Es M )M (A) < MY (A). (63)
(Y (yn)
Similarly, (37) leads to
. . LyYs (A, 4)
Ly~ A A < LA, Ay = (64)
’ | (Y (yn)(n —m))
LIn (A, AVLEA, Ay < LI (A, ), (65)
The same arguments also imply
Mm:n(/l) + Mm:n(A/) < qu;l(/l’ A/) (66)
3.y 3y =~ m—mhl
Using (61), (63), we conclude
min— : Ay MPTs (A
H Fy (/1)H < A M) < _};1//();_;;'6_‘ . (67)
Then, Lemma 5.2 and (60), (67) imply
@B, pmn— . i , Ay M7 (A)
|ty ] = G @ | < Cnpmzye < FUREE
1
(68)

(as C < 4AC 1). The same lemma and (67) yield

sz, mrt | < &2 3 o |t < 271caa, a5
d

SENO
i<y

< CiA, M} (4) (69)
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(since 2171C, < 2PC, < €1/2). If B # 0, (60), (61), (63), (69) lead to

| FEmen (s P argta)| = || | sof |
< C1AgAa_p Mg (MM (A)

a—p.y
A Mm:il A
< °‘+y() (70)
2C,
Consequently, (12), (30), (35), (68) imply
m:n a o, m:n—
il < 3 (5) sz
BeNd\ ()
Bz«
-5 (3w
BeNE\{0,0}
ﬂ<a
2'“|A“M&’f}”(A)
= &
A Mm:n A
_ AdMET D) an
G
(as C~'1/2|"“ > C~‘1/2” > C~’2). Then, owing to Proposition 5.1, we have
‘ . . . C3‘l,'2(n_k)A Mm:k(/l)
I
Z(n—k)A M (A
T AMy @ g
C;
for n > k > m (since C3/C'2 < 1/6‘3). Due to the same proposition and (35), we have
2(n m)A an A
[vismr | = el < T Mu() < : = 3)
3
(as Aq > C~'12 > C3C3). Combining Lemma 5.3 and (72), (73), we get
” umn(A)H < ||V n(A)” + Z HG ( Omk(A) W;f;n:k(/l)> H
k=m+1
< Aa an(/l)z 2n—k)
_ Az
- G(1—-1?)
< Ay M’” ”(/1) (74)

(since C3(1 — 72) > 1). Hence, (58) holds for & € N¢, |a| = [ + 1.
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Now, (59) is proved. Relying on (62), (64), we deduce
H Fg)i,ym:nfl(/l) _ Fe}t;’m:nfl(/l/)

< DAL Ky (A, AVLY(A, A)

=< ‘Ez(n—m_l)AyKyM(A’ A/)L:)Zr&y(/l, A,), (75)
W () — m))P!

Similarly, using Proposition 5.2 and (64), (67), we conclude

|y = m

‘ Fe)t;n:n—l(/l/)
< G VAL Ko(A, AYMY)(A')
Car® DA, Ky 5(A, ALY (A, A)
: W a)n —m))"?
(since M}’ﬁ:y”(/l/) < Lgf;(/l, A")). Then, Lemma 5.2 and (60) imply

|

< GO | FL Ty — Ff

(76)

TR ) = TR )|

+ Co WO P F () — FRy )
_ 202G D A KA, ALY (A, A)
- (n — m)|°¢*13|
_ T ALK (A AL (A, )
4C~‘1(n —m)
(as l@ — B| > 1, C,C4 < C,72). The same lemma and (75), (76) yield
|7, CFin=tcay - 87, (rant )|

=G Y o Et - Flp

d
ﬁeNO

s<y
+C Y WO F ) - Ry )|
seNgd
s<y

< AVICy 0T DAL K (A, AL (A, A

< CiT?"M ALK, (A, A)LYT(A, A) (78)

‘ Feﬁ’},’m:nfl(/l/)

(77)

iz

(since 471C,C4 < C172). Then, (61), (62), (69) lead to
| £ e sst et a) = B (s a)|
ol

ST ) = sy |

+ H Fg}m:n(/l) _ F(f.;}m:n(/l/)

si PRt

Yn
< Gt AgAg_pKa_p(A, ALY (A, N YMG(A)

+ Cir? " AgAg_pKp(A, AVLE (A, AYML (A).
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Hence, if g # 0, (60), (64) — (66) imply
| F&y ey (s P can) = FL ) (5 P e )|
2(n m)Au Ku(/l, A/)Lm n(A A/)
4Cy(n — m)

(as B#0, a — B #0). Consequently, (12), (30), (35), (77) yield

X (5)
BeNd\() A

B=a

(79)

o,m: n o,m:n
[ = wis

TR ) = T ()|

+ Z ( )HFﬂmn(A) S;‘} (F”;"—l(/l))>_Fg&mn(A)(ng (Fn’l}:,n—](/l/)))ﬂ

BENG (0.0}
B=a

4l 20=m A Ko (A, AYLEH(A, A)

2C(n — m)
T2 ALKy (4, ALY (A, A

2CH(n — m)

(80)

(since C~’1/4“"| > 61/4” = C‘g). Then, owing to Propositions 5.1, 5.2 and (66), (71), we have
H Gk:n <F0,m:k(/1) Wa,m:k(A)) _ Gg; (F(;{ymk(/l/), ng:vm:k(/l/)) H

< C3‘L'2(n k) H Wa Jm: k(A) amk

o, m:k

+ G320 b HFOmk(A) 0mk
3T Ay Ko (A, A’)LZ’,yk(/l, A n C3C4TH ™™ Ag Ko (A, A’)MZf:yk(/l’)

2C,(n — m) 2C,
T2 Ay Ko (4, ALy (A, A)

63(n —m)

(81)

forn > k > m (as Cg/éz < C3C4/C‘2 = 1/6‘3). Due to the same propositions and (35), we
have

” Vo (A — Vg‘f;m:”(/l/)H < G (ke — Al A+ lho — 2ll1IAL 1) - (82)
Moreover, we have

[he = Ag Il + 1120 — AgllIAg Il < Ma(A = A') + Mo(A = A)YMo(4)
S 2M¢!(A - A/)Ld(/la A/)a
ke = Agll 4+ 1ho = AgllIAg Il < Aall + 2lIAg I < 3La(A, A)

(since My (A") = ||Ayll = 1). Hence, we get

Ihe = A ll + 120 = Agll 1A |l < 3min {1, M(A — A)} La(A, A)) = 3Kqa(A, A)La(A, A').
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Therefore, (82) implies
H amn(A) otmn <3C .L,Z(n m)K (/1 A)L (/1 /1)

20 Ay Ko (A, AVLE (A, A)

< = 83)
C; (
(as Ay > C? > 3C3C;3). Combining Lemma 5.3 and (81), (83), we get

H Fl! Sz n a m:n H Vvt me: n Veof‘;)m:n

+ Z HG ( Omk(A) W;;’m:k(/l)> Gkn( Omk(A) Wg,:vm:k(/l,)>H

k=m+1

20207 A Ko (A, AYLEN(A, A)
< &
< T ALK (A, ALY (A, A (84)

(since C3 > 2). Hence, (59) holds for a € N¢, || = [ + 1. Then, the proposition directly
follows by the principle of mathematical induction. [J

Proof of Theorem 2.2. Let C1, Cz be the real numbers defined by C | = maX,>; """ Tnp,
C, = max{Aq @ o € Ng, | < p}, while K is the real number defined by K = = G
(A4 is specified in Proposition 5.3, while 7 is defined at the beginning of Section 5). Then,
Proposition 5.3 implies

HFocmn (Xmi’l

< Cng(n m)(n m)P||A— A ((”AH + ”A/”)!p;n:n)[’
= C1C2‘L’n A=A ((||/1|| + ||A/||)&[,ym:n)l7

n p
< K" A= ANAIAN -+ 1 ADP ( Z 1P()%)) (85)

k=m+1

for0 € O, A, A € Lo(X),n>m >0, € N, |a|] < p and a sequence y = {yn}n>1 in V.
Proposition 5.3 also yields

| P | = & (nanwgmy” <K||A||P(Z w(m)p (86)

k=m+1

for the same 6, A, n,m, a, y. As (17), (18) are trivially satisfied when n = m, the theorem
directly follows from (85), (86). O

6. Proof of Theorem 2.3

In this section, we rely on the following notation. By(x, y, A) is the function defined by

By )= [ [0y W, dyPi. ) 87
ford € O, x € X,y € Y, 4 € Lo(X). X and Y denote stochastic processes {X,},>; and
{Yaluz1 (e, X = (Xo)uz1, ¥ = {Va)az1). Gy'x y(A) and H'y'y(A) are the random functions
defined by

GST)?,)/(A) = QH (Xn’ Yna FQ”:lY”(A)) ) HQ”}AZI’Y(A) = QQ (Xn+l7 Yn-&-l’ F@”f;’(/l))
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for n > m > 0. Aj(x, A) and Bj(x, A) are the functions defined by

A, A) = E (G y(h) = Gy y(D Xo =x) . Bj(x. 4) = E (Gyy y(4)] Xo = x)
forn > 1. Cj(x,y, A) and Dj(x, y, A) are the functions defined by

Cix,y, 1) = E (Hyy y(D) — Hyx y(D| X1 = x, Y1 = y),
Dj(x,y, A) = E (Hy% y(D| X1 =x,Y1 =y).

Ag””(x, A) and Eg(x, A) are the functions defined by
AZM(X, A= / A", AP — m)(x, dx),

Bi(x, A) = / / Be(x',y', HQ(', dy')(P" — m)(x, dx")

forn >m > 0.

Lemma 6.1. Let Assumptions 2.1, 2.2 and 2.5 hold. Then, there exists a real number
Cs € [1, 00) (depending only on p, q, ¢, Lo) such that

max {|G§% (&) — G§% y(D)], |GY% (&) — G ()|}

< CsT|AI (X, Ya) D ¥ (Yo,
k=1

0:n 0:n

max {\Hé{}’}qy(&) —

— Hy% y(D]}

n
< Gt A (X1, Yar) D ¥ (o)
k=1

forall 6 € O, . € P(X), A € Lo(X), n > 1 (r and s are specified in Assumption 2.6 and
Theorem 2.3, while t is defined at the beginning of Section 5).

Proof. Throughout the proof, the following notation is used. C;, C, are the real numbers
defined by C, = “max,s; T 'n¥, C, = max{A, : o € Ny, o] < p} (Aq is specified in
Proposition 5.3). C3, C4 are the real numbers defined by C3 = 2PC’JJr C4 = 2‘1C C3, while
Cs is the real number defined by Cs = C1C4r ~2.0, x, y, A are any elements of e, X,),
P(X) (respectively), while A, A" are any elements of Lo(X). y = {y,}n>1 18 any sequence in
Y. n, m, k are any integers satisfying n > 1, k > m > 0.

Owing to Proposition 5.3, we have

| FgsEen] < G (naney*)”, (88)
|Fskcay = Fian| < G2 (1Al + 141D 2)*%)” (89)
(as OYF > Pk > W”‘:k). Consequently, we have

IFS¥@E | + | Ff ] <26, (141 25%)" (90)
IFEmED| + 1Al < 28, (141 89™)" < 28, (|1 4] 257%)"
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Then, (12), (88), (89) imply
P - F el = | R (FEen) - Fto)
= e ([R5 ol + ) 27)
< é3t2(k—m)”/1”p2 (ggyo:k)p(pﬂ) ©1)
(as @;”‘ > 1). Combining Assumption 2.5 with (90), (91), we get
|@o(x, y, Fy (E2) — Po(x, y, Fj ()]
< ¢y | F3 &) — Ft | (1FS @l + | F ]’
< Cap(x, )T A (80%)" . 92)
Using (92), we deduce

max { |G’y y(&) — Go'y y(A)

Go% v(E) = G v}

< GO AP (X, Y) D9 (V) < CsT" [ A (X, Ya) Y 0" (Yi).
k=1 k=1
Similarly, we conclude

max {|Hy'} y(£:) — Hy'% y(A)

’

HY% /(&) — HY% (D]}

n
< Gt O AP (X1, Vo) Y ¥ (Vi)
k=1

< Gt AP (X1, Yar) D' (V). O
k=1

Lemma 6.2. Let Assumptions 2.1, 2.2 and 2.4-2.6 hold. Moreover, let p = max{t'/3,§'/3}
(8 is specified in Assumption 2.4, while t is defined at the beginning of Section 5). Then, the
following is true.

(i) There exists a real number Cg € [1, 00) (depending only on p, q, €, §, Ko, Lo) such that

max {[450x, &), | A5 (x, £, [ Bix, €]} = Con™
|Bj(x, &) — Bj(x, A)| < Cep™ A

forall® € O, x e X, A e P(X), A e Ly(X), n>m>0.
(ii) There exists a real number C; € [1, 00) (depending only on p, q, ¢, 8, Ko, Lo) such
that

|Co(x, v, E)| < C1p™ ¥ (v),  |Dj(x,y, &) — Dy(x, y, D] < Crp™ | AN Y (v)
forall@ e O, x e X, yeY, LePX), Ae Ly(X), n=>1.

Proof. Throughout the proof, the following notation is used. C;, C, are the real numbers
defined by C~'1 = max,>| p”’ln, 6‘2 = L(z) (Ly is specified in Assumption 2.6). 6, x, y, A, A
are any elements of @, X, ), P(X), Ly(X) (respectively). n, m are any integers satisfying
n>m>0.

Owing to Assumption 2.5, we have

E (X, YOU' (Y| Xo=x) = E ( / (X, VY () Q( Xk, dy)‘ Xo = x) <Ly (93)
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for k > 0. Due to the same assumption, we have

max{f(ﬂ(x,y’)Q(x,dy’),/W(y’)Q(x,dy’)} < /w(x,y’)wr(y/)Q(x,dy’) < Lo.
(94)
Consequently, we get
E (X1, Y)U' (Y| Xo=x) =E (/fp(Xl, »)OoXi, dy)/W()’)Q(Xk, dy)‘ Xo = x>
<L} (95)
for I > k > 0. Similarly, we get

E (¢(Xp, YOU' (YD| X1 =x, Y =)

—y ( [ oo, dy’)‘ X, = x) < Loy’ (), (96)
E (X1, YOU' (Y| X1 = x, Y1 = y)
=K </¢(Xz, y’)Q(Xz,dy’)/lﬂ’(y/)Q(Xk,dy/)‘ X, = x) <Lj 97)
forl > k > 1.

Let C¢ be the real number defined by C¢ = G éQCSKQ (Kp, Cs are specified in
Assumption 2.4 and Lemma 6.1). Since t"n < o+ 1) < Cip*, Lemma 6.1 and (93),
(95) imply

A5, &0)] = E (|G (&) — Gk y(ED] | Xo = x)

< Cst" Y E (9(Xa, Y)Y (Yo)| Xo = x)
k=1

< C,Cst'n < Cep™".
As T8 (n — m) < p(n + 1) < Cy p?", Assumption 2.5 yields
| A5, €0 < / A5 ED[IP™ = m|(x, dx') < CoC5Kot" 8" (n —m) < Cep™.
Moreover, owing to Lemma 6.1 and (93), (95), we have

| B (x, &) — Bj(x, M| < E (|G y(&1) — Gy y(D] | Xo = x)

< Gt AP Y E (9(Xo, Y)Y (Yo)] Xo = x)
k=1

< CoCst"n||A° < Cop™ Il
Similarly, due to Assumptions 2.4, 2.5 and (94), we have

Blr. &) < //|¢a<x’,y’,8A>|Q<x’,dy’>|P"—n|<x,dx/>

< //w(x',Y’)Q(X’,dy/)lpn —7|(x,dx")
< C,Kp8" < Cop™.
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Let C; be the real number defined by C; = C'] C~'2C5 (Cs is specified in Lemma 6.1). Relying
on Lemma 6.1 and (96), (97), we deduce

|Ch(x,y. &)| < E (|HY% y(&) — Hi% y(E)] | X1 =x, Y1 =)

< Cst" Y E (9K, Yo W (Y| Xy = x, Y1 = y)
k=1

< CCst"ny’ (v) < C1p™" Y ().
Using the same arguments, we conclude

|Dj(x, y, &) — Dj(x, y, D)| < E (|HY% p(&) — HYy y(D| | X1 = x, Y1 =)

< Gst' Al Z E (@(Xp1, YDV (YD) X1 = x, Y1 = y)
k=1

< GCst"n||AIFY (y) < Crp™ APy (v). O

Proof of Theorem 2.3. Throughout the proof, the following notation is used. C, is the
real number defined by C 1 = max,>; p"~ 1y, while Cz, C3 are the real numbers defined by

= 4C1C6, C3 = Cz(l — )~ (p, Cg are specified in Lemma 6.2). L is the real number
deﬁned by L = 4C~’3C7L0,0_1 (Lo, C7 are specified in Assumption 2.6 and Lemma 6.2). 6 is
any element of ©. x, x" are any elements of X', while y, y" are any elements of ). A, A" are any
elements of P(X), while A, A" are any elements of Ly(X). n is any (strictly) positive integer.

It is easy to notice that Gg X. y(&,) does not depend on Xo, Yy, ..., Xy, Yy forn >1 >k > 0.
It is also easy to show

E (Giyy(E0] Xi = x) = E Gy (€] Xo = x)
for the same k, [. Then, we conclude
(" ®)g(x, y, A) = E (Gy’y y(N)| Xo = x)
n—1
= Z E (E (GX% (&) — GER(E)| X4)| Xo = x)
+ E (Goxy (D) — G’y y(E)] Xo = x)
+ E(E(P9(X,, Y, E)I X)) Xo = x)

n—1
=3 (A" &)+ AL (E) + Bi(x, ) — Bj(x, &)

+ Bl (x, &) + B (ED, (98)
where
Ay"(E) = / AR, Emdx),  B(E) = / f (', ¥, E)QW, dy)m(dx').
We also deduce
" D)y(x, y, 4) = E (Gy'y y(D)| Xo = x) = E (Ggy y(4d) — Gy'y y(4)] Xo = x)

+E(E(G exy(A)|X1)|X0—x)
= Aj(x, D)+ E (II"' ®)o(X1, Y1, D] Xo = x). (99)
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Since ,02"(}1 +1) < C~’1,0”, Lemma 6.2 and (98) imply
i(H” ds)@(-xv Yy, A) - (Hﬂ Qs)@(x/v y/v g)x)i
< |Bie, &0 + B, &0| + | By, ) - B(x, £)]

n—1 n—1
+ 3 [A e s+ Y A 8|

k=0 k=0

<2Cep™(n + 1) + Cop™ [ A]I* < Cap" I A]°. (100)

Then, Lemma 6.2 and (99) yield
[T @)g(x, y, &) — (T" P (x, y, &)
< E (|01 @)X, Y1, ) = (1" @, 3, E)] |Xo = x) + 457 (x, &)
<2Csp™(n +2) + Cop™™ D < Crp". (101)
Let ¢g(x, y, &) be the function defined by

¢0(x7 Y, g)») = ¢9(x7 Y, 5A) + Z ((HnJrl @)@(x, Y, 5}») - (Hn é)ﬂ(x’ Y, 8)»)) .
n=0

Owing to (101), ¢g(x, v, &) is well-defined. Due to the same inequality, we have

(T @) (x, y, &) — do(x, y, E)] < Y [T Bho(x, y, &) — (IT* B)y(x, y, &)
k=n

<Gy =G (102)
k=

Consequently, (100) yields

|po(x, v, &) — do(x’, ¥, E| < |UT" Phg(x, y, &) — T P)o(x, ¥, Exr)
+ |UI" ®)g(x, y, £) — po(x, y, &)
+ [T D)o(x', Y, Ex) — o (X', ¥, Ex)|
< (C, +2C3)p".

Letting n — o0, we conclude ¢y(x, v, &) = ¢dy(x’, ', Ev). Hence, there exists a function ¢y
which maps 6 to R and satisfies ¢y = ¢p(x, y, &) foreach 8 € O, x € X', y € YV, A € P(X).
Then, (100), (102) imply

|(T" @)g(x, y, A) — | < |I" Dg(x, y, A) — (II" P)y(x, y, &)

+ | Do (x, v, £2) — o
< Cup"IA|° + C3p™ < 2C3p" | A|° < Lo" || A (103)

(as | A = D).
Owing to Assumption 2.5, we have

|#0x. v, )] < / / |5, ¥, )] Q' dy')P(x., dx')

< f f oG Y)IAI4 Q' dy)P(x. dx') < Lol| A] (104)
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(see also (94)). Due to the same assumption, we have

‘@O(xv Y, A)_ @9()‘.’ Y, A/)

< f / | Bo(x’, ¥/, A) — By, y/s 4] Q' dy')P(x, dic)

< [/sﬂ(x/, A=A (1A + 1A' Q' dy')P(x, dx")

< Lol A=A (141 + 114'1)* . (105)
Using (104), (105), we conclude that Assumption 2.5 holds when @4(x, y, A) is replaced by
Py(x, y, A)/Ly. Consequently, Assumption 2.5 and (103) imply that there exists a function (59

mapping 6 to R such that (103) is still true when $y(x, y, A), ¢y are replaced with @9 (x,y,4)/
Lo, ¢/ Lo (respectively). Hence, we get

(1" Yo (x, y, A) — Go| < 2C3Lop" [ A]*. (106)

Moreover, it is easy notice that Hely}'},y(&) does not depend on Xi, Y, X5, Y,. Then, we
conclude

(1" @)y(x, y, A) = E (Hyg y(D| X1 = x, Y1 = y)
= E (Hpx y(D) — Hyx y(ED| X1 = x, Y1 = y)
+ E (HY (&) — Hi% y(E)| X1 =x, Y1 = y)
+E (E (H(;;’Y(E)Lﬂ X, Yz;n)} Xi=x,Y1 = y)
=Cy(x,y,&) + Dy(x, y, A) — Dy(x,y, &)

+ E (80X, Yo, FIED| X1 = 2,71 =)
=Cy(x,y,E) + Dj(x,y, A) — Dj(x, y, &)
+ I Dy (x, y, Ep).
Combining this with Lemma 6.2 and (106), we get
(1" @)t y, ) = o] < [T Dot 3. &) = G| + [Chtx, 3, €1
+[Dj(x, y, 4) = Dj(x, v, &)

<2C3Lop" " + C1p*"Y" (y) + Cop™ ¥ I A
<4C;C7Lop" " WIANIT < Lo"y" WIS, O

7. Proof of Theorems 2.1 and 3.1

In this section, we rely on the following notation. For 1 <i < d, ¢; denotes the ith standard
unit vector in Ng. ey is the vector defined by

(o) =min{i :¢; <, 1 <i <d}, ey =¢€jn
for & € N¢\ {0}. Wy(y, 1), T)(y, A) and ¥Z(y, A) are the functions defined by
Uy(y, n) =1log ((R) , (V). Wy, A) = We(y. ho). Uy, N) = (S5 (D) (107
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foro0 e O,ye Y, AePX), A= {Aﬂ :BeNd Bl < p} € Lo(X) and |a| = 1. ¥ (y, A) is
the function recursively defined by

ve(y, A= (S5, (D)= Y (;:Z) wh(y, H(se ) (108)
BeN\(a) ¢
eq<f<a

for 1 < |ee| < p, where the recursion is in |a|.*

Proposition 7.1. Let Assumptions 2.1-2.3 hold. Then, pgf;f(xM), Peofy"(B [A) and %O(ynH,

Pgoi;l()\.)) are p-times differentiable in 6 for each 6 € O, x € X, B € B(X), A € P(X), n > 1

and any sequence y = {yn}u>1 in Y (yn41 is the (n 4+ 1)th element of y). Moreover, we have
3 poy(xIn) = foy" (16, O POy (BIM) = Fyy ™ (Bl (109)
05 WY Gng1s Py (L)) = U5 (s, Fiy (£2) (110)

for the same 0, x, B, A, n, y and any multi-index o € N¢, lae] < p (&, f;g,om(x|5;\), pg:’;(xp\),

Fgf’yO:"(B|&), P (B|)) are defined in (3), (12)-(14)).

Proof. Throughout the proof, the following notation is used. 6, A, B are any elements of O,
P(X), B(X) (respectively), while x, x” are any elements of X.y = {y,},>1 is any sequence in
Y, while « is any element of Ng satisfying || < p. n is any (strictly) positive integer. 8, (dx’)
is the Dirac measure centered at x. &,(dxg.|x, A) and ¢(dxp.,|A) are the measures on X"+!
defined by

E(Alx, 3) = / / / / L (oS (dxn)idnr) - - - p(dx (o), (111
L(AL) = / f / TG () - - - (o)A xo) (112)

for A € B(x"Hs uz’y(x();n) is the function defined by

ug y(X0:n) = l_[ ro (Vi Xic|Xk—1)

k=1
for xgp,...,x, € X. vg,y(x|)\) and wg,y()») are the functions defined by

v, (x|) = f Wy (X0)En(dX0nlx, 1), W, () = f (X0 (d X0 |1). (113)

Using (3), it is straightforward to verify
. Vg y(X[A) . v, (x'[1)
P = T psi = [ S, (114)
we’y()») wgly()»)
wi ,(A) = / vgyy(x/M)u(dx'). (115)

4 The last two functions in (107) are initial conditions in (108). At iteration k£ of (108) (I < k < p), function
Vg (y, A) is computed for multi-indices o« € Ng, || = k using the results obtained at the previous iterations.
5 When n =1, (111), (112) should be interpreted as

E1(Alx.2) = / f LaGo)S, [dxDh(dxo).  E1(AlR) = / / Lo () (dxo).
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It is also easy to show

wh, (M) = f < / re(yl,x’|x>u<dx’)> Mdx),
wiy'o = [ ( [ o X’IX)u(dx’)> o, (e,

Consequently, Assumption 2.2 implies

wh,0) > e f Ho(XIyAdx) = ety (Xy),

Wity = e / 1o (X Y )V, (X [2)(dx) = €20 (X | yus W, (1),

Iterating (116), we get

wp ,(0) = &" [ [ mo(X1yi) > 0.
k=1

Owing to Leibniz rule and Assumptions 2.2, 2.3, we have

|8§‘uzyy(xo;n)| < Z ( * ) l_[ ‘ngrg(yk, xk|xk,1)‘
Bi-- B, )

Bl BneNd
By+-+Bn=a

< (]"[ P (e m) > ( * ) [ Jaw '
k=1 ﬂl""’ﬂn k=1

BioeBneNd
By+tBy=a
n lee] n
<2n (1"[ w<yk)) (H ¢y m)
k=1 k=1
for xg, ..., x, € X. Due to the same assumptions, we have

k=1

/ (H ¢<yk,xk>) tn(dxonlh) = (H / ¢(yk,xk)u(dxk>) < oc.
k=1 k=1

/ (H ¢<yk,xk)) E(dxo.|x, 2) = Py, X) (]"[ f ¢<yk,xk>u<dxk>> < o0,
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(116)

(117)

(118)

(119)

(120)

Here and throughout the proof, we rely on the convention that ]_[,{:i is equal to one whenever
Jj < i. Using Lemma C.1 (see Appendix C) and (118)—(120), we conclude that vg’y(x|)\),
wy ,(A) are well-defined and p-times differentiable in 6. Relying on the same arguments, we

deduce

g v ,(x[2) = / g ug y (X0:)En(dX0:n] X, 1), 85‘w3,y()»)=/ g Uy (X0:n)En (dX0:n | 1)

(121)
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Then, (114), (117) imply that pgj;’(xlk) is p-times differentiable in 8. Moreover, (118), (121)
yield

|88 g, (x[2)] < / 102 g (o) |En (dx:n 3, 2)

n

]
< 2l (y,, x) <H w(yu) (]"[ / ok, xk>u<dxk>) (122)
k=1

Let Py +/'(dx|2) be the signed measure defined by
Py (Bla) = / 3 pyy(xI1), p(dx) (123)

while 1353”()\) is a ‘short-hand’ notation for f);f’y" (dx|)). Moreover, let 1399 ,(») and ISéfy(k) be
the vector measures defined by

POY=6. P, = { Py () e e Nj, Ja| < p} (124)

where 13“ "(A) is the component o of PQ" (A). Owing to Lemma C.1 and (114), (117), (122),

PO"(BM) is p-times differentiable in 6. Due to the same arguments, P“ "(BlA) is well-defined
and satisfies

ﬁ“’"(BM) = 80 PO”(BM) = 80 (B|A) (125)
(as PJ(L) = Py (h).
Usmg (5), (l()) (115), (123), it is straightforward to verify
S roQng1, xlx v (x| M) p(dx")
wp, ()
n , // / )\' d A d "
<Rg,y,,+1 (Po,,()\))> J [ reGuer, x” X" , (" M) p(dx" ) u(dx )
wgqy(k)

Moreover, Leibniz rule, Assumptions 2.2, 2.3 and (122) imply

/ n / o - / n /
138 (rann. Xl g, 1) < 3 ( ﬂ) 05 P 1, x| [0 vg 1)

d
ﬂeNO
B=a

P s (| By ) = : (126)

(127)

n—1
< ¢Ont1, )P, X (H/fb(yk,xk)u(dxk))
k=1

n ]
<Y (z)z'ﬁ<w<yn+1>)'“f" (H vf(yk))

d =
pend k=1
B=a

n+1

o]
< 4P (i1, )P, x) (]"[ w(yw) (H / S ka(dxk)) <oo.  (128)

k=1
The same assumptions also yield

/¢(yn, x)u(dx") < oo, f/¢(yn+1,x)¢(yn, xpdx)pdx’) < oo. (129)
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Using Lemma C.1 and (117), (126)—(129), we conclude that rg’yn ( ’PQO;’(A)) ( 9. ys1

(f’&”(k))) are well-defined and p-times differentiable in 6.° Relying on the same arguments
and (114), we deduce

ogrd, (x| BhnGy) = / 3 (roQn1, XX PYE G 10)) mdx'), (130)

oz (RS, (P0y ) f / 0 (o Qrner. X" 1) PRE G 10)) (e Ypa(dx'). (131)

Consequently, Leibniz rule and (5), (10), (123) imply

rg, . (x| Py @)= (“) / 3 P ro(yurr. x1x)38 pYn(x |M)(dx)

BeNgd A
B=<a
o o— n
= % (§) it wltyen)
BeNg
B=za
= 52, 1P O (RE, L (P G)). (132)

Leibniz rule and (5), (10), (123) also yield

83‘ (Rgv)'n+l (PO n()‘))>

( ) / / By, 23 UG (e ()

Beng
B=a

= ¥ (§) (rr o)

d
ﬁeNo
B=a

_ <Sg,yn+1 (ﬁe’fy()\))><R3’yn+l(PO”(A))> (133)
Moreover, using (5), (10), (113), (123), we get

oerd | (x| BE0G)) = o) (xI) = / 91y (x, i Ix M)

= o (x|ﬁ90y()‘))< 8w (POO()\))> (134)
ag( 6.3 (P 0()‘))> = g w, , (M) = //80 ro(x”, yilx"yu(dx")A(dx")
:(Se»n( 0vy(“)>< eyl(POO()\))> (135)

(as Py (B|2) = A(B)).
Relymg on (3), (5), (10), (123), it is straightforward to verify

Py (RS, (BOy = G0)) =18, (x| By~ 6).

6 To conclude that rg} l( |15£y"(k)) is well-defined and satisfy (130), set z = x', v(dz) = u(dx’), Fy(z) =
rg(y,,_,.],x\x’)v (x A), g0 = wgy(k) in Lemma C.1 (x is treated as a fixed value). To conclude that ( 9, 3ns1

(15;)”;()»))) is well defined and satisfy (131), set z = (x, x"), v(d2) = u(dx)udx"), Fy(2) = ro(yu+1, xIx)vg ,(x'11),
g = w(’;,y(}») in Lemma C.1.
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Then, Leibniz rule and (133), (135) imply

ok 700 = X () oo 7 R, 2 )

d
ﬁeNO
B=a

> (;) of pineln (55 P (Pay 00) ) (R, (B2~ ).

d
ﬂeNO

B=a

Since 0 < (R

6, Vn+1

i, (| Py ) @
98 pYCaI) = o - ( ) Py (S5 P (B 00).
9 (RS, (B8 ) ﬁe%w p i |

B<a

( N;’:;’(A))) < 00 (due to Assumption 2.1), we have

Combining this with (132), (134), we get

o5 Py (x12) = st (x| Py ) = (“) of el (5P (P 60)). (136)

BeNg\o}
B=<a

Eq. (136) can be interpreted as a recursion in |«| which generates functions {89 pg ;(xlk) VRS

N‘é, lee] < p}. Eq. (136) can also be considered as a particular case of (7) — to get (136),
set A = P;;l(k), y =y, in (7). Hence, comparing (136) with (7) and using (9), (11), (123),
(124), we conclude

0 pyyld) = £, (x| Boy ). Boyt o = Fe, (B (L),
By 00 = Fo, (P ). (137)

Iterating (in n) (137), we also get ﬁéfy()\) = FO”(SA) Combining this with (13), (125), we
deduce that (109) holds.
In the rest of the proof, we assume 1 < || < p. Owing to (107), (133), (135), we have
95(RY, (Poy ')
0n 1
(RY,, (Poy ™ W)

og 2 (v By (0) = = (85, (P55 ) = 5 (. £y ),
(138)
where e € N¢, |e| = 1. Hence, we get

05" (Ra, (Pay ™ 00)) = 05 03 (v, Py ) (B3, (P )

(as |eq| = 1). Therefore, we have

05(RY,, (P0y =" 60)) = 05 (05 w2 (v, Py ) (RD,, (PR ()

7 In (136), po "(xlk) is the initial condition. At iteration k of recursion (136) (1 <k < p), function 9§ pey(xl)L)

is computed for multi-indices a € N || = k using the results obtained at the previous iterations.
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Consequently, Leibniz rule and (133), (135) imply
50.n—1
05 (R3.y, (Foy ™ ()

= Z (05 —ﬂea) 3£+ea &I/g(YW ﬁé’;l()\)) 8g_ﬂ_eu(R3,yn (ﬁel)yn—l(k))>

d
/SENO
B=o—eq

2 (; :2> 0 w3 (s Py 00) 0P (RD, (P! )
efziia

> (z _ za) oF W (yu, P ) (S5, P (B O)NRS., (B ()
pend «

eq<p=a

As (Sg’yn (ﬁg;l(k))) =1 (due to (5), (10)), the same arguments then yield
35 w3 (yur P1y ()

iy (;:Zz>ag w3 (s Py ) (852 (B3 00)) +

a8 (RS, (P )
(RS, (P3y~'())

BeNd\(@)
eq<p=<a
o —e Din— - Dn— DNn—
== Z (ﬁ - BZ> ag Sp‘?(y’“ PGn,y 1()‘)) (Sg,yf(Pf?,y 1()‘))) + <Sg,yn (Pﬂ,y 1()‘)))'
eNd\ (o
o
(139)

Eq. (139) can be viewed as a recursion in || which generates functions {Bg‘ W(g (y,,, ISH'fy_l()»)) :
o € Ng, 1 < || < p}.8 Eq. (139) can also be considered as a special case of (108) — to
get (139), set A = Isg'f;l(k), y =y, in (108). Hence, comparing (139) with (107), (108), we
conclude

O WY (vu. Py ) = 0 (v Py, (V). (140)
Using (138), (140), we deduce that (110) holds. O

Proof of Theorem 2.1. Let m > 0 be any (fixed) integer, while y = {yu}n>1, ¥ = {¥}u=1
are any sequences in ) satisfying y, = y,4,, for n > m. Then, using (3), it is straightforward
to verify pg''(x[A) = pgiﬁf’"(xM) for € O, x € X, » € P(X), n > m. Consequently,
Proposition 7.1 implies that (16) holds for the same 6, x, A, n,m and B € B(X), a € N¢,

le| < p. O

Lemma 7.1. Let Assumptions 2.1 and 3.1 hold. Then, there exists a real number Cg € [1, 00)
(depending only on &) such that

|7y, D] < Cso(y), [Ty, A) = By, )] < Csp A= A
forall0 € ©,ye), A, AN e Ly(X).
8 In (139), functions {Bg‘ &Ug(ynﬂ, ﬁay(k)) € Ng, || = l} are the initial conditions. At iteration k of (139)

(1 < k < p), function 3§ W(g (y,,_H, ﬁéfy()»)) is computed for multi-indices « € Ng, || = k using the results obtained
at the previous iterations.
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Proof. Throughout the proof, the following notation is used. C is the real number defined by
C=1+ |log e|, while Cjy is the real number defined by Cs = 2C,C (e, C; are specified in
Assumption 2.1 and Lemma 5.1). 6, y are any elements of @, ) (respectively). A, " are any
elements of P(X), while 4 = { T € Ng, lae] < p} A = {A:x o< Ng, loe] < p} are any
elements of Ly(X).

Relying on Assumption 2.1, we conclude

o) = [ ([ mora'immtas) s <
Consequently, Assumption 3.1 and (10) imply

|log ({R,,W))| = lloge| + [log ua(X[y)] < C + () < 2Co(y).
Therefore, (107) yields

| 9 (y. M| = [log (R ,(10)))| < 2C0(y) < Cso(y).

Moreover, using Lemma 5.1, we deduce

mo(X|y)
—

im0 | |(Ree )] JmLeaf
(R3., () (R3., ) (R0~ '
Consequently, we have
RY (A RY (A
log (A5, ) < s, W) _ <C|a-¥. (141)
(RS, )]~ (RS, ()
Reverting the roles of A, A, we get
RY (A RY (W RY (W
— log (B3, ) = log (3, () < (3, () —1l<Ca=n]. (142)
(R, () (RS, ) ) ~ | (RS, )

Owing to (141), (142), we have
<cilr-u].

Hence, we get
Wl <la-a]. O

[ ) (y, A) — By, A)| = |1 < Ci ko —2g] = Csp) |44

Lemma 7.2. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number Cqg € [1, 00)
(depending only on ¢, p) such that

|75 (v, D] < Co(wIIAN)",
| (y, A) = ¥ (y, A)| < CollA — A'[[(w(») (1Al + ||/1’||))p
forall € O,y €Y, A, A € Lo(X) and any multi-index € N3\ {0}, |et| < p.

Proof. Throughout the proof, the following notation is used. ¢, y are any elements of 6, Y
(respectively). C 1» Cz are the real numbers defined by C 1 =2PC,, C2 =3C? > while Cy is the
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real number defined by Cy = exp(éz p) (C, is specified in Lemma 5.2). B, is the real number
defined by By = exp(6~”2|a|) for a € Ng.

Let y be any element of Ng’ \ {0} satisfying |y| < p. Then, it easy to conclude B, <
exp(Cy) < 36’12 Consequently, Lemma 5.2 and (10) imply

\(Sg, SD) = (87 ()] = C2 D WO s — A5l + ko — AglHIAGID

d
SeNO

s<y
<271, (pyNPIA = A NAAl+ 1A
< Gl A = AN (w)AAL+ 1 AD)"!
_ Byl = AU o)AAL+ 141)”
- 3C
for A = {rs:8 € NZ |8 < p} € Lo(X), 4/ = {1} :8 € NI, [8] < p} € Lo(X) (as || 4] > 1,
(A = [IAgll, 1A = A'|l = ||As — Agl)). The same arguments yield

(5,0} = €2 Y- @D sl < 2Y G AT < 6 (Fm)A1)”

d
5€N0
s=<y

(143)

vl
- By (xlf(yzll/lll)

(144)
3C,
for the same A.
To prove the lemma, it is sufficient to show
| ey, D) < Ba(yMIAN™, (145)
|0y, 4) — BE(y. A)] < Ball A — A (W) (A1 + 1 471))*™ (146)

for A, A" € Ly(X), a € Ng \ {0}, |e| < p. We prove (145), (146) by mathematical induction
in |e|. When || = 1, (143), (144) imply that (145), (146) are true for all A, A" € Ly(X).
Now, the induction hypothesis is formulated: Suppose that (145), (146) hold for some [/ € Ng
and all A, A’ € Lo(X), a € Ng satisfying 1 <[ < p, |e| < [. Then, to prove (145), (146),
it is sufficient to show (145), (146) for all A, A" € Ly(X), a € Ng satisfying |e| =1+ 1. In
what follows in the proof, 4, A" are any elements of Lo(X).  is any element of N¢ satisfying
lo| =1+ 1, while B is any element of N§ \ {0, &} fulfilling B < a.

Since f <a, B #0, B # a, we have 1 < |B| < || — 1 =[. Then, owing to the induction
hypothesis, we have

max }%ﬂ(y’ 2 |g[/(f(y, ) } < Bg < Bf‘ (147)
nan”® (wonan)” 3¢t
vy, )= WPy, A Byl A— A
(v)UIAL+ 11AD) 3C;
Consequently, (144) implies
et| 9]
‘%‘i(% ) |(Sg,;ﬂ(/1))} < BﬂBa—ﬂ(W}y)HAH) - Ba(‘ﬁ(yzﬂ/l”) (149

3C, B 3C,
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(as || = |B] + | — B]). Similarly, (143), (144), (147), (148) yield

Boz A=A A A Jet]
By, ) — whiy, )] 5o Py < 22 ||(w;yé(|| I+ 14D)" (150)
1
By|A— A A A Jet]
|8 (v ] (S ) — (5P )] < I ||(1/f<3yé(|| I+ 140" asn
1
Using (108), (144), (149), we conclude
50, ] = (85, (D) + © ) W ] (s )
250 )] < 5, ) :
BeNd\(e) B~
eq <f<a
| lot|
_ 2B, (¥ 1A
< e
< Ba(y()l1A1)".
(as C'l > 2lahy, Relying on (108), (143), (150), (151), we deduce
o - w00 = X (570 ) [0 M55, ) - (53,7
g
a— ey , wB o
iy NZ“ , </3 —ed> |07 (. ) = 2y ] (75 P )]
€ 0 o
eq <f<a

o+ [(85, () = (85, ()

_ 2Bl A = AN OXUAL+ 141D)
C

< Bull A= A N(w AT+ 14'])

Hence, (145), (146) hold for « € N¢, |a| = [ + 1. Then, the lemma directly follows by the
principle of mathematical induction. [

||

Proof of Theorem 3.1. Let w = p(p + 1). Using Theorem 2.3 and Lemmas 7.1, 7.2, we
conclude that for each multi-index « € Ng, lee| < p, there exists a function g which maps 6
to R and satisfies

Ye = lim (II" W)y (x, y, A) (152)

n—oo

for0 e @, xeX,ye), Ae Eo(i'k' ). Relying on the same arguments, we deduce that there
also exist real numbers p € (0, 1), C; € [1, c0) (depending only on ¢, 8, Ky, M) such that

1wy (x, y, &) =g | < Crp" P WIAN" (153)

for the same 0, x, y, Aandn > 1, a € Ng, || < p (u is specified in Assumption 3.1).

Throughout the rest of the proof, the following notation is used. 6 is any element of O,
while x, y, A are any elements of X, J, P(X) (respectively). « is any element of N‘é satisfying
|| < p. n is any (strictly) positive integer.
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Owing to Assumption 3.1, we have

max {E (p(Y,) . E ("(Y))} < E (¢(Y)Y"(Yn) = E ( / PP (MO (X, dy))

< M. (154)

Due to the same assumption, we also have
E(Yy"@y ()| X1 =x, Y1 =y) = ¢¥“O)E (/ W(y)Q(Xk,dy)> < Moy (y),
E(y"My (V)| X1 =x,Y1=y)=E (/ W’(y)Q(Xz,dy)/ w”(y)Q(Xk,dy))
< M;

for [ > k > 1. Therefore, we get

E (W(M)Z YY) Xy = x, Y1 = y) < M3n+ Moy (y) < 0. (155)

k=1
Using (3), (12), (20), (107), (108), it is straightforward to verify

n—1
log g} (Yia|2) = ) log ( / / re(YkH,x”|x’)p2j’;<x/|A>u(dx”>u(dx/>>
k=1

+ log (//VQ(Y1:X/|X)H(dx/))\(dx)>

n—1

= Z ng(Yk_,_[, Fgé(é‘k))
k=0

(here, Y denotes stochastic process {Y,},>1, i.e., Y = {¥,},>1). It is also easy to show
(I %), (x, y. &) = E (5 Vo1, FYpEN| X1 = x, Y1 = y).

Therefore, we have

n—1

E (log g} (Yial0)| X1 = x, Y1 = y) = > _(I*0°) (x. y. &) + ¥y, &) (156)
k=1

Consequently, Lemma 7.1 and (153) imply
1
‘E (;logqé'(Yl;nI/\) X =x,Y= y) — ¥y

ln—l _ o . WO ’5
22| "W")g<x,y,a>—w3\+‘%‘ |ne<y 8

k=1

IA

5 Ciy(y) i . W2l + Csp(y)
n n
k=1

Ciy(y) Y3+ Csp(y)
n(l — p) n '

IA
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)

Then, (154) yields

1
<E (’E (};Iqué’(Yl:nl?»)‘ X1, Y1) ]
- CLEQ"(Y) | 19l + CsE(@(Y)

1
‘E (; logq(’}(Yl:nIk)> ]

n(l —p) n
CiM, [¥a| + Cs My
~n(l—-p) n '
Therefore, we get
1
lim E (—1ogq£<Y1m|A>> =¥ (157)
n— 00 n

Let C; = max{Aq : « € Ng, | < p} (Ay is specified in Proposition 5.3). Owing to
Proposition 5.3 and Lemma 7.2, we have

| U (Va1 Fg3ED)| < Copr? s DI Fg 3 EDIIT < CF Copr? Yopp) (29)"
< CICon"yr (Yur1) Y ¥ (i)
k=1
(as %9:” > 1, u > p?). Consequently, Proposition 7.1, Lemma C.1 and (155), (156) imply that
(H n WO) Q(x, v, ;) is p-times differentiable in 6 and satisfies
(I v°),(x. y, &) = E (3§ U (Yor1, FY3(ED)| X1 =x, Y1 = y)
= E (P§ Vo1, Fpy@ED)| X1 =x, Y1 =)
= (II"0%),(x. y, &)
Then, the uniform convergence theorem and (153) yield that ) is p-times differentiable in @

and satisfies 9§y = ¥¢. Combining this with (157), we conclude that there exists function
[(9) with the properties specified in the statement of the theorem. [J

8. Proof of Corollaries 4.1 and 4.2

_ Throughout this section, we rely on the following notation. Ag(x’|x), Bé (x), By(x), ég(ylx),
Dy(x) and Dy(x) are the functions defined by
Ap(x'|x) = x" = Ag(x),  By(x) = adjBs(x),  By(x) = detBy(x),
Coylx) =y — Co(x),  Djy(x) = adjDy(x),  Dy(x) = detDy(x)
for0 € ©,x,x' € X,y €Y. Ag(x'|x), Co(y|x), Us(x'|x) and Vy(y|x) are the functions defined
by
Ap(x'|x)
By(x)
Co(ylx)
De(x)

Ag(x'|x) = By(x)A,(x'|x),  Up(x'|x) =

Co(ylx) = Dy(x)Ch(ylx),  Volylx) =
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ug(x’|x), itg(x), ve(y|x) and vge(x) are the functions defined by
w0 =7 (Uo'10). ) = [ e
X

(I = s (Vo). Tlx) = / vy )Y
y
Then, it is easy to show
Up(x'|x) = B, '(x) (x' — Ap(x)),  Voylx) = D; ' (x) (v — Co(x))

for all 6 € é x,x' € X,y e ). Itis also easy to demonstrate

W@l wok)
o) T Dp(x)

po(x'|x) =

Lemma 8.1. Let Assumptions 4.1-4.4 hold. Then, ps(x'|x) and qo(y|x) are p-times differ-
entiable in 6 for each 6 € O, x € X, y € ). Moreover, there exist real numbers €, € (0, 1),
K, € [1, o0) such that

<K (158)

min { po(x'|x), go(yIx)} > &1, max {

forall 6 € O, x,x' € X, y € Y and any multi-index o € Ng, lee| < p.

Proof. Throughout the proof, ¢ is any multi-index in Ng satisfying || < p. It is easy to notice
that By(x) and the entries of f?’(x) are polynomial in the entries of By(x). It is also easy to
notice that Dg (x) and the entries of D! (x) are polynomlal in the entries of Dy(x). Consequently,
Assumptlons 4.2 and 4.3 imply that 8°‘A9(x [x), B“Bg (x) exist and are continuous in (9, x, x’),
0, x) on O x X x X, O x X. The same assumpt10ns also imply that 89 Cg(ylx) g Dg (x) exist
and are continuous in (6, x, y), (6, x) on O xXx)Y, OxX.As By(x), Dyp(x) are non-zero
(due to Assumption 4.1), we conclude from Lemma B.1 (see Appendix B) that of U@(X [x),
g Vg(ylx) exist and are continuous in (6, x, x), (6, x, y) on O x X x X, O x X x Y. Then,
using Assumption 4.2 and Lemma A.1 (see Appendix A), we deduce that 97 ity(x'|x), 05 Vg (y|x)
exist and are continuous in (4, x, x), (0, x, y) on OXx XXX, 0xXx V.

Let 6 be any element of @. Moreover, let x, x’ be any elements of X', while y is any element
of V. Since © is bounded and cl® C 6, Assumptions 4.1 and 4.4 imply that there exist real
numbers § € (0, 1), Ce [1, 00) (independent of 6, x, x’, y, ) such that

 [ogve(x'I0)|} < C. (159)

min {ug(x'|x), vo(ylx)} =8,  max {|9F

Consequently, Lemma C.1 (see Appendix C) yields that 9fis(x), 95 vs(x) exist. Moreover,
combining Assumption 4.4 and (159), we get

fig(x) = f Up(¥'|)dx’ = Sm(X) > 0, By(x) = f v (yl0)dy = sm(Y) > 0, (160)
X Yy

where m(&Xx’), m())) are the Lebesgue measures of X', ) (respectively). Then, using Lemma B.1,
we conclude that 9 po(x'|x), 95ge(y|x) exist. Relying on the same lemma and (159), (160),
we deduce that there exists a real number K| € [1, co) with the properties specified in the
lemma’s statement. []

Proof of Corollary 4.1. Throughout the proof the following notation is used. ¢, Cy, C,, C3 are
the real numbers defined by ¢ = mln{sl, 2}, C, = 2K? 81 ,Ch = K1 ,Ci=1+] log (X))
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(e1, K are specified in Lemma 8.1). r, u, v are the real numbers specified in Assumptions 2.6
and 3.2. ¥ (y), ¢(x, y), ¢(y) and uy(dx|y) are the functions and the measure defined by

v =C1, ¢, )=Cs @) =Cs, pe(Bly) = u(B)

for0 € ©,x e X,y €Y, B e B(X) (u(dx) is specified in Section 2.1). ry(y, x'|x) has the
same meaning as in (1), while pg(x’|x), go(y|x) are defined in (22), (23). 6 is any element of
O, while & is any multi-index in Ng satisfying || < p. x, x" are any elements of X', while y
is any element of ).

(1) Owing to Lemma 8.1, we have

ef < re(y, x'|x) < Ki. (161)

Consequently, we get

/ ro (v, ¥ POp(dx’) = 62(B) > e0(Bly),
B

1
/ 1o, ¥ POA') = K3 u(B) < - pao(BIy)
B
for B € B(X). We also get
ro(y, ¥'1x) < Cs = §(y, x'), / $(y, I(dx) = Cop(X) < oo.

Hence, Assumptions 2.1 and 2.3 hold for ps(x’|x), go(y|x) specified in (22), (23).
Due to Leibniz formula and Lemma 8.1, we have

l0¢ra(y, x| = > <;> ‘3fq9(y|x/)‘ ag‘*ﬂpg(xwx)‘ <Ky (;) — kg2,
ﬁeNg

ﬁeNg
B=a B=a

Then, (161) implies
|08 re(y, x'|0)| < 2 KTer % ra(y, x'|x) < (W)™ ra(y, x'|x).

Thus, Assumption 2.2 holds for ps(x’|x), gg¢(y|x) specified in (22), (23). Consequently, all
conclusions of Theorems 2.1 and 2.2 are true for the model introduced in Section 4.
(i) Owing to (24), we have
/fﬂ(x,y)tlf’(y)Q(x,dy) < C7 sup /w(X’, MO, dy) < oo.
x'eX
Hence, in addition to Assumptions 2.1-2.3, Assumptions 2.4-2.6 also hold for py(x’|x), go(y|x)
specified in (22), (23). Therefore, all conclusions of Theorem 2.3 are true for the model

introduced in Section 4.
(iii) It is easy to conclude

llog 116(X1y)| = [log w(X)| < C3 = @().
It is also easy to deduce

/w(y)llf”(y)Q(x,dy) = C'C5 < oo, /Iﬂ”(y)Q(x,dy) =C} < o0

Thus, in addition to Assumptions 2.1-2.3, Assumptions 2.4, 3.1, 3.2 also hold for pg(x’|x),
qo(y|x) specified in (22), (23). Consequently, all conclusions of Theorem 3.1 are true for the
model introduced in Section 4. [
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Lemma 8.2. (i) Let Assumptions 4.1-4.3 and 4.5 hold. Then, pg(x’'|x) and qs(y|x) are
p-times differentiable in 6 for each 0 € O, x € X, y € ). Moreover, there exist real numbers
& €(0,1), K>, K3 € [1, 00) such that

po(x'|IX) = 62, |0 pe(x|¥)| < Koo ge(ylx) < K3, (162)
|85 g6 (y12)| < K3ge(ylx)(L + [y [ (163)

forall® € O, x,x' € X, y € Y and any multi-index o € N¢, |a| < p.
(ii) Let Assumptions 4.1-4.3, 4.5 and 4.6 hold. Then, there exist a real number K4 € [1, 00)
such that

llog go(y]x)] < Ka(1 + [|ly[)? (164)
forall® € O, x,x' e X, ye ).

Proof. Throughout the proof, the following notation is used. 6 is any element of ©, while « is
any multi-index in N(“; satisfying || < p. x, x’ are any elements of X', while y is any element
of Y.

(i) Using the same arguments as in the proof of Lemma 8.1, it can be shown that 9§ py(x'|x)
exists. Relying on the same arguments, it can also be demonstrated that there exist real numbers
& € (0,1), K, € [1, 00) (independent of 6, x, x") such that the first two inequalities in (162)
hold. In what follows in the proof of (i), we show that 97 gs(y|x) exists. We also demonstrate
that there exists a real number K3 € [1, 0o) (independent of 6, x, y) such that (163) and the
last inequality in (162) hold.

Relying on the same arguments as in the proof of Lemma 8.1, it can be shown that
8°‘C9(y|x) B“C B(v]x), 95 Vo (¥]x), 95 vg(y|x) exist and are continuous in (8, x, y) on OxXx).
Using the same arguments, it can be demonstrated that 9§ Dg(x) g D), p(x) exist and are
continuous in (9, x) on @ x X. Since @ is bounded and cl® C 6, Assumptions 4.1, 4.3,
4.5 imply that there exist real numbers § € (0, 1), C 1 € [1, 00) (independent of 8, x, B) such
that

‘Dg(x)‘ > 5, max”af >

By} =€ (165)

for B € N, | B| < p. The same arguments also yield that there exists a real number C’z e [1, c0)
(independent of 6, x, y, y) such that

[ciom] = a2 éom] <é (166)

for y € Nf\ {0}, |yl < p.
Let C3 =2PCC,. Owing to Leibniz formula and (165), (166), we have

Jscorn] = 2 (Z)Hagf’bg(x)” o5 P Chvi|
o
<CG|[1+yl+ Y (;)
ﬂe;!@’\(a)
<2MC G+ Iyl
< G5(1+ Iyl
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Consequently, Lemma B.1 (see Appendix B) and (165) imply that there exists a real number
C4 € [1, 00) (independent of 6, x, y, ) such that

[8g Ve (y1x)|| < CaC1 + Iyl (167)

Then, Lemma A.1 (see Appendix A) and Assumption 4.5, yield that there exists a real number
Cs € [1, 00) (independent of 6, x, y, ) such that

ve(ylx) < Cs,  |9%ve(yIx)| < Csve(ylx)(A + [yl (168)

Moreover, due to Assumptions 4.1, 4.2, the sign of [)g(x) is constant in # on each connected
component of ©. Since O is open, all connected components of © are open, t0o. As vg(x) =
| Dg(x)| (due to Assumption 4.5 and Y = R%), we conclude that 95 vg(x) exists. Using (165),
we also deduce

p(x) =8, |95 T(0)| = |95 Do(x)| < C. (169)

Consequently, Lemma B.1 implies that 95gg(y|x) exists. The same lemma, Assumption 4.5
and (168), (169) also yield that there exists a real number K5 € [1, oo) (independent of 6, x,
v, o) such that (163) and the last inequality in (162) hold.
(i1) Let C¢ = 5L0C1CZ, K4 = K¢Cs. Owing to Assumption 4.6 and (165), (167), we have
log go(y|x) = log vs(y|x) — log Bs(x) = log s(Vs(y|x)) — log | Dy (x)|
> — Lo(1 4+ [I[Va(yI0)1)* — Cy
> —4LoC3(1 + IyI)* — G
> — Co(1+IIy1)*. (170)

Moreover, due to Assumption 4.5, we have
log go(y|x) <log Ko < Ko(1 + [|ly[)*. (171)
Combining (170), (171), we conclude that (164) holds. [

Proof of Corollary 4.2. Throughout the proof, the following notation is used. &, C 1» C~'2,
C~‘3 are the real numbers defined by ¢ = min{52,K2_1}, C‘l = 2K2K382_2, éz = K>Kj,
C~‘3 = K3K4(1 + | log u(X))) (€2, Ko, K3, K4 are specified in Lemma 8.2). r, u, v are the real
numbers specified in Assumptions 2.6, 3.2. ¥ (y), ¢(x, ¥), ¢(y) and pug(dx|y) are the functions
and the measure defined by

v =Cid+y? o, »)=Co o) = C3(1+ Iy,
Ma(Bly)=/qe(ylx)u(dx)
B

for6 € ©,x e X,y €)Y, B e B(X) (u(dx) is specified in Section 2.1). ry(y, x'|x) has the
same meaning as in (1), while pg(x’|x), go(y|x) are defined in (22), (23). 6 is any element of
O, while « is any multi-index in Ng satisfying || < p. x, x" are any elements of X', while y
is any element of ).

(i) Owing to Lemma 8.2, we have

£2q0(y|x") < re(y, x'|x) < Kago(yIx") < K2 Ks. (172)
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Consequently, we get
fBre(y,x/IX)u(dx’) > Sz/Bqa(yIX’)M(dx’) > epa(Bly),
[ ot o'y = & [ antriomiany < Snately)
for B € B(X'). We also get
(') = Ca =00, [ Bl xmlen) = Canc) < ox.

Hence, Assumptions 2.1, 2.3 hold for pe(x'|x), ge(y|x) specified in (22), (23).
Due to Leibniz formula and Lemma 8.2, we have

o _
B IbIED ( ﬂ) (8 a0 o1 | (052 pota'1)
ﬂeNg
B<a
o
< K2 K3go(ylx') ) (ﬁ) (1+ [lyIH*#!
ﬂeNg
B<a

< 2™ K> K3qe(y|x)(1 + [y )™,
Then, (172) implies
|05 7o (v, x'12)] < 2 K2 K35 ' (1 + [lyID*™rg(y, x'1x) < (W)™ ro(y, x'|x).

Thus, Assumption 2.2 holds for pa(x’|x), ge(y|x) specified in (22), (23). Consequently, all
conclusions of Theorems 2.1 and 2.2 are true for the model introduced in Section 4.
(i1) Owing to (25), we have

/fp(x, WY () O(x, dy) < C7 sup /(P(x/, WA+ Iy @', dy) < oo.
x'eX
Hence, in addition to Assumptions 2.1-2.3, Assumptions 2.4-2.6 also hold for py(x’|x), ge(y|x)
specified in (22), (23). Therefore, all conclusions of Theorem 2.3 are true for the model
introduced in Section 4.
(iii) Owing to Lemma 8.2, we have

mo(X|y) = /q@(yIX)M(dX) = K3u(X). 173)

Due to the same lemma and Jensen inequality, we also have

log pa(X|y) > log u(X) + ﬁ log go(y1x)u(dx) = —|log ju(X)| — Ka(1 + [y[)*.
(174)
Combining (173), (174), we get
llog o (X |y)| < Ks[log u(X)| + Ka(1+ yID* < C3(1 + Iy [)* = @(y).

Moreover, (26) implies

/df”(y)Q(x,dy) < C} sup /(1 + lyID* Q(x', dy) < oo.

x'ex
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As v >u+1, (26) also yields

/ PV (1) Q(x,dy) < CiCs sup f (I + lyID* ™o, dy) < co.

x'eX
Thus, in addition to Assumptions 2.1-2.3, Assumptions 2.4, 3.1, 3.2 also hold for pg(x’|x),
qo(y|x) specified in (22), (23). Consequently, all conclusions of Theorem 3.1 are true for the
model introduced in Section 4. [
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Appendix A

In this section, we present auxiliary results crucially important for the proof of
Corollaries 4.1 and 4.2. Let © and d have the same meaning as in Section 2.1. Moreover,
let Z be an open set in R%, where d, > 1 is an integer. We consider here functions fy and
g(z) mapping 0 € 6, z € Z to Z and R (respectively). We also consider function %, defined
by hy = g(fy) for & € O. The analysis carried out in this section relies on the following
assumptions.

Assumption A.1. f; and g(z) are p-times differentiable on © and Z (respectively), where
p > 11is an integer.

Assumption A.2. There exist a real number K € [1, o) and a function ¢ mapping 6 € ©
to [1, co) such that

max {|| foll, |05 fo |} < de.  [9P5(2)| < Klg@)I(1 + [IzI)”!

for all 6 € O, z € Z and any multi-indices a € Ng \ {0}, B € Ngz \ {0} satisfying || < p,
1Bl < p.

Throughout this section, the following notation is used. For & = («y, ..., ay) € Ng, ne and
m are the integers defined by

g = (@ 4+ 1)+ (g + 1) — 1, m,,,=<”°‘).
||

For 60 € ©,1 <k <d,, fyi is the kth component of f,. For the same 6 and « € Ng \ {0},
|| < p, Fpq is the nyg-dimensional vector whose components are derivatives 85 fox:B €
Ng \{0},B<a,1l <k < dz}. In Fy o, the components are ordered lexicographically in (k, B).

Lemma A.1. (i) Let Assumption A.1 hold. Then, hy is p-times differentiable on ©. Moreover,
the first and higher-order derivatives of hg admit representation

Ofhy= Y 9*8(fy) Pup(Foa) (175)

BENGE\(0)
1BI=lel|



V.Z.B. Tadi¢ and A. Doucet / Stochastic Processes and their Applications 130 (2020) 4808-4858 4853

for all 6 € © and any multi-index o € Ng \ {0} satisfying |o| < p. Here, Py g : R"* — R is
a polynomial of degree up to |a| whose coefficients are independent of 6 and depend only on
o, B.

(ii) Let Assumptions A.1 and A.2 hold. Then, there exists a real number L € [1, 00) such
that

|05 | < L lhgl 7
for all 6 € O and any multi-index a € Ng’ \ {0} satisfying || < p.

Proof. (i) This part of lemma is proved by induction in |e|. It is straightforward to show that
g he exists and satisfies (175) forall 0 € O, a € N¢, |e| = 1. Now, the induction hypothesis
is formulated. Let 1 <! < p be an integer. Suppose that d3'hy exists and satisfies (175) for
eachf € O, a e Ng, lee| <. Then, to show (i), it is sufficient to demonstrate that d3'hy exists
and satisfies (175) forall 6 € O, @ € N¢, || = [ + 1.

Let 6 be any element of ©, while « is any multi-index in Ng satisfying || =1 + 1. Then,

there exists e € Ng such thate < &, |e] = 1. As |a —e| = |a| — 1 =/, the induction hypothesis
yields
U hg =Y 0Pe(fo)Puep(Foa—o)- (176)
BN \(0)
181<

Since I < p, the right-hand side of (176) involves only the derivatives of fy, g(z) of the order
up to p — 1. Then, Assumption A.1 implies that 9§hy = 9F (95 he) exist and satisfies

Ohg =Y 0Pg(fo) 9 Puep(Foae)

BeNG\(0)
:=

d;
+Y Y U fe) 05 fok Pa-ep(Fo.a—e)

K=1 gengivol
1B1=

3 0P4(fi) 3 Pacep(Foa—e)

BeN\(0)
1BI=t

d
+3° )" 0Pg(fo) 9% fok Paepei(Foame): (177)
k=1 gengeio)
e =<B.|BI=<l+1

where e, is the kth standard unit vector in Ngz. Moreover, terms
85 Pa—e,ﬂ(FH,a—e)’ 3§f9,k Pa—e,ﬁ—ek(FH,a—e)

are polynomial in derivatives {9} fp,; : ¥ € N§ \ {0}, ¥y <a, 1 < j < d.}. Apparently, the or-
der of these polynomials is up to |& — e| + 1 = ||, while the corresponding coefficients are
independent of ¢ and depend only on «, B. Therefore, the right-hand side of (177) admits
representation (175). Hence, the same holds for 9 hy.

(i) Let C'a, g be the maximum absolute value of the coefficients of polynomial P, g(-), where
o € Ng \ {0}, B € Ngz \ {0}, @] < p, |B] < |a|. As the number of different power terms in
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Py pg(+) is at most my, Assumption A.2 and (i) yield

|02 (fs) Pup(Foa)| < K Cap malg(f)l(1 + Il fo )}
< KCa.p malhol(1 + )"
< 211K Cy p malholdp™.

Then, using (i) again, we conclude that there exists a real number L € [1,00) with the
properties specified in the lemma’s statement. [J

Appendix B

As the previous section, this section provides auxiliary results relevant for the proof of
Corollaries 4.1 and 4.2. Let © and d have the same meaning as in Section 2.1. We consider
here functions fy and gy mapping 6 € © to R and R \ {0} (respectively). We also consider
function &y defined by hy = fy/gy for 6 € 6. The results presented in this section rely on the
following assumptions.

Assumption B.1. fy and gy are p-times differentiable on ©, where p > 1 is an integer.

Assumption B.2. There exist functions ¢y and ¥y mapping 6 € O to [1, co) such that
08 fol <1510l [9520] < v

for all & € © and any multi-index & € Ng satisfying || < p.

Throughout this section, we use the following notation. For ¢ = (¢, ..., ay) € Ng, ne and
m are the integers defined by

Ny
ng =+ 1) (ag + 1), ma=<|“|>-
For & € © and a € Ng, | < p, Ggq is the ny-dimensional vector whose components

are derivatives 85 g:Be Ng \{0},B<a,l <k < dz}. In Gy 4, the components are ordered
lexicographically in 8.

Lemma B.1. (i) Let Assumption B.1 hold. Then, hq is p-times differentiable on ©. Moreover,
the first and higher-order derivatives of hg admit representation

B
0y fo Pep(Goa)
IR % (178)
BeNg 0
B=a

for all 6 € O and any multi-index o € Ng satisfying || < p. Here, Py g : R — Ris a
polynomial of the degree up to || whose coefficients are independent of 0 and depend only
on a, .

(ii) Let Assumptions B.1 and B.2 hold. Then, there exists a real number K € [1, 00) such

that
(¢9 Yo ) !
gl \ lgol

for all 6 € O and any multi-index o € Ng satisfying |a| < p.

l%ho| < K |2
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Proof. (i) This part of lemma is proved by induction in |e|. It is straightforward to show
that 95'hy exists and satisfies (178) for all 0 € O, & € Ng, || € {0, 1}. Now, the induction
hypothesis is formulated. Let 1 <[ < p be an integer. Suppose that 95 'hy exists and satisfies
(178) for each 6 € O, & € N¥, |a| < [. Then, to show (i), it is sufficient to demonstrate that
05 he exists and satisfies (178) forall 6 € O, a € Ne, |oe| =1+ 1.

Let 6 be any element of ©, while « is any multi-index in Ng satisfying || =/ + 1. Then,
there exists e € Ng such thate < &, |e] = 1. As | —e| = |a| — 1 =/, the induction hypothesis
yields

]
. 0y fo Pa—e,8(Go,a—c)
3¢ hy = Z 6Jo " jal e, (179)
ﬁeNg 0
B<a—e

Since [ < p, the right-hand side of (179) involves only the derivatives of fy, g¢ of the order
up to p — 1. Then, Assumption B.1 implies that 95hy = 95 (95 he) exist and satisfies

aghg — Z 89ﬂ+ef9 Pu—e,ﬂ(GG,a—e) ':;‘agf& agpa—e,ﬂ(GG,a—e)

8
ﬂeNg 0

B<a—e

el Z Bgfg 0580 Pu—e,p(Go,a—e)

loe|+1
ﬂeNg gg
B<a—e
_ aeﬂfﬁ (g0 agPa—e,ﬂ(GG,a—e) - |05|3§ge Pa—e,ﬁ(GB,a—e))
- Z Joe|+1
BeNg 8o
B=a—e
B
ag f9 Pozfe,ﬂfe(GG,ocfe)
+ ) o] (180)
BeN‘é g9
e<f<a

Moreover, terms

85&9 Poc—e,ﬂ(GG,a—e)a 86 85 Pa—e,ﬁ(GO,oc—e)» 86 Pa—e,ﬂ—e(GG,a—e)

are polynomial in derivatives {3(3' 8 Y € Ng, y < ot}. Apparently, the order of these polyno-
mials is up to |« — e| + 1 = ||, while the corresponding coefficients are independent of 6
and depend only on «, 8. Therefore, the right-hand side of (180) admits representation (178).
Hence, the same holds for a5 hg.

(ii) Let Cq,p be the maximum absolute value of the coefficients of polynomial Py g(-),
where o, B € N¢, & < B. As the number of different power terms in Py g(+) is at most m,

Assumption B.2 and (i) yield
ot| lee]
(2" =erme 2] (52)
180l

08 fo Pep(Go.a)
g+ 6]

for all @ € © and any «, B € Ng \ {0}, B < «. Then, using (i) again, we conclude that there

exists a real number K € [1, oco) with the properties specified in the lemma’s statement. [J

fo
86

fo

=< éa,ﬂ ma¢(|9ﬁ|
8o
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Appendix C

In this section, we present auxiliary results which Proposition 7.1 and Theorem 2.1 crucially
rely on. Let © and d have the same meaning as in Section 2. Moreover, let Z be a Borel set
in R%, where d, > 1 is an integer. We consider here functions Fy(z) and gy mapping 6 € 6O,
z € Zto R and R\ {0} (respectively). We also consider non-negative measure ((dz) on Z.
The analysis carried out in this section relies on the following assumptions.

Assumption C.1. Fy(z) and gy are p-times differentiable in 6 for each 0 € O, z € Z, where
p=1

Assumption C.2. There exists a function ¢ : Z — [1, co) such that
08 Fa(2)] < (), / () < 0o

for all @ € O, z € Z and any multi-index a € N¢, |a| < p.

Throughout this section, we use the following notation. fy, hg, Hy(z) are the functions
defined by

F
fo = / Fy(Hwdz), hy= ﬁ, Hy(z) = 6 (2)
86 8o
for 6 € O, z € Z. £(dz) and ¢y(dz) are the signed measures on Z defined by
£(B) = / Fo@uld).  &(B) = / Hy(2)uldz)
B B

for B € B(Z). §5(dz) and ¢ (dz) are the signed measures on Z defined by

53‘(3)=/33F9(Z)M(d2), Cﬁ‘(B):/agHe(Z)M(dZ)
B B
for o € Ng, le| < p.

Lemma C.1. Let Assumptions C.1 and C.2 hold. Then, the following is true.
(i) fo and gy are well-defined for each 6 € ©. Moreover, fy and gy are p-times differentiable
and satisfy

35 fo =/8§‘Fo(2)u(d2), 95 he =/3§‘H9(Z)M(d2) (181)

for all 6 € O and any multi-index o € Ng, la| < p.
(ii) &(B), $o(B), £5(B) and ¢5'(B) are well-defined for each 6 € 6, B € B(Z). Moreover,
&9(B) and ty(B) are p-times differentiable (in 0) and satisfy

I &o(B) =&5(B),  9¢e(B) = (B) (182)
for all © € O, B € B(Z) and any multi-index o € N¢, || < p.
Proof. Let 6 be any element of ©, while & is any multi-index in Ng satisfying || <
p. Moreover, let z be any element of Z, while B is any element of B(Z). Owing to

Assumptions C.1, C.2, fy, §(B), §5(B) are well-defined. Consequently, hg, {p(B) are also
well-defined. Moreover, due to the dominated convergence theorem and Assumptions C.1 and
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fo, £E9(B) are p-times differentiable in 6 on © and satisfy the first part of (181), (182).

Therefore, hy, ¢y(B) are also p-times differentiable in 6 on 6.
Using Lemma B.1, we conclude that 0§ hg, 0f Hp(z), 95 ¢p(B) admit the following represen-

tation:
] i3 fo g G0y Fo(2)
Oho= ) o O HI0) = ) S (183)
BeNd pend
ﬂf‘s ﬂgo?
) Gy 9] €(B)
99 Co(B) = I%j N (184)
<o
Bz«

where G3'* is a polynomial function of derivatives {0y g0 : ¥ € No, ¥ < a}. Owing to (183)
and the first part of (181), we have

GoP
Bg‘hg = Z W/%}Fe(z)ﬂ(dz) =/8;‘H9(Z)M(dz)
ﬂeNg 0
B=<a

Similarly, due to (184) and the first part of (182), we have

GeP
wam = Y 2 [ o R = [ asmenas = g,
ﬂeNg
B<a

Hence, dghy, ¢ (B) are well-defined and satisty the second part of (181), (182). O
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