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Vladislav Z.B. Tadića, Arnaud Doucetb,∗

a School of Mathematics, University of Bristol, Bristol, United Kingdom
b Department of Statistics, University of Oxford, Oxford, United Kingdom

Received 19 December 2019; accepted 1 February 2020
Available online 7 February 2020

Abstract

In many scenarios, a state-space model depends on a parameter which needs to be inferred from
data. Using stochastic gradient search and the optimal filter first-order derivatives, the parameter can
be estimated online. To analyze the asymptotic behavior of such methods, it is necessary to establish
results on the existence and stability of the optimal filter higher-order derivatives. These properties are
studied here. Under regularity conditions, we show that the optimal filter higher-order derivatives exist
and forget initial conditions exponentially fast. We also show that the same derivatives are geometrically
ergodic.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

State-space models, also known as continuous-state hidden Markov models, are a powerful
and versatile tool for statistical modeling of complex time-series data and stochastic dynamic
systems. These models can be viewed as a discrete-time Markov process which are observed
only through noisy measurements of their states. In this context, one of the most important
problems is the optimal estimation of the current state given the noisy measurements of the
current and previous states. This problem is known as optimal filtering. Optimal filtering has
been studied in a number of papers and books; see, e.g., [3,4,9] and references therein.
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In many applications, a state-space model depends on a parameter whose value needs to
be inferred from data. When the number of data points is large, it is desirable, for the sake
of computational efficiency, to infer the parameter recursively (i.e., online). In the maximum
likelihood approach, recursive parameter estimation can be performed using stochastic gradient
search, where the underlying gradient estimation is based on the optimal filter and its
first-order derivatives; see, e.g., [10,15,17]. In [17], it has been shown that the asymptotic
behavior of recursive maximum likelihood estimation in finite-state hidden Markov models is
closely related to the analytical properties, higher-order differentiability and analyticity, of the
underlying log-likelihood rate. In view of the recent results on stochastic gradient search [20],
a similar relationship is likely to hold for state-space models. However, to apply the results
of [20] to recursive maximum likelihood estimation in state-space models, it is necessary to
establish results on the higher-order differentiability of the log-likelihood rate for these models.
Since the log-likelihood rate for state-space models is a functional of the optimal filter, the
analytical properties of this rate are tightly connected to the existence and stability of the
optimal filter higher-order derivatives. Hence, one of the first steps to carry out asymptotic
analysis of recursive maximum likelihood estimation in state-space models is to establish results
on the existence and stability of these derivatives. To the best of our knowledge, this problem
has never been addressed before and the results presented here fill this gap in the literature on
optimal filtering.

In this paper, the optimal filter higher-order derivatives and their existence and stability
properties are studied. Under standard stability and regularity conditions, we show that these
derivatives exist and forget initial conditions exponentially fast. We also show that the optimal
filter higher-order derivatives are geometrically ergodic. The obtained results cover state-space
models met in practice and are one of the first stepping stones to analyze the asymptotic
behavior of recursive maximum likelihood estimation in non-linear state-space modes [18].

The paper is organized as follows. In Section 2, the existence and stability of the optimal
filter higher-order derivatives are studied and the main results are presented. In Section 3, the
main results are used to study the analytical properties of log-likelihood for state-space models.
An example illustrating the main results is provided in Section 4. In Sections 5–8, the main
results and their corollaries are proved.

2. Main results

2.1. State-space models and optimal filter

To specify state-space models and to formulate the problem of optimal filtering, we use the
following notation. For a set Z in a metric space, B(Z) denotes the collection of Borel subsets
of Z . dx ≥ 1 and dy ≥ 1 are integers, while X ∈ B(Rdx ) and Y ∈ B(Rdy ). P(x, dx ′) is a
transition kernel on X , while Q(x, dy) is a conditional probability measure on Y given x ∈ X .
(Ω ,F , P) is a probability space. Then, a state-space model can be defined as an X ×Y-valued
stochastic process {(Xn, Yn)}n≥0 on (Ω ,F , P) which satisfies

P ((Xn+1, Yn+1) ∈ B|X0:n, Y0:n) =

∫
IB(x, y)Q(x, dy)P(Xn, dx)

almost surely for any B ∈ B(X × Y) and n ≥ 0. {Xn}n≥0 are the unobservable states, while
{Yn}n≥0 are the observations. One of the most important problems related to state-space models
is the estimation of the current state Xn given the state-observations Y1:n . This problem is
known as filtering. In the Bayesian approach, the optimal estimation of Xn given Y1:n is based
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on the (optimal) filtering distribution P(Xn ∈ dxn|Y1:n). As P(x, dx ′) and Q(x, dy) are rarely
available in practice, the filtering distribution is usually computed using some approximate
models.

In this paper, we assume that the model {(Xn, Yn)}n≥0 can be accurately approximated by
a parametric family of state-space models. To define such a family, we rely on the following
notation. Let d ≥ 1 be an integer, while Θ ⊂ Rd is a bounded open set. P(X ) is the set of
probability measures on X , while µ(dx) and ν(dy) are measures on X and Y (respectively).
pθ (x ′

|x) and qθ (y|x) are functions which map θ ∈ Θ , x, x ′
∈ X , y ∈ Y to [0,∞) and satisfy∫

pθ (x ′
|x)µ(dx ′) =

∫
qθ (y|x)ν(dy) = 1

for all θ ∈ Θ , x ∈ X . With this notation, a parametric family of state-space models can
be defined as an X × Y-valued stochastic process

{
(X θ,λ

n , Y θ,λ
n )

}
n≥0 on (Ω ,F , P) which is

parameterized by θ ∈ Θ , λ ∈ P(X ) and satisfies

P
(

(X θ,λ
0 , Y θ,λ

0 ) ∈ B
)

=

∫ ∫
IB(x, y)qθ (y|x)λ(dx)ν(dy),

P
(

(X θ,λ
n+1, Y θ,λ

n+1) ∈ B
⏐⏐⏐ X θ,λ

0:n , Y θ,λ
0:n

)
=

∫ ∫
IB(x, y)qθ (y|x)pθ (x |X θ,λ

n )µ(dx)ν(dy)

almost surely for any B ∈ B(X × Y) and n ≥ 0.1

To show how the filtering distribution is computed using approximate model{
(X θ,λ

n , Y θ,λ
n )

}
n≥0, we use the following notation. rθ (y, x ′

|x) is the function defined by

rθ (y, x ′
|x) = qθ (y|x ′)pθ (x ′

|x) (1)

for θ ∈ Θ , x, x ′
∈ X , y ∈ Y , while rm:n

θ,y (x ′
|x) is the function recursively defined by

rm:m+1
θ,y (x ′

|x) = rθ (ym+1, x ′
|x), rm:n+1

θ,y (x ′
|x) =

∫
rθ (yn+1, x ′

|x ′′)rm:n
θ,y (x ′′

|x)µ(dx ′′) (2)

for n > m ≥ 0 and any sequence y = {yn}n≥1 in Y . pm:n
θ,y (x |λ) and Pm:n

θ,y (dx |λ) are the function
and the probability measure defined by

pm:n
θ,y (x |λ) =

∫
rm:n
θ,y (x |x ′)λ(dx ′)∫ ∫

rm:n
θ,y (x ′′|x ′)µ(dx ′′)λ(dx ′)

, Pm:n
θ,y (B|λ) =

∫
B

pm:n
θ,y (x ′

|λ)µ(dx ′) (3)

for B ∈ B(X ), λ ∈ P(X ), while Pm:n
θ,y (λ) is a ‘short-hand’ notation for Pm:n

θ,y (dx |λ). Then, it
can easily be shown that Pm:n

θ,y (λ) is the filtering distribution, i.e.,

P0:n
θ,y (B|λ) = P

(
X θ,λ

n ∈ B
⏐⏐ Y θ,λ

1:n = y1:n

)
for each θ ∈ Θ , B ∈ B(X ), λ ∈ P(X ), n ≥ 1 and any sequence y = {yn}n≥1 in Y . In this
context, λ can be interpreted as the initial condition of the filtering distribution Pm:n

θ,y (λ).

2.2. Optimal filter higher-order derivatives

Let p ≥ 1 be an integer. Throughout the paper, we assume that pθ (x ′
|x) and qθ (y|x) are

p-times differentiable in θ for each θ ∈ Θ , x, x ′
∈ X , y ∈ Y .

1 To evaluate the values of θ for which
{
(X θ,λn , Y θ,λn )

}
n≥0 provides the best approximation to {(Xn, Yn)}n≥0,

we usually rely on the maximum likelihood principle. For further details on maximum likelihood estimation in
state-space and hidden Markov models, see e.g., [3,9] and references cited therein.
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To define the higher-order derivatives of the optimal filter, we use the following notation.
N0 is the set of non-negative integers. 0 is the element of Nd

0 whose all components are zero.
For α = (α1, . . . , αd ) ∈ Nd

0 , β = (β1, . . . , βd ) ∈ Nd
0 , relation β ≤ α is taken component-wise,

i.e., β ≤ α if and only if αi ≤ βi for each 1 ≤ i ≤ d. For the same α, β satisfying β ≤ α,(
α

β

)
denotes the multinomial coefficient(

α

β

)
=

(
α1

β1

)
· · ·

(
αd

βd

)
.

For α = (α1, . . . , αd ) ∈ Nd
0 , θ = (θ1, . . . , θd ) ∈ Θ , notation |α| and ∂α

θ stand for

|α| = α1 + · · · + αd , ∂α
θ =

∂ |α|

∂θ
α1
1 · · · ∂θ

αd
d
.

d(p) is the number elements in set {α : α ∈ Nd
0 , |α| ≤ p}, i.e.,

d(p) =

p∑
k=0

(
d + k − 1

k

)
.

Ms(X ) is the set of finite signed measures on X . L(X ) is the set of d(p)-dimensional finite
signed vector measures on X . The components of an element of L(X ) are indexed by multi-
indices in Nd

0 and ordered lexicographically. More specifically, an element Λ of L(X ) can be
denoted by

Λ =
{
λα : α ∈ Nd

0 , |α| ≤ p
}
, (4)

where λα ∈ Ms(X ) is referred to as the component α of Λ. The components of Λ follow
lexicographical order, i.e., λα precedes λβ if and only if αi < βi , α j = β j for some i and
each j satisfying 1 ≤ i ≤ d, 1 ≤ j < i , where α = (α1, . . . , αd ), β = (β1, . . . , βd ). For
λ ∈ Ms(X ), ∥λ∥ denotes the total variation norm of λ. For Λ ∈ L(X ), ∥Λ∥ denotes the total
variation norm of Λ induced by the l∞ vector norm, i.e.,

∥Λ∥ = max
{
∥λα∥ : α ∈ Nd

0 , |α| ≤ p
}

for Λ specified in (4). L0(X ) is the set of d(p)-dimensional finite vector measures whose
component 0 is a probability measure (i.e., Λ specified in (4) belongs to L0(X ) if and only if
λ0 ∈ P(X )).

We need a few additional notation: rα
θ,y(x |λ) and sα

θ,y(x |λ) are the functions defined by

rα
θ,y(x |λ) =

∫
∂α
θ rθ (y, x |x ′)λ(dx ′), sα

θ,y(x |λ) =

∑
β∈Nd

0
β≤α

(
α

β

) rα−β
θ,y (x |λβ)∫

r0
θ,y(x ′|λ0)µ(dx ′)

(5)

for θ ∈ Θ , x ∈ X , y ∈ Y , λ ∈ Ms(X ), Λ =
{
λβ : β ∈ Nd

0 , |β| ≤ p
}

∈ L0(X ), α ∈ Nd
0 ,

|α| ≤ p. f α
θ,y(x |λ) is the function recursively defined by

f 0
θ,y(x |λ) = s0

θ,y(x |λ), (6)

f α
θ,y(x |λ) = sα

θ,y(x |λ) −

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)
f β
θ,y(x |Λ)

∫
sα−β
θ,y (x ′

|λ)µ(dx ′), (7)
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where the recursion is in |α|.2 Rα
θ,y(dx |λ), Sα

θ,y(dx |λ) and Fα
θ,y(dx |λ) are the elements of

Ms(X ) defined by

Rα
θ,y(B|λ) =

∫
B

rα
θ,y(x |λ)µ(dx), Sα

θ,y(B|λ) =

∫
B

sα
θ,y(x |λ)µ(dx), (8)

Fα
θ,y(B|λ) =

∫
B

f α
θ,y(x |λ)µ(dx) (9)

for B ∈ B(X ), while Rα
θ,y(λ), Sα

θ,y(Λ), Fα
θ,y(Λ) are a ‘short-hand’ notation for Rα

θ,y(dx |λ),
Sα
θ,y(dx |λ), Fα

θ,y(dx |λ) (respectively).
⟨
Rα
θ,y(λ)

⟩
,
⟨
Sα
θ,y(Λ)

⟩
and

⟨
Fα
θ,y(Λ)

⟩
are the quantities defined

by ⟨
Rα
θ,y(λ)

⟩
= Rα

θ,y(X |λ),
⟨
Sα
θ,y(Λ)

⟩
= Sα

θ,y(X |λ),
⟨
Fα
θ,y(Λ)

⟩
= Fα

θ,y(X |λ). (10)

Fθ,y(Λ) is the element of L0(X ) defined by

Fθ,y(Λ) =
{

Fα
θ,y(Λ) : α ∈ Nd

0 , |α| ≤ p
}
, (11)

where Fα
θ,y(Λ) is the component α of Fθ,y(Λ). Fm:n

θ,y (Λ) is the element of L0(X ) recursively
defined by

Fm:m
θ,y (Λ) = Λ, Fm:n+1

θ,y (Λ) = Fθ,yn+1

(
Fm:n
θ,y (Λ)

)
(12)

for n ≥ m ≥ 0 and a sequence y = {yn}n≥1 in Y . f α,m:n
θ,y (x |Λ) is the function defined for

n > m ≥ 0 by

f α,m:n
θ,y (x |λ) = f α

θ,yn
(x |Fm:n−1

θ,y (Λ)). (13)

Eλ =
{
Eα
λ : α ∈ Nd

0 , |α| ≤ p
}

is the element of L0(X ) defined by

E0
λ (B) = λ(B), Eα

λ (B) = 0 (14)

for B ∈ B(X ), λ ∈ P(X ), α ∈ Nd
0 , 1 ≤ |α| ≤ p, where E0

λ and Eα
λ are (respectively) the

component 0 and the component α of Eλ.
We will show in Theorem 2.1 that Fm:n

θ,y (Λ) is the vector of the optimal filter derivatives of
the order up to p. More specifically, we will demonstrate

Fα,m:n
θ,y (B|Eλ) = ∂α

θ P
(

X θ,λ
n ∈ B

⏐⏐ Y θ,λ
1:n = y1:n

)
for each θ ∈ Θ , B ∈ B(X ), λ ∈ P(X ), α ∈ Nd

0 , |α| ≤ p, n ≥ 1 and any sequence y = {yn}n≥1
in Y .

2.3. Existence and stability results

We analyze here the existence and stability of the optimal filter higher-order derivatives.
The analysis is carried out under the following assumptions.

Assumption 2.1. There exists a real number ε ∈ (0, 1) and for each θ ∈ Θ , y ∈ Y , there
exists a measure µθ (dx |y) on X such that 0 < µθ (X |y) < ∞ and

εµθ (B|y) ≤

∫
B

rθ (y, x ′
|x)µ(dx ′) ≤

µθ (B|y)
ε

for all x ∈ X , B ∈ B(X ).

2 In (7), f 0
θ,y (x |λ) is the initial condition. At iteration k of (7) (1 ≤ k ≤ p), function f α

θ,y (x |λ) is computed for
multi-indices α ∈ Nd

0 , |α| = k using the results obtained at the previous iterations.
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Assumption 2.2. There exists a function ψ : Y → [1,∞) such that⏐⏐∂α
θ rθ (y, x ′

|x)
⏐⏐ ≤

(
ψ(y)

)|α|rθ (y, x ′
|x) (15)

for all θ ∈ Θ , x, x ′
∈ X , y ∈ Y and any multi-index α ∈ Nd

0 \ {0}, |α| ≤ p.

Assumption 2.3. There exists a function φ : Y × X → [1,∞) such that

rθ (y, x ′
|x) ≤ φ(y, x ′),

∫
φ(y, x ′′)µ(dx ′′) < ∞

for all θ ∈ Θ , x, x ′
∈ X , y ∈ Y .

Assumption 2.1 is a standard strong mixing condition for state-space models. It en-
sures that the optimal filter Pm:n

θ,y (λ) forgets its initial condition λ exponentially fast (see
Proposition 5.2). In this or a similar form, Assumption 2.1 is a crucial ingredient in many
results on optimal filtering and statistical inference in state-space and hidden Markov models
(see e.g., [1,2,5,6,8,10–12,16,17]; see also [3,4,9] and references cited therein). Assumption 2.2
can be considered as an extension of [11, Assumption B] and [19, Assumption 3.2] to the
optimal filter higher-order derivatives. It ensures that the higher-order score functions

∂α
θ rθ (y, x ′

|x)
rθ (y, x ′|x)

are well-defined and uniformly bounded in θ , x, x ′. Together with Assumptions 2.1 and 2.3,
Assumption 2.2 guarantees that the higher-order derivatives of the optimal filter Pm:n

θ,y (λ)
exist and forget their initial conditions exponentially fast (see Theorems 2.1 and 2.2).
Assumptions 2.1–2.3 hold if X is a compact set and qθ (y|x) is a mixture of Gaussian densities
(see the example studied in Section 4).

Our results on the existence and stability of the optimal filter higher-order derivatives are
presented in the next two theorems.

Theorem 2.1 (Higher-Order Differentiability). Let Assumptions 2.1–2.3 hold. Then, pm:n
θ,y (x |λ)

and Pm:n
θ,y (B|λ) are p-times differentiable in θ for each θ ∈ Θ , x ∈ X , B ∈ B(X ), λ ∈ P(X ),

n > m ≥ 0 and any sequence y = {yn}n≥1 in Y . Moreover, we have

∂α
θ pm:n

θ,y (x |λ) = f α,m:n
θ,y (x |Eλ), ∂α

θ Pm:n
θ,y (B|λ) = Fα,m:n

θ,y (B|Eλ) (16)

for any multi-index α ∈ Nd
0 , |α| ≤ p.

Theorem 2.2 (Forgetting). Let Assumptions 2.1 and 2.2 hold. Then, there exist real numbers
τ ∈ (0, 1), K ∈ [1,∞) (depending only on p, ε) such that

∥Fm:n
θ,y (Λ)∥ ≤ K∥Λ∥

p

(
n∑

k=m+1

ψ(yk)

)p

, (17)

∥Fm:n
θ,y (Λ) − Fm:n

θ,y (Λ′)∥ ≤ K τ n−m
∥Λ − Λ′

∥(∥Λ∥ + ∥Λ′
∥)p

(
n∑

k=m+1

ψ(yk)

)p

(18)

for all θ ∈ Θ , Λ,Λ′
∈ L0(X ), n ≥ m ≥ 0 and any sequence y = {yn}n≥1 in Y .

Theorems 2.1 and 2.2 are proved in Sections 7 and 5, respectively. According to
Theorem 2.1, the filtering density pm:n

θ,y (x |λ) and the filtering distribution Pm:n
θ,y (dx |λ) are
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p-times differentiable in θ . The same theorem also shows how their higher-order derivatives
can be computed recursively using mappings f α

θ,y(x |Λ), Fα
θ,y(Λ). According to Theorem 2.2,

the filtering distribution and its higher-order derivatives Fm:n
θ,y (Λ) forget their initial conditions

exponentially fast.
In the rest of the section, we study the ergodicity properties of the optimal filter higher-order

derivatives. To do so, we use the following notation. Z is the set defined by Z = X×Y×L0(X ).
Φθ (x, y,Λ) is a function which maps θ ∈ Θ , x ∈ X , y ∈ Y , Λ ∈ L0(X ) to R. Φθ (z) is another
notation for Φθ (x, y,Λ), i.e., Φθ (z) = Φθ (x, y,Λ) for z = (x, y,Λ).

{
Z θ,Λn

}
n≥0 and

{
Z̃ θ,Λn

}
n≥0

are stochastic processes defined by

Z θ,Λn =
(
Xn, Yn, F0:n

θ,Y(Λ)
)
, Z̃ θ,Λn =

(
Xn+1, Yn+1, F0:n

θ,Y(Λ)
)
.

for n ≥ 0, where Y = {Yn}n≥1. Πθ (z, dz′) and Π̃θ (z, dz′) are the kernels on Z defined by

Πθ (z, B) =

∫ ∫
IB(x ′, y′, Fθ,y′ (Λ))Q(x ′, dy′)P(x, dx ′),

Π̃θ (z, B) =

∫ ∫
IB(x ′, y′, Fθ,y(Λ))Q(x ′, dy′)P(x, dx ′)

for B ∈ B(Z) and z = (x, y,Λ). Then, it is easy to show that {Z θ,Λn }n≥0 and {Z̃ θ,Λn }n≥0

are homogeneous Markov processes whose transition kernels are Πθ (z, dz′) and Π̃θ (z, dz′),
respectively.

To analyze the ergodicity properties of {Z θ,Λn }n≥0 and {Z̃ θ,Λn }n≥0, we rely on following
assumptions.

Assumption 2.4. There exist a probability measure π (dx) on X and real numbers δ ∈ (0, 1),
K0 ∈ [1,∞) such that

|Pn(x, B) − π (B)| ≤ K0δ
n

for all x ∈ X , B ∈ B(X ), n ≥ 0.

Assumption 2.5. There exit a function ϕ : X × Y → [1,∞) and a real number q ∈ [0,∞)
such that

|Φθ (x, y,Λ)| ≤ ϕ(x, y)∥Λ∥
q ,

|Φθ (x, y,Λ) − Φθ (x, y,Λ′)| ≤ ϕ(x, y)∥Λ − Λ′
∥(∥Λ∥ + ∥Λ′

∥)q

for all θ ∈ Θ , x ∈ X , y ∈ Y , Λ,Λ′
∈ L0(X ).

Assumption 2.6. There exists a real number L0 ∈ [1,∞) such that∫
ϕ(x, y)ψr (y)Q(x, dy) ≤ L0 (19)

for all x ∈ X , where r = p(p + q + 1).

Assumption 2.4 ensures that the Markov process {(Xn, Yn)}n≥0 is geometrically ergodic
(for further details, see e.g., [14]). Assumption 2.5 is related to function Φθ (x, y,Λ) and its
analytical properties. It requires Φθ (x, y,Λ) to be locally Lipschitz continuous in Λ and to grow
at most polynomially in the same argument. Assumption 2.6 corresponds to the conditional
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mean of ϕ(Xn, Yn)ψr (Yn) given Xn = x .3 In this or a similar form, Assumptions 2.4–
2.6 are involved in many results on the stability of the optimal filter and the asymptotic
properties of maximum likelihood estimation in state-space and hidden Markov models (see
e.g. [1,6,11,12,17,18]; see also [3,4] and references cited therein).

Our results on the ergodicity of {Z θ,Λn }n≥0 and {Z̃ θ,Λn }n≥0 are presented in the next theorem.

Theorem 2.3 (Ergodicity). Let Assumptions 2.1–2.6 hold. Moreover, let s = p(q + 1). Then,
there exist functions φθ , φ̃θ mapping θ ∈ Θ to R such that

φθ = lim
n→∞

(Π nΦ)θ (z), φ̃θ = lim
n→∞

(Π̃ nΦ)θ (z)

for all θ ∈ Θ , z ∈ Z . There also exist real numbers ρ ∈ (0, 1), L ∈ [1,∞) (depending only
on ε, δ, p, q, K0, L0) such that

|(Π nΦ)θ (z) − φθ | ≤ Lρn
∥Λ∥

s, |(Π̃ nΦ)θ (z) − φ̃θ | ≤ Lρnψr (y)∥Λ∥
s

for all θ ∈ Θ , x ∈ X , y ∈ Y , Λ ∈ L0(X ), n ≥ 1 and z = (x, y,Λ). Here (Π nΦ)θ (z) and
(Π̃ nΦ)θ (z) are the functions defined by

(Π nΦ)θ (z) =

∫
Φθ (z′)Π n

θ (z, dz′), (Π̃ nΦ)θ (z) =

∫
Φθ (z′)Π̃ n

θ (z, dz′).

Theorem 2.3 is proved in Section 6. According to this theorem, Markov processes
{

Z θ,Λn

}
n≥0

and
{

Z̃ θ,Λn

}
n≥0 are geometrically ergodic. As F0:n

θ,Y (Λ) is a component of Z θ,Λn and Z̃ θ,Λn , the
optimal filter and its higher-order derivatives are geometrically ergodic, too.

The optimal filter and its properties have extensively been studied in the literature. However,
to the best of our knowledge, the existing results do not provide any information about the
existence and stability of the optimal filter higher-order derivatives. Theorems 2.1–2.3 fill this
gap in the literature on optimal filtering. More specifically, these theorems extend the existing
results on the optimal filter first-order derivatives (in particular those of [7], [11] and [19])
to the higher-order derivatives. In Section 3, we use Theorems 2.1–2.3 to study the analytical
properties of the log-likelihood rate for state-space models. Moreover, in [18], we use the same
theorems to analyze the asymptotic behavior of recursive maximum likelihood estimation in
state-space models.

3. Analytical properties of log-likelihood rate

In this section, the results presented in Section 2 are used to study the higher-order
differentiability of the log-likelihood rate for state-space models. In addition to the notation
specified in Section 2, the following notation is used here, too. Let qn

θ (y1:n|λ) be the function
defined by

qn
θ (y1:n|λ) =

∫
· · ·

∫ ∫ (
n∏

k=1

rθ (yk, xk |xk−1)

)
µ(dxn) · · ·µ(dx1)λ(dx0) (20)

for θ ∈ Θ , y1, . . . , yn ∈ Y , λ ∈ P(X ), n ≥ 1. Then, the average log-likelihood for state-space
model {(Xn, Yn)}n≥0 is defined as

ln(θ, λ) = E
(

1
n

log qn
θ (Y1:n|λ)

)
,

3 Assumption 2.6 holds under the following conditions: (i) X is compact, (ii) ϕ(x, y) is continuous in (x, y)
and polynomial in y, (iii) ψ(y) is polynomial and (iv) qθ (y|x) is Gaussian in y and continuous in (θ, x, y).
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while the corresponding likelihood rate is the limit limn→∞ ln(θ, λ). To analyze the analytical
and asymptotic properties of ln(θ, λ), we rely on the following assumptions.

Assumption 3.1. There exists a function ϕ : Y → [1,∞) such that

|logµθ (X |y)| ≤ ϕ(y)

for all θ ∈ Θ , y ∈ Y , where µθ (dx |y) is specified in Assumption 2.1.

Assumption 3.2. There exists a real number M0 ∈ [1,∞) such that∫
ϕ(y)ψu(y)Q(x, dy) ≤ M0,

∫
ψv(y)Q(x, dy) ≤ M0

for all x ∈ X , where u = p(p + 1), v = 2p(p + 1) and ψ(y) is specified in Assumption 2.2.

Assumptions 3.1 and 3.2 are related to the conditional measure µθ (dx |y) and its properties.
In this or similar form, these assumptions are involved in a number of result on the asymptotic
properties of maximum likelihood estimation in state-space and hidden Markov models
(see [2,7,8,16,17]; see also [3] and references cited therein).

Our results on the higher-order differentiability of log-likelihood rate for state-space models
are provided in the next theorem.

Theorem 3.1. Let Assumptions 2.1–2.4, 3.1 and 3.2 hold. Then, there exists a function
l : Θ → R which is p-times differentiable on Θ and satisfies l(θ ) = limn→∞ ln(θ, λ) for
all θ ∈ Θ , λ ∈ P(X ).

Theorem 3.1 is proved in Section 7. The theorem claims that the log-likelihood rate
limn→∞ ln(θ, λ) is well-defined for each θ ∈ Θ , λ ∈ P(X ). It also claims that this rate is
independent of λ and p-times differentiable in θ .

In the context of statistical inference, the properties of log-likelihood rate for state-space and
hidden Markov models have been studied in a number of papers (see [2,7,8,16,17]; see also [3]
and references cited therein). However, the existing results do not address the higher-order
differentiability of this rate. Theorem 3.1 fills this gap in the literature. Theorem 3.1 is also
relevant for asymptotic properties of maximum likelihood estimation in state-space models [18].
The same theorem can also be used to study the higher-order statistical asymptotics for the
maximum likelihood estimation in time-series models (for further details on such asymptotics,
see e.g. [13,21]).

4. Example

To illustrate the main results, we use them to study optimal filtering in non-linear state-space
models. Let Θ and d have the same meaning as in Section 2, while Θ̃ ⊆ Rd is an open set
satisfying clΘ ⊂ Θ̃ . We consider the following state-space model:

X θ,λ
n+1 = Aθ (X θ,λ

n ) + Bθ (X θ,λ
n )Un, Y θ,λ

n = Cθ (X θ,λ
n ) + Dθ (X θ,λ

n )Vn, n ≥ 0. (21)

Here, θ ∈ Θ̃ , λ ∈ P(X ) are the parameters indexing the model (21). Aθ (x) and Bθ (x) are
functions mapping θ ∈ Θ̃ , x ∈ Rdx (respectively) to Rdx and Rdx ×dx (dx has the same meaning
as in Section 2). Cθ (x) and Dθ (x) are functions mapping θ ∈ Θ̃ , x ∈ Rdx (respectively) to
Rdy and Rdy×dy (dy has the same meaning as in Section 2). X θ,λ

0 is an Rdx -valued random
variable defined on a probability space (Ω ,F , P) and distributed according to λ. {Un}n≥0 are
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Rdx -valued i.i.d. random variables which are defined on (Ω ,F , P) and have marginal density
r (u) with respect to Lebesgue measure. {Vn}n≥0 are Rdy -valued i.i.d. random variables which
are defined on (Ω ,F , P) and have marginal density s(v) with respect to Lebesgue measure.
We also assume that X θ,λ

0 , {Un}n≥0 and {Vn}n≥0 are (jointly) independent.
In addition to the previously introduced notation, the following notation is used here, too.

p̃θ (x ′
|x) and q̃θ (y|x) are the functions defined by

p̃θ (x ′
|x) =

r
(
B−1
θ (x)(x ′

− Aθ (x))
)

|detBθ (x)|
, q̃θ (y|x) =

s
(
D−1
θ (x)(y − Cθ (x))

)
|detDθ (x)|

for θ ∈ Θ̃ , x, x ′
∈ Rdx , y ∈ Rdy (provided Bθ (x) and Dθ (x) are invertible). pθ (x ′

|x) and
qθ (y|x) are the functions defined by

pθ (x ′
|x) =

r
(
B−1
θ (x)(x ′

− Aθ (x))
)

1X (x ′)∫
X r

(
B−1
θ (x)(x ′′ − Aθ (x))

)
dx ′′

, (22)

qθ (y|x) =
s
(
D−1
θ (x)(y − Cθ (x))

)
1Y (y)∫

Y s
(
D−1
θ (x)(y′ − Cθ (x))

)
dy′

(23)

(X , Y have the same meaning as in Section 2). It is easy to conclude that p̃θ (x ′
|x) and q̃θ (y|x)

are the conditional densities of X θ,λ
n+1 and Y θ,λ

n (respectively) given X θ,λ
n = x . It is also easy

to deduce that pθ (x ′
|x) and qθ (y|x) accurately approximate p̃θ (x ′

|x) and q̃θ (y|x) when X and
Y are sufficiently large (i.e., when balls of a sufficiently large radius can be inscribed in X ,
Y). pθ (x ′

|x) and qθ (y|x) can be interpreted as truncations of p̃θ (x ′
|x) and q̃θ (y|x) to sets X

and Y (i.e., model specified in (22), (23) can be considered as a truncation of model (21) to
X , Y). This or similar truncation is involved (implicitly or explicitly) in the implementation of
any numerical approximation to the optimal filter for the model (21).

The optimal filter based on the truncated model (22), (23) is studied under the following
assumptions.

Assumption 4.1. r (x) > 0 and s(y) > 0 for all x ∈ Rdx , y ∈ Rdy . Moreover, Bθ (x) and
Dθ (x) are invertible for each θ ∈ Θ̃ , x ∈ Rdx .

Assumption 4.2. r (x) and s(y) are p-times differentiable for all x ∈ Rdx , y ∈ Rdy , where
p ≥ 1. Moreover, Aθ (x), Bθ (x), Cθ (x) and Dθ (x) are p-times differentiable in θ for each
θ ∈ Θ̃ , x ∈ Rdx .

Assumption 4.3. ∂αr (x) and ∂αs(y) are continuous for each x ∈ Rdx , y ∈ Rdy and any multi-
index α ∈ Nd

0 , |α| ≤ p. Moreover, ∂α
θ Aθ (x), ∂α

θ Bθ (x), ∂α
θ Cθ (x) and ∂α

θ Dθ (x) are continuous in
(θ, x) for each θ ∈ Θ̃ , x ∈ Rdx , y ∈ Rdy and any multi-index α ∈ Nd

0 , |α| ≤ p.

Assumption 4.4. X and Y are compact sets with non-empty interiors.

Assumption 4.5. X is a compact set with a non-empty interior, while Y = Rdy . Moreover,
there exists a real number K0 ∈ [1,∞) such that

s(y) ≤ K0,
⏐⏐∂αs(y)

⏐⏐ ≤ K0s(y)(1 + ∥y∥)|α|

for all y ∈ Rdy and any multi-index α ∈ Nd
0 , |α| ≤ p.
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Assumption 4.6. There exists a real number L0 ∈ [1,∞) such that

|log s(y)| ≤ L0(1 + ∥y∥)2

for all y ∈ Y .

Assumptions 4.1–4.6 cover several classes of non-linear state-space models met in practice
— e.g. they hold for a class of stochastic volatility and dynamic probit models. Moreover, these
assumptions include non-linear state-space models in which the observation noise {Vn}n≥0 is a
mixture of Gaussian distributions. Other models satisfying Assumptions 4.1–4.6 can be found
in [3,9] (see also references cited therein).

Our results on the optimal filter for model (22), (23) and its higher-order derivatives read
as follows.

Corollary 4.1. (i) Let Assumptions 4.1–4.4 hold. Then, all conclusions of Theorems 2.1 and
2.2 are true.

(ii) Let Assumptions 2.4, 2.5 and 4.1–4.4 hold. Moreover, assume

sup
x∈X

∫
ϕ(x, y)Q(x, dy) < ∞, (24)

where ϕ(x, y) is specified in Assumption 2.5. Then, all conclusions of Theorem 2.3 are true.
(iii) Let Assumptions 2.4 and 4.1–4.4 hold. Then, all conclusions of Theorem 3.1 are true.

Corollary 4.2. (i) Let Assumptions 4.1–4.3 and 4.5 hold. Then, all conclusions of
Theorems 2.1 and 2.2 are true.

(ii) Let Assumptions 2.4, 2.5, 4.1–4.3 and 4.5 hold. Moreover, assume

sup
x∈X

∫
ϕ(x, y)(1 + ∥y∥)2r Q(x, dy) < ∞, (25)

where r and ϕ(x, y) are specified in Assumptions 2.5 and 2.6. Then, all conclusions of
Theorem 2.3 are true.

(iii) Let Assumptions 2.4, 4.1–4.3, 4.5 and 4.6 hold. Moreover, assume

sup
x∈X

∫
(1 + ∥y∥)2vQ(x, dy) < ∞, (26)

where v is specified in Assumption 3.2. Then, all conclusions of Theorem 3.1 are true.

Corollaries 4.1 and 4.2 are proved in Section 8.

5. Proof of Theorem 2.2

In this section, we use the following notation. τ is the real number defined as τ = (1−ε2)1/2.
Gθ,y(λ, λ̃) is the element of Ms(X ) defined by

Gθ,y(λ, λ̃) =
R0
θ,y(λ̃)⟨

R0
θ,y(λ)

⟩ −
R0
θ,y(λ)

⟨
R0
θ,y(λ̃)

⟩⟨
R0
θ,y(λ)

⟩2 (27)

for θ ∈ Θ , y ∈ Y , λ ∈ P(X ), λ̃ ∈ Ms(X ). T α,β
θ,y (Λ) is the element of Ms(X ) defined by

T α,β
θ,y (Λ) =

Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ − F0
θ,y(Λ)

⟨
Rα−β
θ,y (λβ)

⟩⟨
R0
θ,y(λ0)

⟩ (28)
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for Λ =
{
λγ : γ ∈ Nd

0 , |γ | ≤ p
}

∈ L0(X ), α,β ∈ Nd
0 , β ≤ α, |α| ≤ p. Gα

θ,y(Λ) and Hα
θ,y(Λ)

are the elements of Ms(X ) defined by

Gα
θ,y(Λ) = Gθ,y(λ0, λα), (29)

Hα
θ,y(Λ) =

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)
T α,β
θ,y (Λ) −

∑
β∈Nd

0 \{0,α}

β≤α

(
α

β

)
Fβ
θ,y(Λ)

⟨
Sα−β
θ,y (Λ)

⟩
. (30)

Here and throughout the paper, we rely on the convention that
∑

β∈B is zero whenever B = ∅.
Then, using (5)–(10), it is straightforward to verify

Sα
θ,y(Λ) =

∑
β∈Nd

0
β≤α

(
α

β

) Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ , Fα
θ,y(Λ) = Sα

θ,y(Λ) −

∑
β∈Nd

0 \{α}

β≤α

Fβ
θ,y(Λ)

⟨
Sα−β
θ,y (Λ)

⟩
. (31)

Hence, we get F0
θ,y(Λ) = S0

θ,y(Λ) = R0
θ,y(λ0)/

⟨
R0
θ,y(λ0)

⟩
and

T α,α
θ,y (Λ) =

R0
θ,y(λα)⟨

R0
θ,y(λ0)

⟩ − F0
θ,y(Λ)

⟨
R0
θ,y(λα)

⟩⟨
R0
θ,y(λ0)

⟩ =
R0
θ,y(λα)⟨

R0
θ,y(λ0)

⟩ − R0
θ,y(λ0)

⟨
R0
θ,y(λα)

⟩⟨
R0
θ,y(λ0)

⟩2 = Gα
θ,y(Λ).

Consequently, (28)–(31) imply

Sα
θ,y(Λ) − F0

θ,y(Λ)
⟨
Sα
θ,y(Λ)

⟩
=

∑
β∈Nd

0
β≤α

(
α

β

)( Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ − F0
θ,y(Λ)

⟨
Rα−β
θ,y (λβ)

⟩⟨
R0
θ,y(λ0)

⟩ )

=

∑
β∈Nd

0
β≤α

(
α

β

)
T α,β
θ,y (Λ) = Gα

θ,y(Λ) +

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)
T α,β
θ,y (Λ).

(32)

Then, (29) – (31) yield

Fα
θ,y(Λ) = Sα

θ,y(Λ) − F0
θ,y(Λ)

⟨
Sα
θ,y(Λ)

⟩
−

∑
β∈Nd

0 \{0,α}

β≤α

Fβ
θ,y(Λ)

⟨
Sα−β
θ,y (Λ)

⟩
= Gα

θ,y(Λ) + Hα
θ,y(Λ).

(33)

In addition to the previously introduced notation, the following notation is used here, too.
Gm:n
θ,y (λ, λ̃) is the element of Ms(X ) recursively defined by

Gm:m
θ,y (λ, λ̃) = λ̃, Gm:n

θ,y (λ, λ̃) = Gθ,yn

(
Pm:n−1
θ,y (λ),Gm:n−1

θ,y (λ, λ̃)
)

(34)

for θ ∈ Θ , λ ∈ P(X ), λ̃ ∈ Ms(X ), n > m ≥ 0 and a sequence y = {yn}n≥1 in Y . V α,m:n
θ,y (Λ)

and W α,m:n
θ,y (Λ) are the elements of Ms(X ) defined by

V α,m:n
θ,y (Λ) = Gm:n

θ,y (λ0, λα), W α,m:n
θ,y (Λ) = Hα

θ,yn
(Fm:n−1
θ,y (Λ)) (35)

for Λ =
{
λβ : β ∈ Nd

0 , |β| ≤ p
}

∈ L0(X ), α ∈ Nd
0 , |α| ≤ p. Φm:n

y and Ψm:n
y are the quantities

defined by

Φm:m
y = 1, Ψm:m

y = 1, Φm:n
y = (n − m)

n∑
k=m+1

ψ(yk), Ψm:n
y =

n∑
k=m+1

ψ(yk).
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Mα(Λ) is the function defined by

Mα(Λ) = max
{
∥λβ∥ : β ∈ Nd

0 ,β ≤ α
}
.

Kα(Λ,Λ′) and Lα(Λ,Λ′) are the functions defined by

Kα(Λ,Λ′) = min{1,Mα(Λ − Λ′)}, Lα(Λ,Λ′) = Mα(Λ) + Mα(Λ′) (36)

for Λ,Λ′
∈ L(X ). Lm:n

α,y (Λ,Λ′) and Mm:n
α,y (Λ) are the functions defined by

Lm:n
α,y (Λ,Λ′) =

(
Lα(Λ,Λ′)Φm:n

y
)|α|

, Mm:n
α,y (Λ) =

(
Mα(Λ)Ψm:n

y
)|α| (37)

for n ≥ m ≥ 0.

Remark. Throughout this and subsequent sections, the following convention is applied.
Diacritic ˜ is used to denote a locally defined quantity, i.e., a quantity whose definition holds
only within the proof where the quantity appears.

Lemma 5.1. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number C1 ∈ [1,∞)
(depending only on ε) such that Rα

θ,y(λ̃)⟨
R0
θ,y(λ)

⟩  ≤ C1 (ψ(y))|α|
∥λ̃∥, (38) Rα

θ,y(λ̃)⟨
R0
θ,y(λ)

⟩ −
Rα
θ,y(λ̃′)⟨

R0
θ,y(λ′)

⟩  ≤ C1 (ψ(y))|α|

(
∥λ̃− λ̃′

∥ + ∥λ− λ′
∥∥λ̃′

∥

)
(39)

for all θ ∈ Θ , y ∈ Y , λ, λ′
∈ P(X ), λ̃, λ̃′

∈ Ms(X ) and any multi-index α ∈ Nd
0 , |α| ≤ p.

Proof. Throughout the proof, we rely on the following notation. C1 is the real number defined
by C1 = ε−4 (ε is specified in Assumption 2.1). θ , y are any elements in Θ , Y (respectively).
λ, λ′ are any elements of P(X ), while λ̃, λ̃′ are any elements in Ms(X ). α is any element of
Nd

0 satisfying |α| ≤ p.
Owing to Assumption 2.1, we have⟨

R0
θ,y(λ)

⟩
=

∫ ∫
rθ (y, x ′

|x)µ(dx ′)λ(dx) ≥ εµθ (X |y). (40)

Moreover, due to Assumptions 2.1 and 2.2, we haveRα
θ,y(λ̃)

 ≤

∫ ∫ ⏐⏐∂α
θ rθ (y, x ′

|x)
⏐⏐µ(dx ′) |λ̃|(dx)

≤ (ψ(y))|α|

∫ ∫
rθ (y, x ′

|x)µ(dx ′) |λ̃|(dx)

≤ ε−1 (ψ(y))|α|
∥λ̃∥µθ (X |y). (41)

Combining (40), (41), we get Rα
θ,y(λ̃)⟨

R0
θ,y(λ)

⟩  ≤ ε−2 (ψ(y))|α|
∥λ̃∥. (42)
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Consequently, we have Rα
θ,y(λ̃)⟨

R0
θ,y(λ)

⟩ −
Rα
θ,y(λ̃′)⟨

R0
θ,y(λ′)

⟩  ≤

Rα
θ,y(λ̃) − Rα

θ,y(λ̃′)
⟨

R0
θ,y(λ)

⟩ +

Rα
θ,y(λ̃′)

 ⏐⏐⏐⟨R0
θ,y(λ)

⟩
−
⟨
R0
θ,y(λ′)

⟩⏐⏐⏐⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩
≤

Rα
θ,y(λ̃− λ̃′)

⟨
R0
θ,y(λ′)

⟩ +

Rα
θ,y(λ̃′)

 R0
θ,y(λ− λ′)

⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩
≤ ε−4 (ψ(y))|α|

(
∥λ̃− λ̃′

∥ + ∥λ− λ′
∥∥λ̃′

∥

)
. (43)

Then, (38), (39) directly follow from (42), (43). □

Lemma 5.2. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number C2 ∈ [1,∞)
(depending only on p, ε) such thatT α,β

θ,y (Λ)
 ≤ C2 (ψ(y))|α−β|

∥λβ∥, (44)Sα
θ,y(Λ)

 ≤ C2

∑
γ∈Nd

0
γ≤α

(ψ(y))|α−γ |
∥λγ ∥, (45)

T α,β
θ,y (Λ) − T α,β

θ,y (Λ′)
 ≤ C2 (ψ(y))|α−β|

(
∥λβ − λ′

β∥ + ∥λ0 − λ′

0∥∥λ
′

β∥
)
, (46)Sα

θ,y(Λ) − Sα
θ,y(Λ′)

 ≤ C2

∑
γ∈Nd

0
γ≤α

(ψ(y))|α−γ |
(
∥λγ − λ′

γ ∥ + ∥λ0 − λ′

0∥∥λ
′′

γ ∥
)

(47)

for all θ ∈ Θ , y ∈ Y , Λ =
{
λγ : γ ∈ Nd

0 , |γ | ≤ p
}

∈ L0(X ), Λ′
=
{
λ′

γ : γ ∈ Nd
0 , |γ | ≤ p

}
∈

L0(X ) and any multi-indices α,β ∈ Nd
0 , β ≤ α, |α| ≤ p.

Proof. Throughout the proof, we rely on the following notation. C2 is the real number defined
by C2 = 2pC1 (C1 is specified in Lemma 5.1). θ , y are any elements in Θ , Y (respectively),
while Λ =

{
λγ : γ ∈ Nd

0 , |γ | ≤ p
}
, Λ′

=
{
λ′

γ : γ ∈ Nd
0 , |γ | ≤ p

}
. α,β are any elements of Nd

0

satisfying β ≤ α, |α| ≤ p.
Since

∑
γ∈Nd

0
γ≤α

(
α

γ

)
= 2|α|, Lemma 5.1 and (31) imply

Sα
θ,y(Λ)

 ≤

∑
γ∈Nd

0
γ≤α

(
α

γ

) Rα−γ
θ,y (λγ )⟨

R0
θ,y(λ0)

⟩  ≤ 2|α|C1

∑
γ∈Nd

0
γ≤α

(ψ(y))|α−γ |
∥λγ ∥. (48)

As F0
θ,y(Λ) = R0

θ,y(λ0)/
⟨
R0
θ,y(λ0)

⟩
∈ P(X ), the same arguments and (28) yield

T α,β
θ,y (Λ)

 ≤

 Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ +
F0

θ,y(Λ)
 ⏐⏐⏐⏐⏐
⟨
Rα−β
θ,y (λβ)

⟩⟨
R0
θ,y(λ0)

⟩ ⏐⏐⏐⏐⏐ ≤ 2

 Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ 
≤ 2C1 (ψ(y))|α−β|

∥λβ∥. (49)

Then, (44), (45) directly follow from (48), (49).



4822 V.Z.B. Tadić and A. Doucet / Stochastic Processes and their Applications 130 (2020) 4808–4858

Using Lemma 5.1 and (31), we conclude

Sα
θ,y(Λ) − Sα

θ,y(Λ′)
 ≤

∑
γ∈Nd

0
γ≤α

(
α

γ

) Rα−γ
θ,y (λγ )⟨

R0
θ,y(λ0)

⟩ −
Rα−γ
θ,y (λ′

γ )⟨
R0
θ,y(λ′

0)
⟩ 

≤ 2pC1

∑
γ∈Nd

0
γ≤α

(ψ(y))|α−γ |
(
∥λγ − λ′

γ ∥ + ∥λ0 − λ′

0∥∥λ
′

γ ∥
)
. (50)

Relying on the same arguments and (28), we deduceT α,β
θ,y (Λ) − T α,β

θ,y (Λ′)
 ≤

 Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ −
Rα−β
θ,y (λ′

β)⟨
R0
θ,y(λ′

0)
⟩ 

+
F0

θ,y(Λ) − F0
θ,y(Λ′)

 ⏐⏐⏐⏐⏐
⟨
Rα−β
θ,y (λ′

β)
⟩⟨

R0
θ,y(λ′

0)
⟩ ⏐⏐⏐⏐⏐

+
F0

θ,y(Λ)
 ⏐⏐⏐⏐⏐
⟨
Rα−β
θ,y (λβ)

⟩⟨
R0
θ,y(λ0)

⟩ −

⟨
Rα−β
θ,y (λ′

β)
⟩⟨

R0
θ,y(λ′

0)
⟩ ⏐⏐⏐⏐⏐

≤ 2

 Rα−β
θ,y (λβ)⟨

R0
θ,y(λ0)

⟩ −
Rα−β
θ,y (λ′

β)⟨
R0
θ,y(λ′

0)
⟩ 

+

 R0
θ,y(λ0)⟨

R0
θ,y(λ0)

⟩ −
R0
θ,y(λ′

0)⟨
R0
θ,y(λ′

0)
⟩ 
 Rα−β

θ,y (λ′

β)⟨
R0
θ,y(λ′

0)
⟩ 

≤ 2C1 (ψ(y))|α−β|
(
∥λβ − λ′

β∥ + ∥λ0 − λ′

0∥∥λ
′

β∥
)
. (51)

Then, (46), (47) directly follow from (50), (51). □

Proposition 5.1. Let Assumption 2.1 hold. Then, there exists a real number C3 ∈ [1,∞)
(depending only on ε) such thatGm:n

θ,y (λ, λ̃)
 ≤ C3τ

2(n−m)
λ̃,Gm:n

θ,y (λ, λ̃) − Gm:n
θ,y (λ′, λ̃′)

 ≤ C3τ
2(n−m)

(λ̃− λ̃′
+

λ− λ′
 λ̃′

)
for all θ ∈ Θ , λ, λ′

∈ P(X ), λ̃, λ̃′
∈ Ms(X ), n ≥ m ≥ 0 and any sequence y = {yn}n≥1 in Y

(τ is defined at the beginning of Section 5).

Proof. See [19, Lemmas 6.6, 6.7]. □

Proposition 5.2. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number
C4 ∈ [1,∞) (depending only on ε) such thatF0,m:n

θ,y (Λ) − F0,m:n
θ,y (Λ′)

 ≤ C4τ
2(n−m) K0(Λ,Λ′)

for all θ ∈ Θ , Λ,Λ′
∈ L0(X ), n ≥ m ≥ 0 and any sequence y = {yn}n≥1 in Y (τ is defined at

the beginning of Section 5).
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Proof. Let θ be any element of Θ , while y = {yn}n≥1 is any sequence in Y . Moreover, let
Λ =

{
λβ : β ∈ Nd

0 , |β| ≤ p
}
, Λ′

=
{
λ′

β : β ∈ Nd
0 , |β| ≤ p

}
be any elements of L0(X ), while

n,m are any integers satisfying n ≥ m ≥ 0.
Using (3), (9), we conclude Pm:m+1

θ,y (λ0) = F0
θ,ym+1

(λ0), Pm:m+1
θ,y (λ′

0) = F0
θ,ym+1

(λ′

0) and

Pm:n+1
θ,y (λ0) = F0

θ,yn+1

(
Pm:n
θ,y (λ0)

)
, Pm:n+1

θ,y (λ′

0) = F0
θ,yn+1

(
Pm:n
θ,y (λ′

0)
)
.

Comparing this with (12), we get

F0,m:n
θ,y (Λ) = Pm:n

θ,y (λ0), F0,m:n
θ,y (Λ′) = Pm:n

θ,y (λ′

0)

(i.e., F0,m:n
θ,y (Λ), F0,m:n

θ,y (Λ′) are the filtering distributions initialized by λ0, λ′

0). Consequently,
[19, Theorem 3.1] implies that there exists a real number C4 ∈ [1,∞) (depending only on ε)
such thatF0,m:n

θ,y (Λ) − F0,m:n
θ,y (Λ′)

 ≤ C4τ
2(n−m)

∥λ0 − λ′

0∥ = C4τ
2(n−m) K0(Λ,Λ′). □ (52)

Lemma 5.3. Let Assumptions 2.1 and 2.2 hold. Then, we have

Fα,m:n
θ,y (Λ) = V α,m:n

θ,y (Λ) +

n∑
k=m+1

Gk:n
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)

(53)

for all θ ∈ Θ , Λ ∈ L0(X ), n ≥ m ≥ 0, any multi-index α ∈ Nd
0 , |α| ≤ p and any sequence

y = {yn}n≥1 in Y . Here and throughout the paper, we rely on the convention that
∑ j

k=i is zero
whenever j < i .

Proof. Throughout the proof, the following notation is used. θ is any element of Θ , while
Λ =

{
λβ : β ∈ Nd

0 , |β| ≤ p
}

is any element of L0(X ). m is any non-negative integer, while α

is any element of Nd
0 satisfying |α| ≤ p. y = {yn}n≥1 is any sequence in Y .

We prove (53) by induction in n. Owing to (12), (34), (35), we have

Fα,m:m
θ,y (Λ) = λα, V α,m:m

θ,y (Λ) = Gm:m
θ,y (λ0, λα) = λα.

Hence, (53) is true when n = m. Now, suppose that (53) holds for some integer n satisfying
n ≥ m. As Gθ,y(λ, λ̃) is linear in λ̃, we then get

Gθ,yn+1

(
F0,m:n
θ,y (Λ), Fα,m:n

θ,y (Λ)
)

= Gθ,yn+1

(
F0,m:n
θ,y (Λ), V α,m:n

θ,y (Λ)
)

+

n∑
k=m+1

Gθ,yn+1

(
F0,m:n
θ,y (Λ),Gk:n

θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
))
. (54)

Since Pm:n
θ,y (λ0) = F0,m:n

θ,y (Λ) (for further details, see the proof of Proposition 5.2), (34), (35)
imply

Gθ,yn+1

(
F0,m:n
θ,y (Λ), V α,m:n

θ,y (Λ)
)

= Gθ,yn+1

(
Pm:n
θ,y (λ0),Gm:n

θ,y (λ0, λα)
)

= Gm:n+1
θ,y (λ0, λα)

= V α,m:n+1
θ,y (Λ). (55)

Moreover, due to (12), we have

F0,m:n
θ,y (Λ) = F0,k:n

θ,y (F0,m:k
θ,y (Λ)) = Pk:n

θ,y (F0,m:k
θ,y (Λ))
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(for further details, see again the proof of Proposition 5.2). Consequently, (34), (35) yield

Gθ,yn+1

(
F0,m:n
θ,y (Λ),Gk:n

θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
))

= Gθ,yn+1

(
Pk:n
θ,y

(
F0,m:k
θ,y (Λ)

)
,Gk:n

θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
))

= Gk:n+1
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)

(56)

for n ≥ k > m. Similarly, (34) implies

W α,m:n+1
θ,y (Λ) = Gn+1:n+1

θ,y

(
F0,m:n+1
θ,y (Λ),W α,m:n+1

θ,y (Λ)
)
. (57)

Combining (54)–(56), we get

Gθ,yn+1

(
F0,m:n
θ,y (Λ), Fα,m:n

θ,y (Λ)
)

= V α,m:n+1
θ,y (Λ) +

n∑
k=m+1

Gk:n+1
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)
.

Consequently, (29), (30), (33), (57) imply

Fα,m:n+1
θ,y (Λ) = Fα

θ,yn+1

(
Fm:n
θ,y (Λ)

)
= Gα

θ,yn+1

(
Fm:n
θ,y (Λ)

)
+ Hα

θ,yn+1

(
Fm:n
θ,y (Λ)

)
= Gθ,yn+1

(
F0,m:n
θ,y (Λ), Fα,m:n

θ,y (Λ)
)

+ W α,m:n+1
θ,y (Λ)

= V α,m:n+1
θ,y (Λ) +

n+1∑
k=m+1

Gk:n+1
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)
.

Hence, (53) is true for n+1. Then, the lemma directly follows by the principle of mathematical
induction. □

Proposition 5.3. Let Assumptions 2.1 and 2.2 hold. Then, for each multi-index α ∈ Nd
0 ,

|α| ≤ p, there exists a real numbers Aα ∈ [1,∞) (depending only on p, ε) such thatFα,m:n
θ,y (Λ)

 ≤ Aα Mm:n
α,y (Λ), (58)Fα,m:n

θ,y (Λ) − Fα,m:n
θ,y (Λ′)

 ≤ τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n
α,y (Λ,Λ′) (59)

for all θ ∈ Θ , Λ,Λ′
∈ L0(X ), n ≥ m ≥ 0 and any sequence y = {yn}n≥1 in Y (τ is defined at

the beginning of Section 5).

Proof. Throughout the proof, the following notation is used. θ is any element of Θ , while
y = {yn}n≥1 is any sequence in Y . C̃1, C̃2, C̃3 are the real numbers defined by

C̃1 =
4pC2C3C4

τ 2(1 − τ 2)
, C̃2 =

C̃1

4p
, C̃3 =

C̃2

C3C4

(C2, C3, C4 are specified in Lemma 5.2 and Propositions 5.1, 5.2). Aα is the real number
defined by Aα = exp

(
8C̃2

1 (|α|
2
+ 1)

)
for α ∈ Nd

0 . Then, it easy to show

Aβ ≤
Aα

exp(8C̃2
1 )

≤
Aα

8C̃2
1

, Aγ Aα−γ ≤
Aα

exp(8C̃2
1 )

≤
Aα

8C̃2
1

(60)

for β ∈ Nd
0 \ {α}, γ ∈ Nd

0 \ {0,α}, β ≤ α, γ ≤ α.
Since Fm:m

θ,y (Λ) = Λ (due to (12)), (58), (59) are trivially satisfied when n = m ≥ 0. For
n > m ≥ 0, we prove (58), (59) by the mathematical induction in |α|. As F0,m:n

θ,y (Λ) ∈ P(X ),
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Proposition 5.2 implies that when |α| = 0 (i.e., α = 0), (58), (59) are true for all Λ,Λ′
∈ L0(X ),

n,m ∈ N0 fulfilling n > m ≥ 0. Now, the induction hypothesis is formulated: Suppose that
(58), (59) hold for some l ∈ N0 and all Λ,Λ′

∈ L0(X ), n,m ∈ N0, α ∈ Nd
0 satisfying 0 ≤ l < p,

n > m ≥ 0, |α| ≤ l. Then, to prove (58), (59), it is sufficient to show (58), (59) for any
Λ,Λ′

∈ L0(X ), n,m ∈ N0, α ∈ Nd
0 fulfilling n > m ≥ 0, |α| = l + 1. In what follows in the

proof, Λ =
{
λα : α ∈ Nd

0 , |α| ≤ p
}
, Λ′

=
{
λ′

α : α ∈ Nd
0 , |α| ≤ p

}
are any elements of L0(X ).

δ is any element of Nd
0 , while α is any element of Nd

0 satisfying |α| = l + 1. β, γ are any
elements of Nd

0 \ {α} fulfilling β ≤ α, γ ≤ α. n,m are any integers satisfying n > m ≥ 0.
Since β ≤ α, β ̸= α, we have |β| ≤ |α| − 1 = l. As (58), (59) are trivially satisfied for

n = m, the induction hypothesis imply

max

{Fγ ,m:k
θ,y (Λ)


Mm:k

γ ,y (Λ)
,

Fγ ,m:k
θ,y (Λ′)


Mm:k

γ ,y (Λ′)

}
≤ Aγ , (61)Fγ ,m:k

θ,y (Λ) − Fγ ,m:k
θ,y (Λ′)


Lm:k

γ ,y (Λ,Λ′)
≤ τ 2(k−m) Aγ Kγ (Λ,Λ′) (62)

for k ≥ m ≥ 0. Moreover, since |γ + δ| = |γ | + |δ| and Mγ (Λ) ≥ 1, (37) yields

Mm:n−1
γ ,y (Λ) ≤ Mm:n

γ ,y (Λ) ≤
Mm:n

γ+δ,y(Λ)

(ψ(yn))|δ|
, Mm:n

γ ,y (Λ)Mm:n
δ,y (Λ) ≤ Mm:n

γ+δ,y(Λ). (63)

Similarly, (37) leads to

Lm:n−1
γ ,y (Λ,Λ′) ≤ Lm:n

γ ,y (Λ,Λ′) ≤
Lm:n

γ+δ,y(Λ,Λ′)

(ψ(yn)(n − m))|δ|
, (64)

Lm:n
γ ,y (Λ,Λ′)Lm:n

δ,y (Λ,Λ′) ≤ Lm:n
γ+δ,y(Λ,Λ′). (65)

The same arguments also imply

Mm:n
δ,y (Λ) + Mm:n

δ,y (Λ′) ≤
Lm:n

δ,y (Λ,Λ′)

(n − m)|δ|
. (66)

Using (61), (63), we concludeFγ ,m:n−1
θ,y (Λ)

 ≤ Aγ Mm:n
γ ,y (Λ) ≤

Aγ Mm:n
γ+δ,y(Λ)

(ψ(yn))|δ|
. (67)

Then, Lemma 5.2 and (60), (67) implyT α,β
θ,yn

(Fm:n−1
θ,y (Λ))

 ≤ C2 (ψ(yn))|α−β|

Fβ,m:n−1
θ,y (Λ)

 ≤ C2 Aβ Mm:n
α,y (Λ) ≤

Aα Mm:n
α,y (Λ)

2C̃1

(68)

(as C2 ≤ 4C̃1). The same lemma and (67) yieldSγ
θ,yn

(Fm:n−1
θ,y (Λ))

 ≤ C2

∑
δ∈Nd

0
δ≤γ

(ψ(yn))|γ−δ|
Fδ,m:n−1

θ,y (Λ)
 ≤ 2|γ |C2 Aγ Mm:n

γ ,y (Λ)

≤ C̃1 Aγ Mm:n
γ ,y (Λ) (69)
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(since 2|γ |C2 ≤ 2pC2 ≤ C̃1/2). If β ̸= 0, (60), (61), (63), (69) lead toFβ,m:n
θ,y (Λ)

⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ))

⟩ ≤

Fβ,m:n
θ,y (Λ)

 Sα−β
θ,yn

(Fm:n−1
θ,y (Λ))


≤ C̃1 Aβ Aα−β Mm:n

β,y (Λ)Mm:n
α−β,y(Λ)

≤
Aα Mm:n

α,y (Λ)

2C̃1
. (70)

Consequently, (12), (30), (35), (68) implyW α,m:n
θ,y (Λ)

 ≤

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)T α,β
θ,yn

(Fm:n−1
θ,y (Λ))


+

∑
β∈Nd

0 \{0,α}

β≤α

(
α

β

)Fβ,m:n
θ,y (Λ)

⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ))

⟩
≤

2|α| Aα Mm:n
α,y (Λ)

C̃1

≤
Aα Mm:n

α,y (Λ)

C̃2
(71)

(as C̃1/2|α|
≥ C̃1/2p

≥ C̃2). Then, owing to Proposition 5.1, we haveGk:n
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
) ≤ C3τ

2(n−k)
W α,m:k

θ,y (Λ)
 ≤

C3τ
2(n−k) Aα Mm:k

α,y (Λ)

C̃2

≤
τ 2(n−k) Aα Mm:n

α,y (Λ)

C̃3
(72)

for n ≥ k > m (since C3/C̃2 ≤ 1/C̃3). Due to the same proposition and (35), we haveV α,m:n
θ,y (Λ)

 ≤ C3τ
2(n−m)

∥λα∥ ≤ C3τ
2(n−m) Mα(Λ) ≤

τ 2(n−m) Aα Mm:n
α,y (Λ)

C̃3
(73)

(as Aα ≥ C̃2
1 ≥ C3C̃3). Combining Lemma 5.3 and (72), (73), we get

Fα,m:n
θ,y (Λ)

 ≤
V m:n

θ,y (Λ)
+

n∑
k=m+1

Gk:n
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)

≤
Aα Mm:n

α,y (Λ)

C̃3

n∑
k=m

τ 2(n−k)

≤
Aα Mm:n

α,y (Λ)

C̃3(1 − τ 2)
≤ Aα Mm:n

α,y (Λ) (74)

(since C̃3(1 − τ 2) ≥ 1). Hence, (58) holds for α ∈ Nd
0 , |α| = l + 1.
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Now, (59) is proved. Relying on (62), (64), we deduceFγ ,m:n−1
θ,y (Λ) − Fγ ,m:n−1

θ,y (Λ′)
 ≤ τ 2(n−m−1) Aγ Kγ (Λ,Λ′)Lm:n

γ ,y (Λ,Λ′)

≤
τ 2(n−m−1) Aγ Kγ+δ(Λ,Λ′)Lm:n

γ+δ,y(Λ,Λ′)

(ψ(yn)(n − m))|δ|
. (75)

Similarly, using Proposition 5.2 and (64), (67), we concludeF0,m:n−1
θ,y (Λ) − F0,m:n−1

θ,y (Λ′)
 Fγ ,m:n−1

θ,y (Λ′)


≤ C4τ
2(n−m−1) Aγ K0(Λ,Λ′)Mm:n

γ ,y (Λ′)

≤
C4τ

2(n−m−1) Aγ Kγ+δ(Λ,Λ′)Lm:n
γ+δ,y(Λ,Λ′)

(ψ(yn)(n − m))|δ|
(76)

(since Mm:n
γ ,y (Λ′) ≤ Lm:n

γ ,y (Λ,Λ′)). Then, Lemma 5.2 and (60) implyT α,β
θ,yn

(Fm:n−1
θ,y (Λ)) − T α,β

θ,yn
(Fm:n−1
θ,y (Λ′))


≤ C2 (ψ(yn))|α−β|

Fβ,m:n−1
θ,y (Λ) − Fβ,m:n−1

θ,y (Λ′)


+ C2 (ψ(yn))|α−β|

F0,m:n−1
θ,y (Λ) − F0,m:n−1

θ,y (Λ′)
 Fβ,m:n−1

θ,y (Λ′)


≤
2C2C4τ

2(n−m−1) Aβ Kα(Λ,Λ′)Lm:n
α,y (Λ,Λ′)

(n − m)|α−β|

≤
τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n

α,y (Λ,Λ′)

4C̃1(n − m)
(77)

(as |α − β| ≥ 1, C2C4 ≤ C̃1τ
2). The same lemma and (75), (76) yieldSγ

θ,yn
(Fm:n−1
θ,y (Λ)) − Sγ

θ,yn
(Fm:n−1
θ,y (Λ′))


≤ C2

∑
δ∈Nd

0
δ≤γ

(ψ(yn))|γ−δ|
Fδ,m:n−1

θ,y (Λ) − Fδ,m:n−1
θ,y (Λ′)


+ C2

∑
δ∈Nd

0
δ≤γ

(ψ(yn))|γ−δ|
F0,m:n−1

θ,y (Λ) − F0,m:n−1
θ,y (Λ′)

 Fδ,m:n−1
θ,y (Λ′)


≤ 4|γ |C2C4τ

2(n−m−1) Aγ Kγ (Λ,Λ′)Lm:n
γ ,y (Λ,Λ′)

≤ C̃1τ
2(n−m) Aγ Kγ (Λ,Λ′)Lm:n

γ ,y (Λ,Λ′) (78)

(since 4|γ |C2C4 ≤ C̃1τ
2). Then, (61), (62), (69) lead toFβ,m:n

θ,y (Λ)
⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ))

⟩
− Fβ,m:n

θ,y (Λ′)
⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ′))

⟩
≤

Fβ,m:n
θ,y (Λ)

 Sα−β
θ,yn

(Fm:n−1
θ,y (Λ)) − Sα−β

θ,yn
(Fm:n−1
θ,y (Λ′))


+

Fβ,m:n
θ,y (Λ) − Fβ,m:n

θ,y (Λ′)
 Sα−β

θ,yn
(Fm:n−1
θ,y (Λ′))


≤ C̃1τ

2(n−m) Aβ Aα−β Kα−β(Λ,Λ′)Lm:n
α−β,y(Λ,Λ′)Mm:n

β,y (Λ)

+ C̃1τ
2(n−m) Aβ Aα−β Kβ(Λ,Λ′)Lm:n

β,y (Λ,Λ′)Mm:n
α−β,y(Λ′).
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Hence, if β ̸= 0, (60), (64) – (66) implyFβ,m:n
θ,y (Λ)

⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ))

⟩
− Fβ,m:n

θ,y (Λ′)
⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ′))

⟩
≤
τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n

α,y (Λ,Λ′)

4C̃1(n − m)
(79)

(as β ̸= 0, α − β ̸= 0). Consequently, (12), (30), (35), (77) yieldW α,m:n
θ,y (Λ) − W α,m:n

θ,y (Λ′)
 ≤

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)T α,β
θ,yn

(Fm:n−1
θ,y (Λ)) − T α,β

θ,yn
(Fm:n−1
θ,y (Λ′))


+

∑
β∈Nd

0 \{0,α}

β≤α

(
α

β

)Fβ,m:n
θ,y (Λ)

⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ))

⟩
− Fβ,m:n

θ,y (Λ′)
⟨
Sα−β
θ,yn

(Fm:n−1
θ,y (Λ′))

⟩
≤

4|α|τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n
α,y (Λ,Λ′)

2C̃1(n − m)

≤
τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n

α,y (Λ,Λ′)

2C̃2(n − m)
(80)

(since C̃1/4|α|
≥ C̃1/4p

= C̃2). Then, owing to Propositions 5.1, 5.2 and (66), (71), we haveGk:n
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)

− Gk:n
θ,y

(
F0,m:k
θ,y (Λ′),W α,m:k

θ,y (Λ′)
)

≤ C3τ
2(n−k)

W α,m:k
θ,y (Λ) − W α,m:k

θ,y (Λ′)


+ C3τ
2(n−k)

F0,m:k
θ,y (Λ) − F0,m:k

θ,y (Λ′)
 W α,m:k

θ,y (Λ′)


≤
C3τ

2(n−m) Aα Kα(Λ,Λ′)Lm:k
α,y (Λ,Λ′)

2C̃2(n − m)
+

C3C4τ
2(n−m) Aα K0(Λ,Λ′)Mm:k

α,y (Λ′)

2C̃2

≤
τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n

α,y (Λ,Λ′)

C̃3(n − m)
(81)

for n ≥ k > m (as C3/C̃2 ≤ C3C4/C̃2 = 1/C̃3). Due to the same propositions and (35), we
have V α,m:n

θ,y (Λ) − V α,m:n
θ,y (Λ′)

 ≤ C3τ
2(n−m) (

∥λα − λ′

α∥ + ∥λ0 − λ′

0∥∥λ
′

α∥
)
. (82)

Moreover, we have

∥λα − λ′

α∥ + ∥λ0 − λ′

0∥∥λ
′

α∥ ≤ Mα(Λ − Λ′) + Mα(Λ − Λ′)Mα(Λ′)

≤ 2Mα(Λ − Λ′)Lα(Λ,Λ′),

∥λα − λ′

α∥ + ∥λ0 − λ′

0∥∥λ
′

α∥ ≤ ∥λα∥ + 2∥λ′

α∥ ≤ 3Lα(Λ,Λ′)

(since Mα(Λ′) ≥ ∥λ′

0∥ = 1). Hence, we get

∥λα −λ′

α∥+∥λ0 −λ′

0∥∥λ
′

α∥ ≤ 3 min
{
1,Mα(Λ − Λ′)

}
Lα(Λ,Λ′) = 3Kα(Λ,Λ′)Lα(Λ,Λ′).
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Therefore, (82) impliesV α,m:n
θ,y (Λ) − V α,m:n

θ,y (Λ′)
 ≤ 3C3τ

2(n−m) Kα(Λ,Λ′)Lα(Λ,Λ′)

≤
τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n

α,y (Λ,Λ′)

C̃3
(83)

(as Aα ≥ C̃2
1 ≥ 3C3C̃3). Combining Lemma 5.3 and (81), (83), we getFα,m:n

θ,y (Λ) − Fα,m:n
θ,y (Λ′)

 ≤

V α,m:n
θ,y (Λ) − V α,m:n

θ,y (Λ′)


+

n∑
k=m+1

Gk:n
θ,y

(
F0,m:k
θ,y (Λ),W α,m:k

θ,y (Λ)
)

− Gk:n
θ,y

(
F0,m:k
θ,y (Λ′),W α,m:k

θ,y (Λ′)
)

≤
2τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n

α,y (Λ,Λ′)

C̃3

≤ τ 2(n−m) Aα Kα(Λ,Λ′)Lm:n
α,y (Λ,Λ′) (84)

(since C̃3 ≥ 2). Hence, (59) holds for α ∈ Nd
0 , |α| = l + 1. Then, the proposition directly

follows by the principle of mathematical induction. □

Proof of Theorem 2.2. Let C̃1, C̃2 be the real numbers defined by C̃1 = maxn≥1 τ
n−1n p,

C̃2 = max{Aα : α ∈ Nd
0 , |α| ≤ p}, while K is the real number defined by K = C̃1C̃2

(Aα is specified in Proposition 5.3, while τ is defined at the beginning of Section 5). Then,
Proposition 5.3 impliesFα,m:n

θ,y (Λ) − Fα,m:n
θ,y (Λ′)

 ≤ C̃2τ
2(n−m)(n − m)p

∥Λ − Λ′
∥
(
(∥Λ∥ + ∥Λ′

∥)Ψm:n
y
)p

≤ C̃1C̃2τ
n−m

∥Λ − Λ′
∥
(
(∥Λ∥ + ∥Λ′

∥)Ψm:n
y
)p

≤ K τ n−m
∥Λ − Λ′

∥(∥Λ∥ + ∥Λ′
∥)p

(
n∑

k=m+1

ψ(yk)

)p

(85)

for θ ∈ Θ , Λ,Λ′
∈ L0(X ), n > m ≥ 0, α ∈ Nd

0 , |α| ≤ p and a sequence y = {yn}n≥1 in Y .
Proposition 5.3 also yieldsFα,m:n

θ,y (Λ)
 ≤ C̃2

(
∥Λ∥Ψm:n

y
)p

≤ K∥Λ∥
p

(
n∑

k=m+1

ψ(yk)

)p

(86)

for the same θ , Λ, n,m, α, y. As (17), (18) are trivially satisfied when n = m, the theorem
directly follows from (85), (86). □

6. Proof of Theorem 2.3

In this section, we rely on the following notation. Φ̃θ (x, y,Λ) is the function defined by

Φ̃θ (x, y,Λ) =

∫ ∫
Φθ (x ′, y′,Λ)Q(x ′, dy′)P(x, dx ′) (87)

for θ ∈ Θ , x ∈ X , y ∈ Y , Λ ∈ L0(X ). X and Y denote stochastic processes {Xn}n≥1 and
{Yn}n≥1 (i.e., X = {Xn}n≥1, Y = {Yn}n≥1). Gm:n

θ,X,Y(Λ) and H m:n
θ,X,Y(Λ) are the random functions

defined by

Gm:n
θ,X,Y(Λ) = Φθ

(
Xn, Yn, Fm:n

θ,Y (Λ)
)
, H m:n

θ,X,Y(Λ) = Φθ
(
Xn+1, Yn+1, Fm:n

θ,Y (Λ)
)
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for n ≥ m ≥ 0. An
θ (x,Λ) and Bn

θ (x,Λ) are the functions defined by

An
θ (x,Λ) = E

(
G0:n
θ,X,Y(Λ) − G1:n

θ,X,Y(Λ)
⏐⏐ X0 = x

)
, Bn

θ (x,Λ) = E
(

G0:n
θ,X,Y(Λ)

⏐⏐ X0 = x
)

for n ≥ 1. Cn
θ (x, y,Λ) and Dn

θ (x, y,Λ) are the functions defined by

Cn
θ (x, y,Λ) = E

(
H 0:n
θ,X,Y(Λ) − H 1:n

θ,X,Y(Λ)
⏐⏐ X1 = x, Y1 = y

)
,

Dn
θ (x, y,Λ) = E

(
H 0:n
θ,X,Y(Λ)

⏐⏐ X1 = x, Y1 = y
)
.

Ãm,n
θ (x,Λ) and B̃n

θ (x,Λ) are the functions defined by

Ãm,n
θ (x,Λ) =

∫
An−m
θ (x ′,Λ)(Pm

− π )(x, dx ′),

B̃n
θ (x,Λ) =

∫ ∫
Φθ (x ′, y′,Λ)Q(x ′, dy′)(Pn

− π )(x, dx ′)

for n > m ≥ 0.

Lemma 6.1. Let Assumptions 2.1, 2.2 and 2.5 hold. Then, there exists a real number
C5 ∈ [1,∞) (depending only on p, q, ε, L0) such that

max
{⏐⏐G0:n

θ,X,Y(Eλ) − G0:n
θ,X,Y(Λ)

⏐⏐ , ⏐⏐G0:n
θ,X,Y(Eλ) − G1:n

θ,X,Y(Λ)
⏐⏐}

≤ C5τ
n
∥Λ∥

sϕ(Xn, Yn)
n∑

k=1

ψr (Yk),

max
{⏐⏐H 0:n

θ,X,Y(Eλ) − H 0:n
θ,X,Y(Λ)

⏐⏐ , ⏐⏐H 0:n
θ,X,Y(Eλ) − H 1:n

θ,X,Y(Λ)
⏐⏐}

≤ C5τ
n
∥Λ∥

sϕ(Xn+1, Yn+1)
n∑

k=1

ψr (Yk)

for all θ ∈ Θ , λ ∈ P(X ), Λ ∈ L0(X ), n ≥ 1 (r and s are specified in Assumption 2.6 and
Theorem 2.3, while τ is defined at the beginning of Section 5).

Proof. Throughout the proof, the following notation is used. C̃1, C̃2 are the real numbers
defined by C̃1 = maxn≥1 τ

n−1n2r , C̃2 = max{Aα : α ∈ N0, |α| ≤ p} (Aα is specified in
Proposition 5.3). C̃3, C̃4 are the real numbers defined by C̃3 = 2pC̃ p+1

2 , C̃4 = 2qC̃q
2 C̃3, while

C5 is the real number defined by C5 = C̃1C̃4τ
−2. θ , x , y, λ are any elements of Θ , X , Y ,

P(X ) (respectively), while Λ,Λ′ are any elements of L0(X ). y = {yn}n≥1 is any sequence in
Y . n, m, k are any integers satisfying n ≥ 1, k ≥ m ≥ 0.

Owing to Proposition 5.3, we haveFm:k
θ,y (Λ)

 ≤ C̃2
(
∥Λ∥Φ0:k

y
)p
, (88)Fm:k

θ,y (Λ) − Fm:k
θ,y (Λ′)

 ≤ C̃2τ
2(k−m) ((∥Λ∥ + ∥Λ′

∥)Φ0:k
y
)p

(89)

(as Φ0:k
y ≥ Φm:k

y ≥ Ψm:k
y ). Consequently, we haveF0:k

θ,y (Eλ)
+

Fm:k
θ,y (Λ)

 ≤ 2C̃2
(
∥Λ∥Φ0:k

y
)p
, (90)F0:m

θ,y (Eλ)
+ ∥Λ∥ ≤ 2C̃2

(
∥Λ∥Φ0:m

y
)p

≤ 2C̃2
(
∥Λ∥Φ0:k

y
)p
.
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Then, (12), (88), (89) implyF0:k
θ,y (Eλ) − Fm:k

θ,y (Λ)
 =

Fm:k
θ,y

(
F0:m
θ,y (Eλ)

)
− Fm:k

θ,y (Λ)


≤ C̃2τ
2(k−m) ((F0:m

θ,y (Eλ)
+ ∥Λ∥

)
Φ0:k

y
)p

≤ C̃3τ
2(k−m)

∥Λ∥
p2 (

Φ0:k
y
)p(p+1)

(91)

(as Φ0:k
y ≥ 1). Combining Assumption 2.5 with (90), (91), we get⏐⏐Φθ (x, y, F0:k

θ,y (Eλ)) − Φθ (x, y, Fm:k
θ,y (Λ))

⏐⏐
≤ ϕ(x, y)

F0:k
θ,y (Eλ) − Fm:k

θ,y (Λ)
 (F0:k

θ,y (Eλ)
+

Fm:k
θ,y (Λ)

)q

≤ C̃4ϕ(x, y)τ 2(k−m)
∥Λ∥

s (Φ0:k
y
)r
. (92)

Using (92), we deduce

max
{⏐⏐G0:n

θ,X,Y(Eλ) − G0:n
θ,X,Y(Λ)

⏐⏐ , ⏐⏐G0:n
θ,X,Y(Eλ) − G1:n

θ,X,Y(Λ)
⏐⏐}

≤ C̃4τ
2(n−1)n2r

∥Λ∥
sϕ(Xn, Yn)

n∑
k=1

ψr (Yk) ≤ C5τ
n
∥Λ∥

sϕ(Xn, Yn)
n∑

k=1

ψr (Yk).

Similarly, we conclude

max
{⏐⏐H 0:n

θ,X,Y(Eλ) − H 0:n
θ,X,Y(Λ)

⏐⏐ , ⏐⏐H 0:n
θ,X,Y(Eλ) − H 1:n

θ,X,Y(Λ)
⏐⏐}

≤ C̃4τ
2(n−1)n2r

∥Λ∥
sϕ(Xn+1, Yn+1)

n∑
k=1

ψr (Yk)

≤ C5τ
n
∥Λ∥

sϕ(Xn+1, Yn+1)
n∑

k=1

ψr (Yk). □

Lemma 6.2. Let Assumptions 2.1, 2.2 and 2.4–2.6 hold. Moreover, let ρ = max{τ 1/3, δ1/3
}

(δ is specified in Assumption 2.4, while τ is defined at the beginning of Section 5). Then, the
following is true.

(i) There exists a real number C6 ∈ [1,∞) (depending only on p, q, ε, δ, K0, L0) such that

max
{⏐⏐An

θ (x, Eλ)
⏐⏐, ⏐⏐ Ãm,n

θ (x, Eλ)
⏐⏐, ⏐⏐B̃n

θ (x, Eλ)
⏐⏐} ≤ C6ρ

2n,⏐⏐Bn
θ (x, Eλ) − Bn

θ (x,Λ)
⏐⏐ ≤ C6ρ

2n
∥Λ∥

s

for all θ ∈ Θ , x ∈ X , λ ∈ P(X ), Λ ∈ L0(X ), n > m ≥ 0.
(ii) There exists a real number C7 ∈ [1,∞) (depending only on p, q, ε, δ, K0, L0) such

that ⏐⏐Cn
θ (x, y, Eλ)

⏐⏐ ≤ C7ρ
2nψr (y),

⏐⏐Dn
θ (x, y, Eλ) − Dn

θ (x, y,Λ)
⏐⏐ ≤ C7ρ

2n
∥Λ∥

sψr (y)

for all θ ∈ Θ , x ∈ X , y ∈ Y , λ ∈ P(X ), Λ ∈ L0(X ), n ≥ 1.

Proof. Throughout the proof, the following notation is used. C̃1, C̃2 are the real numbers
defined by C̃1 = maxn≥1 ρ

n−1n, C̃2 = L2
0 (L0 is specified in Assumption 2.6). θ , x , y, λ, Λ

are any elements of Θ , X , Y , P(X ), L0(X ) (respectively). n,m are any integers satisfying
n > m ≥ 0.

Owing to Assumption 2.5, we have

E
(
ϕ(Xk, Yk)ψr (Yk)

⏐⏐ X0 = x
)

= E
(∫

ϕ(Xk, y)ψr (y)Q(Xk, dy)
⏐⏐⏐⏐ X0 = x

)
≤ L0 (93)
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for k ≥ 0. Due to the same assumption, we have

max
{∫

ϕ(x, y′)Q(x, dy′),
∫
ψr (y′)Q(x, dy′)

}
≤

∫
ϕ(x, y′)ψr (y′)Q(x, dy′) ≤ L0.

(94)

Consequently, we get

E
(
ϕ(Xl , Yl)ψr (Yk)

⏐⏐ X0 = x
)

= E
(∫

ϕ(Xl , y)Q(Xl , dy)
∫
ψr (y)Q(Xk, dy)

⏐⏐⏐⏐ X0 = x
)

≤ L2
0 (95)

for l > k ≥ 0. Similarly, we get

E
(
ϕ(Xk, Yk)ψr (Y1)

⏐⏐ X1 = x, Y1 = y
)

= ψr (y)E
(∫

ϕ(Xk, y′)Q(Xk, dy′)
⏐⏐⏐⏐ X1 = x

)
≤ L0ψ

r (y), (96)

E
(
ϕ(Xl , Yl)ψr (Yk)

⏐⏐ X1 = x, Y1 = y
)

= E
(∫

ϕ(Xl , y′)Q(Xl , dy′)
∫
ψr (y′)Q(Xk, dy′)

⏐⏐⏐⏐ X1 = x
)

≤ L2
0 (97)

for l > k > 1.
Let C6 be the real number defined by C6 = C̃1C̃2C5 K0 (K0, C5 are specified in

Assumption 2.4 and Lemma 6.1). Since τ nn ≤ ρ3n(n + 1) ≤ C̃1ρ
2n , Lemma 6.1 and (93),

(95) imply⏐⏐An
θ (x, Eλ)

⏐⏐ ≤ E
( ⏐⏐G0:n

θ,X,Y(Eλ) − G1:n
θ,X,Y(Eλ)

⏐⏐ ⏐⏐ X0 = x
)

≤ C5τ
n

n∑
k=1

E
(
ϕ(Xn, Yn)ψr (Yk)

⏐⏐ X0 = x
)

≤ C̃2C5τ
nn ≤ C6ρ

2n.

As τ n−mδm(n − m) ≤ ρ3n(n + 1) ≤ C̃1ρ
2n , Assumption 2.5 yields⏐⏐ Ãm,n

θ (x, Eλ)
⏐⏐ ≤

∫ ⏐⏐An−m
θ (x ′, Eλ)

⏐⏐|Pm
− π |(x, dx ′) ≤ C̃2C5 K0τ

n−mδm(n − m) ≤ C6ρ
2n.

Moreover, owing to Lemma 6.1 and (93), (95), we have⏐⏐Bn
θ (x, Eλ) − Bn

θ (x,Λ)
⏐⏐ ≤ E

( ⏐⏐G0:n
θ,X,Y(Eλ) − G0:n

θ,X,Y(Λ)
⏐⏐ ⏐⏐ X0 = x

)
≤ C5τ

n
∥Λ∥

s
n∑

k=1

E
(
ϕ(Xn, Yn)ψr (Yk)

⏐⏐ X0 = x
)

≤ C̃2C5τ
nn∥Λ∥

s
≤ C6ρ

2n
∥Λ∥

s .

Similarly, due to Assumptions 2.4, 2.5 and (94), we have⏐⏐B̃n
θ (x, Eλ)

⏐⏐ ≤

∫ ∫ ⏐⏐Φθ (x ′, y′, Eλ)
⏐⏐Q(x ′, dy′)|Pn

− π |(x, dx ′)

≤

∫ ∫
ϕ(x ′, y′)Q(x ′, dy′)|Pn

− π |(x, dx ′)

≤ C̃2 K0δ
n

≤ C6ρ
2n.



V.Z.B. Tadić and A. Doucet / Stochastic Processes and their Applications 130 (2020) 4808–4858 4833

Let C7 be the real number defined by C7 = C̃1C̃2C5 (C5 is specified in Lemma 6.1). Relying
on Lemma 6.1 and (96), (97), we deduce⏐⏐Cn

θ (x, y, Eλ)
⏐⏐ ≤ E

( ⏐⏐H 0:n
θ,X,Y(Eλ) − H 1:n

θ,X,Y(Eλ)
⏐⏐ ⏐⏐ X1 = x, Y1 = y

)
≤ C5τ

n
n∑

k=1

E
(
ϕ(Xn+1, Yn+1)ψr (Yk)

⏐⏐ X1 = x, Y1 = y
)

≤ C̃2C5τ
nnψr (y) ≤ C7ρ

2nψr (y).

Using the same arguments, we conclude⏐⏐Dn
θ (x, y, Eλ) − Dn

θ (x, y,Λ)
⏐⏐ ≤ E

( ⏐⏐H 0:n
θ,X,Y(Eλ) − H 0:n

θ,X,Y(Λ)
⏐⏐ ⏐⏐ X1 = x, Y1 = y

)
≤ C5τ

n
∥Λ∥

s
n∑

k=1

E
(
ϕ(Xn+1, Yn+1)ψr (Yk)

⏐⏐ X1 = x, Y1 = y
)

≤ C̃2C5τ
nn∥Λ∥

sψr (y) ≤ C7ρ
2n

∥Λ∥
sψr (y). □

Proof of Theorem 2.3. Throughout the proof, the following notation is used. C̃1 is the
real number defined by C̃1 = maxn≥1 ρ

n−1n, while C̃2, C̃3 are the real numbers defined by
C̃2 = 4C̃1C6, C̃3 = C̃2(1 − ρ)−1 (ρ, C6 are specified in Lemma 6.2). L is the real number
defined by L = 4C̃3C7L0ρ

−1 (L0, C7 are specified in Assumption 2.6 and Lemma 6.2). θ is
any element of Θ . x, x ′ are any elements of X , while y, y′ are any elements of Y . λ, λ′ are any
elements of P(X ), while Λ,Λ′ are any elements of L0(X ). n is any (strictly) positive integer.

It is easy to notice that Gl:n
θ,X,Y(Eλ) does not depend on X0, Y0, . . . , Xk, Yk for n ≥ l ≥ k ≥ 0.

It is also easy to show

E
(

Gl:n
θ,X,Y(Eλ)

⏐⏐ Xk = x
)

= E
(

Gl−k:n−k
θ,X,Y (Eλ)

⏐⏐ X0 = x
)

for the same k, l. Then, we conclude

(Π nΦ)θ (x, y,Λ) = E
(

G0:n
θ,X,Y(Λ)

⏐⏐ X0 = x
)

=

n−1∑
k=0

E
(

E
(

Gk:n
θ,X,Y(Eλ) − Gk+1:n

θ,X,Y (Eλ)
⏐⏐ Xk

)⏐⏐ X0 = x
)

+ E
(

G0:n
θ,X,Y(Λ) − G0:n

θ,X,Y(Eλ)
⏐⏐ X0 = x

)
+ E ( E (Φθ (Xn, Yn, Eλ)| Xn)| X0 = x)

=

n−1∑
k=0

(
Ãk,n
θ (x, Eλ) + Āk,n

θ (Eλ)
)

+ Bn
θ (x,Λ) − Bn

θ (x, Eλ)

+ B̃n
θ (x, Eλ) + B̄n

θ (Eλ), (98)

where

Āk,n
θ (Eλ) =

∫
An−k
θ (x ′, Eλ)π (dx ′), B̄n

θ (Eλ) =

∫ ∫
Φn
θ (x ′, y′, Eλ)Q(x ′, dy′)π (dx ′).

We also deduce

(Π nΦ)θ (x, y,Λ) = E
(

G0:n
θ,X,Y(Λ)

⏐⏐ X0 = x
)

= E
(

G0:n
θ,X,Y(Λ) − G1:n

θ,X,Y(Λ)
⏐⏐ X0 = x

)
+ E

(
E
(

G1:n
θ,X,Y(Λ)

⏐⏐ X1
)⏐⏐ X0 = x

)
= An

θ (x,Λ) + E
(

(Π n−1Φ)θ (X1, Y1,Λ)
⏐⏐ X0 = x

)
. (99)
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Since ρ2n(n + 1) ≤ C̃1ρ
n , Lemma 6.2 and (98) imply⏐⏐(Π nΦ)θ (x, y,Λ) − (Π nΦ)θ (x ′, y′, Eλ)

⏐⏐
≤

⏐⏐⏐B̃n
θ (x, Eλ)

⏐⏐⏐+ ⏐⏐⏐B̃n
θ (x ′, Eλ)

⏐⏐⏐+ ⏐⏐Bn
θ (x,Λ) − Bn

θ (x, Eλ)
⏐⏐

+

n−1∑
k=0

⏐⏐⏐ Ãk:n
θ (x, Eλ)

⏐⏐⏐+ n−1∑
k=0

⏐⏐⏐ Ãk:n
θ (x ′, Eλ)

⏐⏐⏐
≤ 2C6ρ

2n(n + 1) + C6ρ
2n

∥Λ∥
s
≤ C̃2ρ

n
∥Λ∥

s . (100)

Then, Lemma 6.2 and (99) yield⏐⏐(Π n+1Φ)θ (x, y, Eλ) − (Π nΦ)θ (x, y, Eλ)
⏐⏐

≤ E
(⏐⏐(Π nΦ)θ (X1, Y1, Eλ) − (Π nΦ)θ (x, y, Eλ)

⏐⏐ ⏐⏐⏐X0 = x
)

+
⏐⏐An+1

θ (x, Eλ)
⏐⏐

≤ 2C6ρ
2n(n + 2) + C6ρ

2(n+1)
≤ C̃2ρ

n. (101)

Let φθ (x, y, Eλ) be the function defined by

φθ (x, y, Eλ) = Φθ (x, y, Eλ) +

∞∑
n=0

(
(Π n+1Φ)θ (x, y, Eλ) − (Π nΦ)θ (x, y, Eλ)

)
.

Owing to (101), φθ (x, y, Eλ) is well-defined. Due to the same inequality, we have⏐⏐(Π nΦ)θ (x, y, Eλ) − φθ (x, y, Eλ)
⏐⏐ ≤

∞∑
k=n

⏐⏐(Π k+1Φ)θ (x, y, Eλ) − (Π kΦ)θ (x, y, Eλ)
⏐⏐

≤ C̃2

∞∑
k=n

ρk
= C̃3ρ

n. (102)

Consequently, (100) yields⏐⏐φθ (x, y, Eλ) − φθ (x ′, y′, Eλ′ )
⏐⏐ ≤

⏐⏐(Π nΦ)θ (x, y, Eλ) − (Π nΦ)θ (x ′, y′, Eλ′ )
⏐⏐

+
⏐⏐(Π nΦ)θ (x, y, Eλ) − φθ (x, y, Eλ)

⏐⏐
+
⏐⏐(Π nΦ)θ (x ′, y′, Eλ′ ) − φθ (x ′, y′, Eλ′ )

⏐⏐
≤ (C̃2 + 2C̃3)ρn.

Letting n → ∞, we conclude φθ (x, y, Eλ) = φθ (x ′, y′, Eλ′ ). Hence, there exists a function φθ
which maps θ to R and satisfies φθ = φθ (x, y, Eλ) for each θ ∈ Θ , x ∈ X , y ∈ Y , λ ∈ P(X ).
Then, (100), (102) imply⏐⏐(Π nΦ)θ (x, y,Λ) − φθ

⏐⏐ ≤
⏐⏐(Π nΦ)θ (x, y,Λ) − (Π nΦ)θ (x, y, Eλ)

⏐⏐
+
⏐⏐(Π nΦ)θ (x, y, Eλ) − φθ

⏐⏐
≤ C̃2ρ

n
∥Λ∥

s
+ C̃3ρ

n
≤ 2C̃3ρ

n
∥Λ∥

s
≤ Lρn

∥Λ∥
s (103)

(as ∥Λ∥ ≥ 1).
Owing to Assumption 2.5, we have⏐⏐⏐Φ̃θ (x, y,Λ)

⏐⏐⏐ ≤

∫ ∫ ⏐⏐Φθ (x ′, y′,Λ)
⏐⏐ Q(x ′, dy′)P(x, dx ′)

≤

∫ ∫
ϕ(x ′, y′)∥Λ∥

q Q(x ′, dy′)P(x, dx ′) ≤ L0∥Λ∥
q (104)
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(see also (94)). Due to the same assumption, we have⏐⏐⏐Φ̃θ (x, y,Λ) − Φ̃θ (x, y,Λ′)
⏐⏐⏐ ≤

∫ ∫ ⏐⏐Φθ (x ′, y′,Λ) − Φθ (x ′, y′,Λ′)
⏐⏐ Q(x ′, dy′)P(x, dx ′)

≤

∫ ∫
ϕ(x ′, y′)∥Λ − Λ′

∥
(
∥Λ∥ + ∥Λ′

∥
)q Q(x ′, dy′)P(x, dx ′)

≤ L0∥Λ − Λ′
∥
(
∥Λ∥ + ∥Λ′

∥
)q
. (105)

Using (104), (105), we conclude that Assumption 2.5 holds when Φθ (x, y,Λ) is replaced by
Φ̃θ (x, y,Λ)/L0. Consequently, Assumption 2.5 and (103) imply that there exists a function φ̃θ
mapping θ to R such that (103) is still true when Φθ (x, y,Λ), φθ are replaced with Φ̃θ (x, y,Λ)/
L0, φ̃θ/L0 (respectively). Hence, we get⏐⏐⏐(Π nΦ̃)θ (x, y,Λ) − φ̃θ

⏐⏐⏐ ≤ 2C̃3L0ρ
n
∥Λ∥

s . (106)

Moreover, it is easy notice that H 1:n
θ,X,Y(Eλ) does not depend on X1, Y1, X2, Y2. Then, we

conclude

(Π̃ nΦ)θ (x, y,Λ) = E
(

H 0:n
θ,X,Y(Λ)

⏐⏐ X1 = x, Y1 = y
)

= E
(

H 0:n
θ,X,Y(Λ) − H 0:n

θ,X,Y(Eλ)
⏐⏐ X1 = x, Y1 = y

)
+ E

(
H 0:n
θ,X,Y(Eλ) − H 1:n

θ,X,Y(Eλ)
⏐⏐ X1 = x, Y1 = y

)
+ E

(
E
(

H 1:n
θ,X,Y(Eλ)

⏐⏐ X2:n, Y2:n
)⏐⏐ X1 = x, Y1 = y

)
= Cn

θ (x, y, Eλ) + Dn
θ (x, y,Λ) − Dn

θ (x, y, Eλ)

+ E
(
Φ̃θ (Xn, Yn, F1:n

θ,Y(Eλ))
⏐⏐⏐ X1 = x, Y1 = y

)
= Cn

θ (x, y, Eλ) + Dn
θ (x, y,Λ) − Dn

θ (x, y, Eλ)
+ (Π n−1Φ̃)θ (x, y, Eλ).

Combining this with Lemma 6.2 and (106), we get⏐⏐⏐(Π̃ nΦ)θ (x, y,Λ) − φ̃θ

⏐⏐⏐ ≤

⏐⏐⏐(Π n−1Φ̃)θ (x, y, Eλ) − φ̃θ

⏐⏐⏐+ ⏐⏐Cn
θ (x, y, Eλ)

⏐⏐
+
⏐⏐Dn

θ (x, y,Λ) − Dn
θ (x, y, Eλ)

⏐⏐
≤ 2C̃3L0ρ

n−1
+ C7ρ

2nψr (y) + C7ρ
2nψr (y)∥Λ∥

s

≤ 4C̃3C7L0ρ
n−1ψr (y)∥Λ∥

s
≤ Lρnψr (y)∥Λ∥

s . □

7. Proof of Theorems 2.1 and 3.1

In this section, we rely on the following notation. For 1 ≤ i ≤ d , ei denotes the i th standard
unit vector in Nd

0 . eα is the vector defined by

i(α) = min{i : ei ≤ α, 1 ≤ i ≤ d}, eα = ei(α)

for α ∈ Nd
0 \ {0}. Ψθ (y, λ), Ψ 0

θ (y,Λ) and Ψα
θ (y,Λ) are the functions defined by

Ψθ (y, λ) = log
(⟨

R0
θ,y(λ)

⟩)
, Ψ 0

θ (y,Λ) = Ψθ (y, λ0), Ψα
θ (y,Λ) =

⟨
Sα
θ,y(Λ)

⟩
(107)
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for θ ∈ Θ , y ∈ Y , λ ∈ P(X ), Λ =
{
λβ : β ∈ Nd

0 , |β| ≤ p
}

∈ L0(X ) and |α| = 1. Ψα
θ (y,Λ) is

the function recursively defined by

Ψα
θ (y,Λ) =

⟨
Sα
θ,y(Λ)

⟩
−

∑
β∈Nd

0 \{α}

eα≤β≤α

(
α − eα

β − eα

)
Ψ

β
θ (y,Λ)

⟨
Sα−β
θ,y (Λ)

⟩
(108)

for 1 < |α| ≤ p, where the recursion is in |α|.4

Proposition 7.1. Let Assumptions 2.1–2.3 hold. Then, p0:n
θ,y(x |λ), P0:n

θ,y (B|λ) and Ψ 0
θ (yn+1,

P0:n
θ,y (λ)) are p-times differentiable in θ for each θ ∈ Θ , x ∈ X , B ∈ B(X ), λ ∈ P(X ), n ≥ 1

and any sequence y = {yn}n≥1 in Y (yn+1 is the (n + 1)th element of y). Moreover, we have

∂α
θ p0:n

θ,y(x |λ) = f α,0:n
θ,y (x |Eλ), ∂α

θ P0:n
θ,y (B|λ) = Fα,0:n

θ,y (B|Eλ), (109)

∂α
θ Ψ

0
θ (yn+1, P0:n

θ,y (λ)) = Ψα
θ (yn+1, F0:n

θ,y (Eλ)) (110)

for the same θ , x, B, λ, n, y and any multi-index α ∈ Nd
0 , |α| ≤ p (Eλ, f α,0:n

θ,y (x |Eλ), p0:n
θ,y(x |λ),

Fα,0:n
θ,y (B|Eλ), P0:n

θ,y (B|λ) are defined in (3), (12)–(14)).

Proof. Throughout the proof, the following notation is used. θ , λ, B are any elements of Θ ,
P(X ), B(X ) (respectively), while x, x ′ are any elements of X . y = {yn}n≥1 is any sequence in
Y , while α is any element of Nd

0 satisfying |α| ≤ p. n is any (strictly) positive integer. δx (dx ′)
is the Dirac measure centered at x . ξn(dx0:n|x, λ) and ζ (dx0:n|λ) are the measures on X n+1

defined by

ξn(A|x, λ) =

∫ ∫
· · ·

∫ ∫
IA(x0:n)δx (dxn)µ(dxn−1) · · ·µ(dx1)λ(dx0), (111)

ζn(A|λ) =

∫
· · ·

∫ ∫
IA(x0:n)µ(dxn) · · ·µ(dx1)λ(dx0) (112)

for A ∈ B(X n+1).5 un
θ,y(x0:n) is the function defined by

un
θ,y(x0:n) =

n∏
k=1

rθ (yk, xk |xk−1)

for x0, . . . , xn ∈ X . vn
θ,y(x |λ) and wn

θ,y(λ) are the functions defined by

vn
θ,y(x |λ) =

∫
un
θ,y(x0:n)ξn(dx0:n|x, λ), wn

θ,y(λ) =

∫
un
θ,y(x0:n)ζn(dx0:n|λ). (113)

Using (3), it is straightforward to verify

p0:n
θ (x |λ) =

vn
θ,y(x |λ)

wn
θ,y(λ)

, P0:n
θ (B|λ) =

∫
B

vn
θ,y(x ′

|λ)

wn
θ,y(λ)

µ(dx ′), (114)

wn
θ,y(λ) =

∫
vn
θ,y(x ′

|λ)µ(dx ′). (115)

4 The last two functions in (107) are initial conditions in (108). At iteration k of (108) (1 < k ≤ p), function
Ψα
θ (y,Λ) is computed for multi-indices α ∈ Nd

0 , |α| = k using the results obtained at the previous iterations.
5 When n = 1, (111), (112) should be interpreted as

ξ1(A|x, λ) =

∫ ∫
IA(x0:1)δx (dx1)λ(dx0), ζ1(A|λ) =

∫ ∫
IA(x0:1)µ(dx1)λ(dx0).
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It is also easy to show

w1
θ,y(λ) =

∫ (∫
rθ (y1, x ′

|x)µ(dx ′)
)
λ(dx),

wn+1
θ,y (λ) =

∫ (∫
rθ (yn+1, x ′

|x)µ(dx ′)
)
vn
θ,y(x |λ)µ(dx).

Consequently, Assumption 2.2 implies

w1
θ,y(λ) ≥ ε

∫
µθ (X |y1)λ(dx) = εµθ (X |y1),

wn+1
θ,y (λ) ≥ ε

∫
µθ (X |yn+1)vn

θ,y(x |λ)µ(dx) = εµθ (X |yn+1)wn
θ,y(λ). (116)

Iterating (116), we get

wn
θ,y(λ) ≥ εn

n∏
k=1

µθ (X |yk) > 0. (117)

Owing to Leibniz rule and Assumptions 2.2, 2.3, we have

⏐⏐∂α
θ un

θ,y(x0:n)
⏐⏐ ≤

∑
β1,...,βn∈Nd

0
β1+···+βn=α

(
α

β1, . . . ,βn

) n∏
k=1

⏐⏐⏐∂βk
θ rθ (yk, xk |xk−1)

⏐⏐⏐

≤

(
n∏

k=1

φ(yk, xk)

)⎛⎜⎜⎜⎝ ∑
β1,...,βn∈Nd

0
β1+···+βn=α

(
α

β1, . . . ,βn

) n∏
k=1

(ψ(yk))|βk |

⎞⎟⎟⎟⎠
≤ 2|α|

(
n∏

k=1

ψ(yk)

)|α| ( n∏
k=1

φ(yk, xk)

)
(118)

for x0, . . . , xn ∈ X . Due to the same assumptions, we have∫ (
n∏

k=1

φ(yk, xk)

)
ξn(dx0:n|x, λ) = φ(yn, x)

(
n−1∏
k=1

∫
φ(yk, xk)µ(dxk)

)
< ∞, (119)

∫ (
n∏

k=1

φ(yk, xk)

)
ζn(dx0:n|λ) =

(
n∏

k=1

∫
φ(yk, xk)µ(dxk)

)
< ∞. (120)

Here and throughout the proof, we rely on the convention that
∏ j

k=i is equal to one whenever
j < i . Using Lemma C.1 (see Appendix C) and (118)–(120), we conclude that vn

θ,y(x |λ),
wn
θ,y(λ) are well-defined and p-times differentiable in θ . Relying on the same arguments, we

deduce

∂α
θ v

n
θ,y(x |λ) =

∫
∂α
θ un

θ,y(x0:n)ξn(dx0:n|x, λ), ∂α
θ w

n
θ,y(λ) =

∫
∂α
θ un

θ,y(x0:n)ζn(dx0:n|λ).

(121)
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Then, (114), (117) imply that p0:n
θ,y(x |λ) is p-times differentiable in θ . Moreover, (118), (121)

yield ⏐⏐∂α
θ v

n
θ,y(x |λ)

⏐⏐ ≤

∫
|∂α
θ un

θ,y(x0:n)|ξn(dx0:n|x, λ)

≤ 2|α|φ(yn, x)

(
n∏

k=1

ψ(yk)

)|α| (n−1∏
k=1

∫
φ(yk, xk)µ(dxk)

)
. (122)

Let P̃α,n
θ,y (dx |λ) be the signed measure defined by

P̃α,n
θ,y (B|λ) =

∫
B
∂α
θ p0:n

θ,y(x |λ), µ(dx) (123)

while P̃α,n
θ,y (λ) is a ‘short-hand’ notation for P̃α,n

θ,y (dx |λ). Moreover, let P̃0
θ,y(λ) and P̃n

θ,y(λ) be
the vector measures defined by

P̃0
θ,y(λ) = Eλ, P̃n

θ,y(λ) =

{
P̃α,n
θ,y (λ) : α ∈ Nd

0 , |α| ≤ p
}
, (124)

where P̃α,n
θ,y (λ) is the component α of P̃n

θ,y(λ). Owing to Lemma C.1 and (114), (117), (122),
P0:n
θ,y (B|λ) is p-times differentiable in θ . Due to the same arguments, P̃α,n

θ,y (B|λ) is well-defined
and satisfies

P̃α,n
θ,y (B|λ) = ∂α

θ P0:n
θ,y (B|λ) = ∂α

θ P̃0,n
θ,y (B|λ) (125)

(as P0:n
θ,y (λ) = P̃0,n

θ,y (λ)).
Using (5), (10), (115), (123), it is straightforward to verify

r0
θ,yn+1

(
x
⏐⏐P̃0,n
θ,y (λ)

)
=

∫
rθ (yn+1, x |x ′)vn

θ,y(x ′
|λ)µ(dx ′)

wn
θ,y(λ)

, (126)

⟨
R0
θ,yn+1

(
P̃0,n
θ,y (λ)

)⟩
=

∫ ∫
rθ (yn+1, x ′′

|x ′)vn
θ,y(x ′

|λ)µ(dx ′)µ(dx ′′)

wn
θ,y(λ)

. (127)

Moreover, Leibniz rule, Assumptions 2.2, 2.3 and (122) imply⏐⏐∂α
θ

(
rθ (yn+1, x |x ′)vn

θ,y(x ′
|λ)
)⏐⏐ ≤

∑
β∈Nd

0
β≤α

(
α

β

) ⏐⏐⏐∂α−β
θ rθ (yn+1, x |x ′)

⏐⏐⏐ ⏐⏐⏐∂β
θ v

n
θ,y(x ′

|λ)
⏐⏐⏐

≤ φ(yn+1, x)φ(yn, x ′)

(
n−1∏
k=1

∫
φ(yk, xk)µ(dxk)

)

×

⎛⎜⎜⎜⎝∑
β∈Nd

0
β≤α

(
α

β

)
2|β|(ψ(yn+1))|α−β|

(
n∏

k=1

ψ(yk)

)|β|

⎞⎟⎟⎟⎠
≤ 4|α|φ(yn+1, x)φ(yn, x ′)

(
n+1∏
k=1

ψ(yk)

)|α| (n−1∏
k=1

∫
φ(yk, xk)µ(dxk)

)
< ∞. (128)

The same assumptions also yield∫
φ(yn, x ′)µ(dx ′) < ∞,

∫ ∫
φ(yn+1, x)φ(yn, x ′)µ(dx)µ(dx ′) < ∞. (129)
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Using Lemma C.1 and (117), (126)–(129), we conclude that r0
θ,yn+1

(
x
⏐⏐P̃0,n
θ,y (λ)

)
,
⟨
R0
θ,yn+1(

P̃0,n
θ,y (λ)

)⟩
are well-defined and p-times differentiable in θ .6 Relying on the same arguments

and (114), we deduce

∂α
θ r0
θ,yn+1

(
x
⏐⏐P̃0,n
θ,y (λ)

)
=

∫
∂α
θ

(
rθ (yn+1, x |x ′)p0:n

θ,y(x ′
|λ)
)
µ(dx ′), (130)

∂α
θ

⟨
R0
θ,yn+1

(
P̃0,n
θ,y (λ)

)⟩
=

∫ ∫
∂α
θ

(
rθ (yn+1, x ′′

|x ′)p0:n
θ,y(x ′

|λ)
)
µ(dx ′′)µ(dx ′). (131)

Consequently, Leibniz rule and (5), (10), (123) imply

∂α
θ r0
θ,yn+1

(
x
⏐⏐P̃0,n
θ,y (λ)

)
=

∑
β∈Nd

0
β≤α

(
α

β

)∫
∂

α−β
θ rθ (yn+1, x |x ′)∂β

θ p0:n
θ,y(x ′

|λ)µ(dx ′)

=

∑
β∈Nd

0
β≤α

(
α

β

)
rα−β
θ,yn+1

(
x
⏐⏐P̃β,n
θ,y (λ)

)

= sα
θ,yn+1

(x |P̃n
θ,y(λ))

⟨
R0
θ,yn+1

(
P̃0,n
θ,y (λ)

)⟩
. (132)

Leibniz rule and (5), (10), (123) also yield

∂α
θ

⟨
R0
θ,yn+1

(
P̃0,n
θ,y (λ)

)⟩
=

∑
β∈Nd

0
β≤α

(
α

β

)∫ ∫
∂

α−β
θ rθ (yn+1, x ′′

|x ′)∂β
θ p0:n

θ,y(x ′
|λ)µ(dx ′)µ(dx ′′)

=

∑
β∈Nd

0
β≤α

(
α

β

) ⟨
Rα−β
θ,yn+1

(
P̃β,n
θ,y (λ)

)⟩

=

⟨
Sα
θ,yn+1

(
P̃n
θ,y(λ)

)⟩ ⟨
R0
θ,yn+1

(
P̃0,n
θ,y (λ)

)⟩
. (133)

Moreover, using (5), (10), (113), (123), we get

∂α
θ r0
θ,y1

(
x
⏐⏐P̃0,0
θ,y (λ)

)
= ∂α

θ v
1
θ,y(x |λ) =

∫
∂α
θ rθ (x, y1|x ′)λ(dx ′)

= sα
θ,y1

(
x
⏐⏐P̃0
θ,y(λ)

) ⟨
R0
θ,y1

(
P̃0,0
θ,y (λ)

)⟩
, (134)

∂α
θ

⟨
R0
θ,y1

(
P̃0,0
θ,y (λ)

)⟩
= ∂α

θ w
1
θ,y(λ) =

∫ ∫
∂α
θ rθ (x ′′, y1|x ′)µ(dx ′′)λ(dx ′)

=

⟨
Sα
θ,y1

(
P̃0
θ,y(λ)

)⟩ ⟨
R0
θ,y1

(
P̃0,0
θ,y (λ)

)⟩
(135)

(as P̃0,0
θ,y (B|λ) = λ(B)).

Relying on (3), (5), (10), (123), it is straightforward to verify

p0:n
θ,y(x |λ)

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
= r0

θ,yn

(
x
⏐⏐P̃0,n−1
θ,y (λ)

)
.

6 To conclude that r0
θ,yn+1

(
x
⏐⏐P̃0,n
θ,y (λ)

)
is well-defined and satisfy (130), set z = x ′, ν(dz) = µ(dx ′), Fθ (z) =

rθ (yn+1, x |x ′)vn
θ,y(x ′

|λ), gθ = wn
θ,y(λ) in Lemma C.1 (x is treated as a fixed value). To conclude that

⟨
R0
θ,yn+1(

P̃0,n
θ,y (λ)

)⟩
is well-defined and satisfy (131), set z = (x, x ′), ν(dz) = µ(dx)µ(dx ′), Fθ (z) = rθ (yn+1, x |x ′)vn

θ,y(x ′
|λ),

gθ = wn
θ,y(λ) in Lemma C.1.
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Then, Leibniz rule and (133), (135) imply

∂α
θ r0
θ,yn

(
x
⏐⏐P̃0,n−1
θ,y (λ)

)
=

∑
β∈Nd

0
β≤α

(
α

β

)
∂

β
θ p0:n

θ,y(x |λ) ∂α−β
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩

=

∑
β∈Nd

0
β≤α

(
α

β

)
∂

β
θ p0:n

θ,y(x |λ)
⟨
Sα−β
θ,yn

(
P̃n−1
θ,y (λ)

)⟩ ⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
.

Since 0 <
⟨
R0
θ,yn+1

(
P̃0,n
θ,y (λ)

)⟩
< ∞ (due to Assumption 2.1), we have

∂α
θ p0:n

θ,y(x |λ) =
∂α
θ r0
θ,yn

(
x
⏐⏐P̃0,n−1
θ,y (λ)

)⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩ −

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)
∂

β
θ p0:n

θ,y(x |λ)
⟨
Sα−β
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
.

Combining this with (132), (134), we get

∂α
θ p0:n

θ,y(x |λ) = sα
θ,yn

(
x
⏐⏐P̃n−1
θ,y (λ)

)
−

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)
∂

β
θ p0:n

θ,y(x |λ)
⟨
Sα−β
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
. (136)

Eq. (136) can be interpreted as a recursion in |α| which generates functions
{
∂α
θ p0:n

θ,y(x |λ) : α ∈

Nd
0 , |α| ≤ p

}
.7 Eq. (136) can also be considered as a particular case of (7) — to get (136),

set Λ = P̃n−1
θ,y (λ), y = yn in (7). Hence, comparing (136) with (7) and using (9), (11), (123),

(124), we conclude

∂α
θ p0:n

θ,y(x |λ) = f α
θ,yn

(
x
⏐⏐P̃n−1
θ,y (λ)

)
, P̃α,n

θ,y (λ) = Fα
θ,yn

(
P̃n−1
θ,y (λ)

)
,

P̃n
θ,y(λ) = Fθ,yn

(
P̃n−1
θ,y (λ)

)
. (137)

Iterating (in n) (137), we also get P̃n
θ,y(λ) = F0:n

θ,y (Eλ). Combining this with (13), (125), we
deduce that (109) holds.

In the rest of the proof, we assume 1 < |α| ≤ p. Owing to (107), (133), (135), we have

∂e
θΨ

0
θ

(
yn, P̃n−1

θ,y (λ)
)

=
∂e
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩ =
⟨
Se
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
= Ψ e

θ

(
yn, P̃n−1

θ,y (λ)
)
,

(138)

where e ∈ Nd
0 , |e| = 1. Hence, we get

∂
eα
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
= ∂

eα
θ Ψ 0

θ

(
yn, P̃n−1

θ,y (λ)
) ⟨

R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
(as |eα| = 1). Therefore, we have

∂α
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
= ∂

α−eα
θ

(
∂

eα
θ Ψ 0

θ

(
yn, P̃n−1

θ,y (λ)
) ⟨

R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩)
.

7 In (136), p0:n
θ,y (x |λ) is the initial condition. At iteration k of recursion (136) (1 ≤ k ≤ p), function ∂α

θ p0:n
θ,y (x |λ)

is computed for multi-indices α ∈ Nd
0 , |α| = k using the results obtained at the previous iterations.
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Consequently, Leibniz rule and (133), (135) imply

∂α
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
=

∑
β∈Nd

0
β≤α−eα

(
α − eα

β

)
∂

β+eα
θ Ψ 0

θ

(
yn, P̃n−1

θ,y (λ)
)
∂

α−β−eα
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩

=

∑
β∈Nd

0
eα≤β≤α

(
α − eα

β − eα

)
∂

β
θ Ψ

0
θ

(
yn, P̃n−1

θ,y (λ)
)
∂

α−β
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩

=

∑
β∈Nd

0
eα≤β≤α

(
α − eα

β − eα

)
∂

β
θ Ψ

0
θ (yn, P̃n−1

θ,y (λ))
⟨
Sα−β
θ,yn

(
P̃n−1
θ,y (λ)

)⟩⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
.

As
⟨
S0
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
= 1 (due to (5), (10)), the same arguments then yield

∂α
θ Ψ

0
θ

(
yn, P̃n−1

θ,y (λ)
)

= −

∑
β∈Nd

0 \{α}

eα≤β≤α

(
α − eα

β − eα

)
∂

β
θ Ψ

0
θ

(
yn, P̃n−1

θ,y (λ)
) ⟨

Sα−β
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
+
∂α
θ

⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩⟨
R0
θ,yn

(
P̃0,n−1
θ,y (λ)

)⟩
= −

∑
β∈Nd

0 \{α}

eα≤β≤α

(
α − eα

β − eα

)
∂

β
θ Ψ

0
θ

(
yn, P̃n−1

θ,y (λ)
) ⟨

Sα−β
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
+
⟨
Sα
θ,yn

(
P̃n−1
θ,y (λ)

)⟩
.

(139)

Eq. (139) can be viewed as a recursion in |α| which generates functions
{
∂α
θ Ψ

0
θ

(
yn, P̃n−1

θ,y (λ)
)

:

α ∈ Nd
0 , 1 < |α| ≤ p

}
.8 Eq. (139) can also be considered as a special case of (108) — to

get (139), set Λ = P̃n−1
θ,y (λ), y = yn in (108). Hence, comparing (139) with (107), (108), we

conclude

∂α
θ Ψ

0
θ

(
yn, P̃n−1

θ,y (λ)
)

= Ψα
θ

(
yn, P̃n−1

θ,y (λ)
)
. (140)

Using (138), (140), we deduce that (110) holds. □

Proof of Theorem 2.1. Let m ≥ 0 be any (fixed) integer, while y = {yn}n≥1, y′
= {y′

n}n≥1
are any sequences in Y satisfying y′

n = yn+m for n > m. Then, using (3), it is straightforward
to verify pm:n

θ,y (x |λ) = p0:n−m
θ,y′ (x |λ) for θ ∈ Θ , x ∈ X , λ ∈ P(X ), n > m. Consequently,

Proposition 7.1 implies that (16) holds for the same θ , x , λ, n,m and B ∈ B(X ), α ∈ Nd
0 ,

|α| ≤ p. □

Lemma 7.1. Let Assumptions 2.1 and 3.1 hold. Then, there exists a real number C8 ∈ [1,∞)
(depending only on ε) such that⏐⏐Ψ 0

θ (y,Λ)
⏐⏐ ≤ C8ϕ(y),

⏐⏐Ψ 0
θ (y,Λ) − Ψ 0

θ (y,Λ′)
⏐⏐ ≤ C8ϕ(y)∥Λ − Λ′

∥

for all θ ∈ Θ , y ∈ Y , Λ,Λ′
∈ L0(X ).

8 In (139), functions
{
∂α
θ Ψ

0
θ

(
yn+1, P̃n

θ,y(λ)
)

: α ∈ Nd
0 , |α| = 1

}
are the initial conditions. At iteration k of (139)

(1 < k ≤ p), function ∂α
θ Ψ

0
θ

(
yn+1, P̃n

θ,y(λ)
)

is computed for multi-indices α ∈ Nd
0 , |α| = k using the results obtained

at the previous iterations.
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Proof. Throughout the proof, the following notation is used. C̃ is the real number defined by
C̃ = 1 + | log ε|, while C8 is the real number defined by C8 = 2C1C̃ (ε, C1 are specified in
Assumption 2.1 and Lemma 5.1). θ , y are any elements of Θ , Y (respectively). λ, λ′ are any
elements of P(X ), while Λ =

{
λα : α ∈ Nd

0 , |α| ≤ p
}
, Λ′

=
{
λ′

α : α ∈ Nd
0 , |α| ≤ p

}
are any

elements of L0(X ).
Relying on Assumption 2.1, we conclude

εµθ (X |y) ≤

∫ (∫
rθ (y, x ′

|x)µ(dx ′)
)
λ(dx) ≤

µθ (X |y)
ε

.

Consequently, Assumption 3.1 and (10) imply⏐⏐log
(⟨

R0
θ,y(λ)

⟩)⏐⏐ ≤ | log ε| + |logµθ (X |y)| ≤ C̃ + ϕ(y) ≤ 2C̃ϕ(y).

Therefore, (107) yields⏐⏐Ψ 0
θ (y,Λ)

⏐⏐ =
⏐⏐log

(⟨
R0
θ,y(λ0)

⟩)⏐⏐ ≤ 2C̃ϕ(y) ≤ C8ϕ(y).

Moreover, using Lemma 5.1, we deduce⏐⏐⏐⏐⏐
⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩ − 1

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
⟨
R0
θ,y(λ− λ′)

⟩⟨
R0
θ,y(λ′)

⟩ ⏐⏐⏐⏐⏐ ≤

⟨R0
θ,y(λ− λ′)

⟩⟨
R0
θ,y(λ′)

⟩ ≤ C1
λ− λ′

 .
Consequently, we have

log

( ⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩) ≤

⏐⏐⏐⏐⏐
⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩ − 1

⏐⏐⏐⏐⏐ ≤ C1
λ− λ′

 . (141)

Reverting the roles of λ, λ′, we get

− log

( ⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩) = log

(⟨
R0
θ,y(λ′)

⟩⟨
R0
θ,y(λ)

⟩ ) ≤

⏐⏐⏐⏐⏐
⟨
R0
θ,y(λ′)

⟩⟨
R0
θ,y(λ)

⟩ − 1

⏐⏐⏐⏐⏐ ≤ C1
λ− λ′

 . (142)

Owing to (141), (142), we have⏐⏐⏐⏐⏐log

( ⟨
R0
θ,y(λ)

⟩⟨
R0
θ,y(λ′)

⟩)⏐⏐⏐⏐⏐ ≤ C1
λ− λ′

 .
Hence, we get⏐⏐Ψ 0

θ (y,Λ) − Ψ 0
θ (y,Λ′)

⏐⏐ =

⏐⏐⏐⏐⏐log

(⟨
R0
θ,y(λ0)

⟩⟨
R0
θ,y(λ′

0)
⟩)⏐⏐⏐⏐⏐ ≤ C1

λ0 − λ′

0
 ≤ C8ϕ(y)

Λ − Λ′


(as ϕ(y) ≥ 1,
λ0 − λ′

0

 ≤
Λ − Λ′

). □

Lemma 7.2. Let Assumptions 2.1 and 2.2 hold. Then, there exists a real number C9 ∈ [1,∞)
(depending only on ε, p) such that⏐⏐Ψα

θ (y,Λ)
⏐⏐ ≤ C9

(
ψ(y)∥Λ∥

)p
,⏐⏐Ψα

θ (y,Λ) − Ψα
θ (y,Λ′)

⏐⏐ ≤ C9∥Λ − Λ′
∥
(
ψ(y)

(
∥Λ∥ + ∥Λ′

∥
))p

for all θ ∈ Θ , y ∈ Y , Λ,Λ′
∈ L0(X ) and any multi-index α ∈ Nd

0 \ {0}, |α| ≤ p.

Proof. Throughout the proof, the following notation is used. θ , y are any elements of Θ , Y
(respectively). C̃1, C̃2 are the real numbers defined by C̃1 = 2pC2, C̃2 = 3C̃2

1 , while C9 is the
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real number defined by C9 = exp(C̃2 p) (C2 is specified in Lemma 5.2). Bα is the real number
defined by Bα = exp

(
C̃2|α|

)
for α ∈ Nd

0 .
Let γ be any element of Nd

0 \ {0} satisfying |γ | ≤ p. Then, it easy to conclude Bγ ≤

exp(C̃2) ≤ 3C̃2
1 . Consequently, Lemma 5.2 and (10) imply⏐⏐⏐⟨Sγ

θ,y(Λ)
⟩
−
⟨
Sγ
θ,y(Λ′)

⟩⏐⏐⏐ ≤ C2

∑
δ∈Nd

0
δ≤γ

(ψ(y))|γ−δ|(∥λδ − λ′

δ∥ + ∥λ0 − λ′

0∥∥λ
′

δ∥)

≤ 2|γ |C2 (ψ(y))|γ |
∥Λ − Λ′

∥(∥Λ∥ + ∥Λ′
∥)

≤ C̃1∥Λ − Λ′
∥
(
ψ(y)(∥Λ∥ + ∥Λ′

∥)
)|γ |

≤
Bγ ∥Λ − Λ′

∥
(
ψ(y)(∥Λ∥ + ∥Λ′

∥)
)|γ |

3C̃1
(143)

for Λ =
{
λδ : δ ∈ Nd

0 , |δ| ≤ p
}

∈ L0(X ), Λ′
=
{
λ′

δ : δ ∈ Nd
0 , |δ| ≤ p

}
∈ L0(X ) (as ∥Λ∥ ≥ 1,

∥Λ′
∥ ≥ ∥λ′

δ∥, ∥Λ − Λ′
∥ ≥ ∥λδ − λ′

δ∥). The same arguments yield⏐⏐⏐⟨Sγ
θ,y(Λ)

⟩⏐⏐⏐ ≤ C2

∑
δ∈Nd

0
δ≤γ

(ψ(y))|γ−δ|
∥λδ∥ ≤ 2|γ |C2(ψ(y))|γ |

∥Λ∥ ≤ C̃1
(
ψ(y)∥Λ∥

)|γ |

≤
Bα

(
ψ(y)∥Λ∥

)|γ |

3C̃1
(144)

for the same Λ.
To prove the lemma, it is sufficient to show⏐⏐Ψα

θ (y,Λ)
⏐⏐ ≤ Bα

(
ψ(y)∥Λ∥

)|α|
, (145)⏐⏐Ψα

θ (y,Λ) − Ψα
θ (y,Λ′)

⏐⏐ ≤ Bα∥Λ − Λ′
∥
(
ψ(y)

(
∥Λ∥ + ∥Λ′

∥
))|α| (146)

for Λ,Λ′
∈ L0(X ), α ∈ Nd

0 \ {0}, |α| ≤ p. We prove (145), (146) by mathematical induction
in |α|. When |α| = 1, (143), (144) imply that (145), (146) are true for all Λ,Λ′

∈ L0(X ).
Now, the induction hypothesis is formulated: Suppose that (145), (146) hold for some l ∈ Nd

0
and all Λ,Λ′

∈ L0(X ), α ∈ Nd
0 satisfying 1 ≤ l < p, |α| ≤ l. Then, to prove (145), (146),

it is sufficient to show (145), (146) for all Λ,Λ′
∈ L0(X ), α ∈ Nd

0 satisfying |α| = l + 1. In
what follows in the proof, Λ,Λ′ are any elements of L0(X ). α is any element of Nd

0 satisfying
|α| = l + 1, while β is any element of Nd

0 \ {0,α} fulfilling β ≤ α.
Since β ≤ α, β ̸= 0, β ̸= α, we have 1 ≤ |β| ≤ |α| − 1 = l. Then, owing to the induction

hypothesis, we have

max

{ ⏐⏐Ψβ
θ (y,Λ)

⏐⏐(
ψ(y)∥Λ∥

)|β|
,

⏐⏐Ψβ
θ (y,Λ′)

⏐⏐(
ψ(y)∥Λ′∥

)|β|

}
≤ Bβ ≤

Bα

3C̃2
1

, (147)⏐⏐Ψβ
θ (y,Λ) − Ψ

β
θ (y,Λ′)

⏐⏐(
ψ(y)(∥Λ∥ + ∥Λ′∥)

)|β|
≤ Bβ∥Λ − Λ′

∥ ≤
Bα∥Λ − Λ′

∥

3C̃2
1

. (148)

Consequently, (144) implies

⏐⏐Ψβ
θ (y,Λ)

⏐⏐ ⏐⏐⟨Sα−β
θ,y (Λ)

⟩⏐⏐ ≤
Bβ Bα−β

(
ψ(y)∥Λ∥

)|α|

3C̃1
≤

Bα

(
ψ(y)∥Λ∥

)|α|

3C̃1
(149)
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(as |α| = |β| + |α − β|). Similarly, (143), (144), (147), (148) yield⏐⏐Ψβ
θ (y,Λ) − Ψ

β
θ (y,Λ′)

⏐⏐ ⏐⏐⟨Sα−β
θ,y (Λ′)

⟩⏐⏐ ≤
Bα∥Λ − Λ′

∥
(
ψ(y)(∥Λ∥ + ∥Λ′

∥)
)|α|

3C̃1
, (150)

⏐⏐Ψβ
θ (y,Λ)

⏐⏐ ⏐⏐⟨Sα−β
θ,y (Λ)

⟩
−
⟨
Sα−β
θ,y (Λ′)

⟩⏐⏐ ≤
Bα∥Λ − Λ′

∥
(
ψ(y)(∥Λ∥ + ∥Λ′

∥)
)|α|

3C̃1
. (151)

Using (108), (144), (149), we conclude⏐⏐Ψα
θ (y,Λ)

⏐⏐ ≤
⏐⏐⟨Sα

θ,y(Λ)
⟩⏐⏐+ ∑

β∈Nd
0 \{α}

eα≤β≤α

(
α − eα

β − eα

) ⏐⏐Ψβ
θ (y,Λ)

⏐⏐ ⏐⏐⟨Sα−β
θ,y (Λ)

⟩⏐⏐

≤
2|α| Bα

(
ψ(y)∥Λ∥

)|α|

C̃1

≤ Bα

(
ψ(y)∥Λ∥

)|α|
.

(as C̃1 ≥ 2|α|). Relying on (108), (143), (150), (151), we deduce⏐⏐Ψα
θ (y,Λ) − Ψα

θ (y,Λ′)
⏐⏐ ≤

∑
β∈Nd

0 \{α}

eα≤β≤α

(
α − eα

β − eα

) ⏐⏐Ψβ
θ (y,Λ)

⏐⏐ ⏐⏐⟨Sα−β
θ,y (Λ)

⟩
−
⟨
Sα−β
θ,y (Λ′)

⟩⏐⏐
+

∑
β∈Nd

0 \{α}

eα≤β≤α

(
α − eα

β − eα

) ⏐⏐Ψβ
θ (y,Λ) − Ψ

β
θ (y,Λ′)

⏐⏐ ⏐⏐⟨Sα−β
θ,y (Λ′)

⟩⏐⏐
+
⏐⏐⟨Sα

θ,y(Λ)
⟩
−
⟨
Sα
θ,y(Λ′)

⟩⏐⏐
≤

2|α| Bα∥Λ − Λ′
∥
(
ψ(y)(∥Λ∥ + ∥Λ′

∥)
)|α|

C̃1

≤ Bα∥Λ − Λ′
∥
(
ψ(y)(∥Λ∥ + ∥Λ′

∥)
)|α|
.

Hence, (145), (146) hold for α ∈ Nd
0 , |α| = l + 1. Then, the lemma directly follows by the

principle of mathematical induction. □

Proof of Theorem 3.1. Let w = p(p + 1). Using Theorem 2.3 and Lemmas 7.1, 7.2, we
conclude that for each multi-index α ∈ Nd

0 , |α| ≤ p, there exists a function ψα
θ which maps θ

to R and satisfies

ψα
θ = lim

n→∞
(Π̃ nΨα)θ (x, y,Λ) (152)

for θ ∈ Θ , x ∈ X , y ∈ Y , Λ ∈ L0(X ). Relying on the same arguments, we deduce that there
also exist real numbers ρ ∈ (0, 1), C̃1 ∈ [1,∞) (depending only on ε, δ, K0, M0) such that⏐⏐⏐(Π̃ nΨα)θ (x, y,Λ) − ψα

θ

⏐⏐⏐ ≤ C̃1ρ
nψu(y)∥Λ∥

w (153)

for the same θ , x , y, Λ and n ≥ 1, α ∈ Nd
0 , |α| ≤ p (u is specified in Assumption 3.1).

Throughout the rest of the proof, the following notation is used. θ is any element of Θ ,
while x , y, λ are any elements of X , Y , P(X ) (respectively). α is any element of Nd

0 satisfying
|α| ≤ p. n is any (strictly) positive integer.
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Owing to Assumption 3.1, we have

max
{

E (ϕ(Yn)) , E
(
ψu(Yn)

)}
≤ E

(
ϕ(Yn)ψu(Yn)

)
= E

(∫
ϕ(y)ψu(y)Q(Xn, dy)

)
≤ M0. (154)

Due to the same assumption, we also have

E
(
ψ p(Yk)ψu(Y1)

⏐⏐ X1 = x, Y1 = y
)

= ψu(y)E
(∫

ψ p(y)Q(Xk, dy)
)

≤ M0ψ
u(y),

E
(
ψ p(Yl)ψu(Yk)

⏐⏐ X1 = x, Y1 = y
)

= E
(∫

ψ p(y)Q(Xl , dy)
∫
ψu(y)Q(Xk, dy)

)
≤ M2

0

for l > k > 1. Therefore, we get

E

(
ψ p(Yn+1)

n∑
k=1

ψu(Yk)

⏐⏐⏐⏐⏐ X1 = x, Y1 = y

)
≤ M2

0 n + M0ψ
u(y) < ∞. (155)

Using (3), (12), (20), (107), (108), it is straightforward to verify

log qn
θ (Y1:n|λ) =

n−1∑
k=1

log
(∫ ∫

rθ (Yk+1, x ′′
|x ′)p0:k

θ,Y(x ′
|λ)µ(dx ′′)µ(dx ′)

)
+ log

(∫ ∫
rθ (Y1, x ′

|x)µ(dx ′)λ(dx)
)

=

n−1∑
k=0

Ψ 0
θ (Yk+1, F0:k

θ,Y(Eλ))

(here, Y denotes stochastic process {Yn}n≥1, i.e., Y = {Yn}n≥1). It is also easy to show(
Π̃ nΨα

)
θ
(x, y, Eλ) = E

(
Ψα
θ (Yn+1, F0:n

θ,Y(Eλ))
⏐⏐ X1 = x, Y1 = y

)
.

Therefore, we have

E
(

log qn
θ (Y1:n|λ)

⏐⏐ X1 = x, Y1 = y
)

=

n−1∑
k=1

(
Π̃ kΨ 0)

θ
(x, y, Eλ) + Ψ 0

θ (y, Eλ). (156)

Consequently, Lemma 7.1 and (153) imply⏐⏐⏐⏐E ( 1
n

log qn
θ (Y1:n|λ)

⏐⏐⏐⏐ X1 = x, Y1 = y
)

− ψ0
θ

⏐⏐⏐⏐
≤

1
n

n−1∑
k=1

⏐⏐⏐(Π̃ kΨ 0)
θ
(x, y, Eλ) − ψ0

θ

⏐⏐⏐+ ⏐⏐ψ0
θ

⏐⏐+ ⏐⏐Ψ 0
θ (y, Eλ)

⏐⏐
n

≤
C̃1ψ

u(y)
n

n−1∑
k=1

ρk
+

|ψ0
θ | + C8φ(y)

n

≤
C̃1ψ

u(y)
n(1 − ρ)

+
|ψ0

θ | + C8φ(y)
n

.
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Then, (154) yields⏐⏐⏐⏐E (1
n

log qn
θ (Y1:n|λ)

)
− ψ0

θ

⏐⏐⏐⏐ ≤ E
(⏐⏐⏐⏐E ( 1

n
log qn

θ (Y1:n|λ)
⏐⏐⏐⏐ X1, Y1

)
− ψ0

θ

⏐⏐⏐⏐)
≤

C̃1 E(ψu(Y1))
n(1 − ρ)

+
|ψ0

θ | + C8 E(φ(Y1))
n

≤
C̃1 M0

n(1 − ρ)
+

|ψ0
θ | + C8 M0

n
.

Therefore, we get

lim
n→∞

E
(

1
n

log qn
θ (Y1:n|λ)

)
= ψ0

θ . (157)

Let C̃2 = max{Aα : α ∈ Nd
0 , |α| ≤ p} (Aα is specified in Proposition 5.3). Owing to

Proposition 5.3 and Lemma 7.2, we have⏐⏐Ψα
θ (Yn+1, F0:n

θ,Y(Eλ))
⏐⏐ ≤ C9ψ

p(Yn+1)∥F0:n
θ,Y(Eλ)∥p

≤ C̃ p
2 C9ψ

p(Yn+1)
(
Ψ 0:n

Y
)u

≤ C̃ p
2 C9nuψ p(Yn+1)

n∑
k=1

ψu(Yk)

(as Ψ 0:n
Y ≥ 1, u > p2). Consequently, Proposition 7.1, Lemma C.1 and (155), (156) imply that(

Π̃ nΨ 0)
θ
(x, y, Eλ) is p-times differentiable in θ and satisfies

∂α
θ

(
Π̃ nΨ 0)

θ
(x, y, Eλ) = E

(
∂α
θ Ψ

0
θ (Yn+1, F0:n

θ,Y(Eλ))
⏐⏐ X1 = x, Y1 = y

)
= E

(
Ψα
θ (Yn+1, F0:n

θ,Y(Eλ))
⏐⏐ X1 = x, Y1 = y

)
=
(
Π̃ nΨα

)
θ
(x, y, Eλ).

Then, the uniform convergence theorem and (153) yield that ψ0
θ is p-times differentiable in θ

and satisfies ∂α
θ ψ

0
θ = ψα

θ . Combining this with (157), we conclude that there exists function
l(θ ) with the properties specified in the statement of the theorem. □

8. Proof of Corollaries 4.1 and 4.2

Throughout this section, we rely on the following notation. Ã′

θ (x
′
|x), B̃ ′

θ (x), B̃θ (x), C̃ ′

θ (y|x),
D̃′

θ (x) and D̃θ (x) are the functions defined by

Ã′

θ (x
′
|x) = x ′

− Aθ (x), B̃ ′

θ (x) = adjBθ (x), B̃θ (x) = detBθ (x),

C̃ ′

θ (y|x) = y − Cθ (x), D̃′

θ (x) = adjDθ (x), D̃θ (x) = detDθ (x)

for θ ∈ Θ̃ , x, x ′
∈ X , y ∈ Y . Ãθ (x ′

|x), C̃θ (y|x), Uθ (x ′
|x) and Vθ (y|x) are the functions defined

by

Ãθ (x ′
|x) = B̃ ′

θ (x) Ã′

θ (x
′
|x), Uθ (x ′

|x) =
Ãθ (x ′

|x)

B̃θ (x)
,

C̃θ (y|x) = D̃′

θ (x)C̃ ′

θ (y|x), Vθ (y|x) =
C̃θ (y|x)

D̃θ (x)
.
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uθ (x ′
|x), ūθ (x), vθ (y|x) and v̄θ (x) are the functions defined by

uθ (x ′
|x) = r

(
Uθ (x ′

|x)
)
, ūθ (x) =

∫
X

uθ (x ′′
|x)dx ′′,

vθ (y|x) = s (Vθ (y|x)) , v̄θ (x) =

∫
Y
vθ (y′

|x)dy′.

Then, it is easy to show

Uθ (x ′
|x) = B−1

θ (x)
(
x ′

− Aθ (x)
)
, Vθ (y|x) = D−1

θ (x) (y − Cθ (x))

for all θ ∈ Θ̃ , x, x ′
∈ X , y ∈ Y . It is also easy to demonstrate

pθ (x ′
|x) =

uθ (x ′
|x)

ūθ (x)
, qθ (y|x) =

vθ (y|x)
v̄θ (x)

.

Lemma 8.1. Let Assumptions 4.1–4.4 hold. Then, pθ (x ′
|x) and qθ (y|x) are p-times differ-

entiable in θ for each θ ∈ Θ , x ∈ X , y ∈ Y . Moreover, there exist real numbers ε1 ∈ (0, 1),
K1 ∈ [1,∞) such that

min
{

pθ (x ′
|x), qθ (y|x)

}
≥ ε1, max

{⏐⏐∂α
θ pθ (x ′

|x)
⏐⏐ , ⏐⏐∂α

θ qθ (y|x)
⏐⏐} ≤ K1 (158)

for all θ ∈ Θ , x, x ′
∈ X , y ∈ Y and any multi-index α ∈ Nd

0 , |α| ≤ p.

Proof. Throughout the proof, α is any multi-index in Nd
0 satisfying |α| ≤ p. It is easy to notice

that B̃θ (x) and the entries of B̃ ′

θ (x) are polynomial in the entries of Bθ (x). It is also easy to
notice that D̃θ (x) and the entries of D̃′

θ (x) are polynomial in the entries of Dθ (x). Consequently,
Assumptions 4.2 and 4.3 imply that ∂α

θ Ãθ (x ′
|x), ∂α

θ B̃θ (x) exist and are continuous in (θ, x, x ′),
(θ, x) on Θ̃ ×X ×X , Θ̃ ×X . The same assumptions also imply that ∂α

θ C̃θ (y|x), ∂α
θ D̃θ (x) exist

and are continuous in (θ, x, y), (θ, x) on Θ̃ × X × Y , Θ̃ × X . As B̃θ (x), D̃θ (x) are non-zero
(due to Assumption 4.1), we conclude from Lemma B.1 (see Appendix B) that ∂α

θ Ũθ (x ′
|x),

∂α
θ Ṽθ (y|x) exist and are continuous in (θ, x, x), (θ, x, y) on Θ̃ × X × X , Θ̃ × X × Y . Then,

using Assumption 4.2 and Lemma A.1 (see Appendix A), we deduce that ∂α
θ ũθ (x ′

|x), ∂α
θ ṽθ (y|x)

exist and are continuous in (θ, x, x), (θ, x, y) on Θ̃ × X × X , Θ̃ × X × Y .
Let θ be any element of Θ . Moreover, let x, x ′ be any elements of X , while y is any element

of Y . Since Θ is bounded and clΘ ⊂ Θ̃ , Assumptions 4.1 and 4.4 imply that there exist real
numbers δ ∈ (0, 1), C̃ ∈ [1,∞) (independent of θ , x, x ′, y, α) such that

min
{
uθ (x ′

|x), vθ (y|x)
}

≥ δ, max
{⏐⏐∂α

θ uθ (x ′
|x)
⏐⏐ , ⏐⏐∂α

θ vθ (x
′
|x)
⏐⏐} ≤ C̃ . (159)

Consequently, Lemma C.1 (see Appendix C) yields that ∂α
θ ūθ (x), ∂α

θ v̄θ (x) exist. Moreover,
combining Assumption 4.4 and (159), we get

ūθ (x) =

∫
X

uθ (x ′
|x)dx ′

≥ δm(X ) > 0, v̄θ (x) =

∫
Y
vθ (y|x)dy ≥ δm(Y) > 0, (160)

where m(X ), m(Y) are the Lebesgue measures of X , Y (respectively). Then, using Lemma B.1,
we conclude that ∂α

θ pθ (x ′
|x), ∂α

θ qθ (y|x) exist. Relying on the same lemma and (159), (160),
we deduce that there exists a real number K1 ∈ [1,∞) with the properties specified in the
lemma’s statement. □

Proof of Corollary 4.1. Throughout the proof, the following notation is used. ε, C̃1, C̃2, C̃3 are
the real numbers defined by ε = min{ε2

1, K −2
1 }, C̃1 = 2K 2

1ε
−2
1 , C̃2 = K 2

1 , C̃3 = 1 + | logµ(X )|
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(ε1, K1 are specified in Lemma 8.1). r , u, v are the real numbers specified in Assumptions 2.6
and 3.2. ψ(y), φ(x, y), ϕ(y) and µθ (dx |y) are the functions and the measure defined by

ψ(y) = C̃1, φ(x, y) = C̃2, ϕ(y) = C̃3, µθ (B|y) = µ(B)

for θ ∈ Θ , x ∈ X , y ∈ Y , B ∈ B(X ) (µ(dx) is specified in Section 2.1). rθ (y, x ′
|x) has the

same meaning as in (1), while pθ (x ′
|x), qθ (y|x) are defined in (22), (23). θ is any element of

Θ , while α is any multi-index in Nd
0 satisfying |α| ≤ p. x, x ′ are any elements of X , while y

is any element of Y .
(i) Owing to Lemma 8.1, we have

ε2
1 ≤ rθ (y, x ′

|x) ≤ K 2
1 . (161)

Consequently, we get∫
B

rθ (y, x ′
|x)µ(dx ′) ≥ ε2

1µ(B) ≥ εµθ (B|y),∫
B

rθ (y, x ′
|x)µ(dx ′) ≤ K 2

1µ(B) ≤
1
ε
µθ (B|y)

for B ∈ B(X ). We also get

rθ (y, x ′
|x) ≤ C̃2 = φ(y, x ′),

∫
φ(y, x)µ(dx) = C̃2µ(X ) < ∞.

Hence, Assumptions 2.1 and 2.3 hold for pθ (x ′
|x), qθ (y|x) specified in (22), (23).

Due to Leibniz formula and Lemma 8.1, we have⏐⏐∂α
θ rθ (y, x ′

|x)
⏐⏐ ≤

∑
β∈Nd

0
β≤α

(
α

β

) ⏐⏐⏐∂β
θ qθ (y|x ′)

⏐⏐⏐ ⏐⏐⏐∂α−β
θ pθ (x ′

|x)
⏐⏐⏐ ≤ K 2

1

∑
β∈Nd

0
β≤α

(
α

β

)
= 2|α|K 2

1 .

Then, (161) implies⏐⏐∂α
θ rθ (y, x ′

|x)
⏐⏐ ≤ 2|α|K 2

1ε
−2
1 rθ (y, x ′

|x) ≤ (ψ(y))|α| rθ (y, x ′
|x).

Thus, Assumption 2.2 holds for pθ (x ′
|x), qθ (y|x) specified in (22), (23). Consequently, all

conclusions of Theorems 2.1 and 2.2 are true for the model introduced in Section 4.
(ii) Owing to (24), we have∫

ϕ(x, y)ψr (y)Q(x, dy) ≤ C̃r
1 sup

x ′∈X

∫
ϕ(x ′, y)Q(x ′, dy) < ∞.

Hence, in addition to Assumptions 2.1–2.3, Assumptions 2.4–2.6 also hold for pθ (x ′
|x), qθ (y|x)

specified in (22), (23). Therefore, all conclusions of Theorem 2.3 are true for the model
introduced in Section 4.

(iii) It is easy to conclude

|logµθ (X |y)| = |logµ(X )| ≤ C̃3 = ϕ(y).

It is also easy to deduce∫
ϕ(y)ψu(y)Q(x, dy) = C̃u

1 C̃3 < ∞,

∫
ψv(y)Q(x, dy) = C̃v

1 < ∞.

Thus, in addition to Assumptions 2.1–2.3, Assumptions 2.4, 3.1, 3.2 also hold for pθ (x ′
|x),

qθ (y|x) specified in (22), (23). Consequently, all conclusions of Theorem 3.1 are true for the
model introduced in Section 4. □
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Lemma 8.2. (i) Let Assumptions 4.1–4.3 and 4.5 hold. Then, pθ (x ′
|x) and qθ (y|x) are

p-times differentiable in θ for each θ ∈ Θ , x ∈ X , y ∈ Y . Moreover, there exist real numbers
ε2 ∈ (0, 1), K2, K3 ∈ [1,∞) such that

pθ (x ′
|x) ≥ ε2,

⏐⏐∂α
θ pθ (x ′

|x)
⏐⏐ ≤ K2, qθ (y|x) ≤ K3, (162)⏐⏐∂α

θ qθ (y|x)
⏐⏐ ≤ K3qθ (y|x)(1 + ∥y∥)2|α| (163)

for all θ ∈ Θ , x, x ′
∈ X , y ∈ Y and any multi-index α ∈ Nd

0 , |α| ≤ p.
(ii) Let Assumptions 4.1–4.3, 4.5 and 4.6 hold. Then, there exist a real number K4 ∈ [1,∞)

such that

|log qθ (y|x)| ≤ K4(1 + ∥y∥)2 (164)

for all θ ∈ Θ , x, x ′
∈ X , y ∈ Y .

Proof. Throughout the proof, the following notation is used. θ is any element of Θ , while α is
any multi-index in Nd

0 satisfying |α| ≤ p. x, x ′ are any elements of X , while y is any element
of Y .

(i) Using the same arguments as in the proof of Lemma 8.1, it can be shown that ∂α
θ pθ (x ′

|x)
exists. Relying on the same arguments, it can also be demonstrated that there exist real numbers
ε2 ∈ (0, 1), K2 ∈ [1,∞) (independent of θ , x, x ′) such that the first two inequalities in (162)
hold. In what follows in the proof of (i), we show that ∂α

θ qθ (y|x) exists. We also demonstrate
that there exists a real number K3 ∈ [1,∞) (independent of θ , x , y) such that (163) and the
last inequality in (162) hold.

Relying on the same arguments as in the proof of Lemma 8.1, it can be shown that
∂α
θ C̃θ (y|x), ∂α

θ C̃ ′

θ (y|x), ∂α
θ Vθ (y|x), ∂α

θ vθ (y|x) exist and are continuous in (θ, x, y) on Θ̃×X×Y .
Using the same arguments, it can be demonstrated that ∂α

θ D̃θ (x), ∂α
θ D̃′

θ (x) exist and are
continuous in (θ, x) on Θ̃ × X . Since Θ is bounded and clΘ ⊂ Θ̃ , Assumptions 4.1, 4.3,
4.5 imply that there exist real numbers δ ∈ (0, 1), C̃1 ∈ [1,∞) (independent of θ , x , β) such
that ⏐⏐⏐D̃θ (x)

⏐⏐⏐ ≥ δ, max
{⏐⏐⏐∂β

θ D̃θ (x)
⏐⏐⏐ , ∂β

θ D̃′

θ (x)
} ≤ C̃1 (165)

for β ∈ Nd
0 , |β| ≤ p. The same arguments also yield that there exists a real number C̃2 ∈ [1,∞)

(independent of θ , x , y, γ ) such thatC̃ ′

θ (y|x)
 ≤ C̃2(1 + ∥y∥),

∂γ
θ C̃ ′

θ (y|x)
 ≤ C̃2 (166)

for γ ∈ Nd
0 \ {0}, |γ | ≤ p.

Let C̃3 = 2pC̃1C̃2. Owing to Leibniz formula and (165), (166), we have∂α
θ C̃θ (y|x)

 ≤

∑
β∈Nd

0
β≤α

(
α

β

)∂β
θ D̃′

θ (x)
 ∂α−β

θ C̃ ′

θ (y|x)


≤ C̃1C̃2

⎛⎜⎜⎜⎝1 + ∥y∥ +

∑
β∈Nd

0 \{α}

β≤α

(
α

β

)⎞⎟⎟⎟⎠
≤ 2|α|C̃1C̃2(1 + ∥y∥)
≤ C̃3(1 + ∥y∥).
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Consequently, Lemma B.1 (see Appendix B) and (165) imply that there exists a real number
C̃4 ∈ [1,∞) (independent of θ , x , y, α) such that∂α

θ Vθ (y|x)
 ≤ C̃4(1 + ∥y∥). (167)

Then, Lemma A.1 (see Appendix A) and Assumption 4.5, yield that there exists a real number
C̃5 ∈ [1,∞) (independent of θ , x , y, α) such that

vθ (y|x) ≤ C̃5,
⏐⏐∂α
θ vθ (y|x)

⏐⏐ ≤ C̃5vθ (y|x)(1 + ∥y∥)2|α|. (168)

Moreover, due to Assumptions 4.1, 4.2, the sign of D̃θ (x) is constant in θ on each connected
component of Θ . Since Θ is open, all connected components of Θ are open, too. As v̄θ (x) =

|D̃θ (x)| (due to Assumption 4.5 and Y = Rdy ), we conclude that ∂α
θ v̄θ (x) exists. Using (165),

we also deduce

v̄θ (x) ≥ δ,
⏐⏐∂α
θ v̄θ (x)

⏐⏐ =

⏐⏐⏐∂α
θ D̃θ (x)

⏐⏐⏐ ≤ C̃1. (169)

Consequently, Lemma B.1 implies that ∂α
θ qθ (y|x) exists. The same lemma, Assumption 4.5

and (168), (169) also yield that there exists a real number K3 ∈ [1,∞) (independent of θ , x ,
y, α) such that (163) and the last inequality in (162) hold.

(ii) Let C̃6 = 5L0C̃1C̃2
4 , K4 = K0C̃6. Owing to Assumption 4.6 and (165), (167), we have

log qθ (y|x) = log vθ (y|x) − log v̄θ (x) = log s(Vθ (y|x)) − log |D̃θ (x)|

≥ − L0(1 + ∥Vθ (y|x)∥)2
− C̃1

≥ − 4L0C̃2
4 (1 + ∥y∥)2

− C̃1

≥ − C̃6(1 + ∥y∥)2. (170)

Moreover, due to Assumption 4.5, we have

log qθ (y|x) ≤ log K0 ≤ K0(1 + ∥y∥)2. (171)

Combining (170), (171), we conclude that (164) holds. □

Proof of Corollary 4.2. Throughout the proof, the following notation is used. ε, C̃1, C̃2,
C̃3 are the real numbers defined by ε = min{ε2, K −1

2 }, C̃1 = 2K2 K3ε
−2
2 , C̃2 = K2 K3,

C̃3 = K3 K4(1 + | logµ(X )|) (ε2, K2, K3, K4 are specified in Lemma 8.2). r , u, v are the real
numbers specified in Assumptions 2.6, 3.2. ψ(y), φ(x, y), ϕ(y) and µθ (dx |y) are the functions
and the measure defined by

ψ(y) = C̃1(1 + ∥y∥)2, φ(x, y) = C̃2, ϕ(y) = C̃3(1 + ∥y∥)2,

µθ (B|y) =

∫
B

qθ (y|x)µ(dx)

for θ ∈ Θ , x ∈ X , y ∈ Y , B ∈ B(X ) (µ(dx) is specified in Section 2.1). rθ (y, x ′
|x) has the

same meaning as in (1), while pθ (x ′
|x), qθ (y|x) are defined in (22), (23). θ is any element of

Θ , while α is any multi-index in Nd
0 satisfying |α| ≤ p. x, x ′ are any elements of X , while y

is any element of Y .
(i) Owing to Lemma 8.2, we have

ε2qθ (y|x ′) ≤ rθ (y, x ′
|x) ≤ K2qθ (y|x ′) ≤ K2 K3. (172)
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Consequently, we get∫
B

rθ (y, x ′
|x)µ(dx ′) ≥ ε2

∫
B

qθ (y|x ′)µ(dx ′) ≥ εµθ (B|y),∫
B

rθ (y, x ′
|x)µ(dx ′) ≤ K2

∫
B

qθ (y|x ′)µ(dx ′) ≤
1
ε
µθ (B|y)

for B ∈ B(X ). We also get

rθ (y, x ′
|x) ≤ C̃2 = φ(y, x ′),

∫
φ(y, x)µ(dx) = C̃2µ(X ) < ∞.

Hence, Assumptions 2.1, 2.3 hold for pθ (x ′
|x), qθ (y|x) specified in (22), (23).

Due to Leibniz formula and Lemma 8.2, we have⏐⏐∂α
θ rθ (y, x ′

|x)
⏐⏐ ≤

∑
β∈Nd

0
β≤α

(
α

β

) ⏐⏐⏐∂β
θ qθ (y|x ′)

⏐⏐⏐ ⏐⏐⏐∂α−β
θ pθ (x ′

|x)
⏐⏐⏐

≤ K2 K3qθ (y|x ′)
∑
β∈Nd

0
β≤α

(
α

β

)
(1 + ∥y∥)2|β|

≤ 2|α|K2 K3qθ (y|x ′)(1 + ∥y∥)2|α|.

Then, (172) implies⏐⏐∂α
θ rθ (y, x ′

|x)
⏐⏐ ≤ 2|α|K2 K3ε

−1
2 (1 + ∥y∥)2|α|rθ (y, x ′

|x) ≤ (ψ(y))|α| rθ (y, x ′
|x).

Thus, Assumption 2.2 holds for pθ (x ′
|x), qθ (y|x) specified in (22), (23). Consequently, all

conclusions of Theorems 2.1 and 2.2 are true for the model introduced in Section 4.
(ii) Owing to (25), we have∫

ϕ(x, y)ψr (y)Q(x, dy) ≤ C̃r
1 sup

x ′∈X

∫
ϕ(x ′, y)(1 + ∥y∥)2r Q(x ′, dy) < ∞.

Hence, in addition to Assumptions 2.1–2.3, Assumptions 2.4–2.6 also hold for pθ (x ′
|x), qθ (y|x)

specified in (22), (23). Therefore, all conclusions of Theorem 2.3 are true for the model
introduced in Section 4.

(iii) Owing to Lemma 8.2, we have

µθ (X |y) =

∫
qθ (y|x)µ(dx) ≤ K3µ(X ). (173)

Due to the same lemma and Jensen inequality, we also have

logµθ (X |y) ≥ logµ(X ) +
1

µ(X )

∫
log qθ (y|x)µ(dx) ≥ −| logµ(X )| − K4(1 + ∥y∥)2.

(174)

Combining (173), (174), we get

|logµθ (X |y)| ≤ K3| logµ(X )| + K4(1 + ∥y∥)2
≤ C̃3(1 + ∥y∥)2

= ϕ(y).

Moreover, (26) implies∫
ψv(y)Q(x, dy) ≤ C̃v

1 sup
x ′∈X

∫
(1 + ∥y∥)2vQ(x ′, dy) < ∞.
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As v ≥ u + 1, (26) also yields∫
ϕ(y)ψu(y)Q(x, dy) ≤ C̃u

1 C̃3 sup
x ′∈X

∫
(1 + ∥y∥)2(u+1) Q(x ′, dy) < ∞.

Thus, in addition to Assumptions 2.1–2.3, Assumptions 2.4, 3.1, 3.2 also hold for pθ (x ′
|x),

qθ (y|x) specified in (22), (23). Consequently, all conclusions of Theorem 3.1 are true for the
model introduced in Section 4. □
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Appendix A

In this section, we present auxiliary results crucially important for the proof of
Corollaries 4.1 and 4.2. Let Θ and d have the same meaning as in Section 2.1. Moreover,
let Z be an open set in Rdz , where dz ≥ 1 is an integer. We consider here functions fθ and
g(z) mapping θ ∈ Θ , z ∈ Z to Z and R (respectively). We also consider function hθ defined
by hθ = g( fθ ) for θ ∈ Θ . The analysis carried out in this section relies on the following
assumptions.

Assumption A.1. fθ and g(z) are p-times differentiable on Θ and Z (respectively), where
p ≥ 1 is an integer.

Assumption A.2. There exist a real number K ∈ [1,∞) and a function φθ mapping θ ∈ Θ
to [1,∞) such that

max
{
∥ fθ∥ ,

∂α
θ fθ

} ≤ φθ ,
⏐⏐∂β g(z)

⏐⏐ ≤ K |g(z)|(1 + ∥z∥)|β|

for all θ ∈ Θ , z ∈ Z and any multi-indices α ∈ Nd
0 \ {0}, β ∈ Ndz

0 \ {0} satisfying |α| ≤ p,
|β| ≤ p.

Throughout this section, the following notation is used. For α = (α1, . . . , αd ) ∈ Nd
0 , nα and

mα are the integers defined by

nα = (α1 + 1) · · · (αd + 1) − 1, mα =

(
nα

|α|

)
.

For θ ∈ Θ , 1 ≤ k ≤ dz , fθ,k is the kth component of fθ . For the same θ and α ∈ Nd
0 \ {0},

|α| ≤ p, Fθ,α is the nα-dimensional vector whose components are derivatives
{
∂

β
θ fθ,k : β ∈

Nd
0 \ {0},β ≤ α, 1 ≤ k ≤ dz

}
. In Fθ,α , the components are ordered lexicographically in (k,β).

Lemma A.1. (i) Let Assumption A.1 hold. Then, hθ is p-times differentiable on Θ . Moreover,
the first and higher-order derivatives of hθ admit representation

∂α
θ hθ =

∑
β∈Ndz

0 \{0}

|β|≤|α|

∂β g( fθ ) Pα,β(Fθ,α) (175)
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for all θ ∈ Θ and any multi-index α ∈ Nd
0 \ {0} satisfying |α| ≤ p. Here, Pα,β : Rnα → R is

a polynomial of degree up to |α| whose coefficients are independent of θ and depend only on
α, β.

(ii) Let Assumptions A.1 and A.2 hold. Then, there exists a real number L ∈ [1,∞) such
that ⏐⏐∂α

θ hθ
⏐⏐ ≤ L |hθ |φ

2|α|

θ

for all θ ∈ Θ and any multi-index α ∈ Nd
0 \ {0} satisfying |α| ≤ p.

Proof. (i) This part of lemma is proved by induction in |α|. It is straightforward to show that
∂α
θ hθ exists and satisfies (175) for all θ ∈ Θ , α ∈ Nd

0 , |α| = 1. Now, the induction hypothesis
is formulated. Let 1 ≤ l < p be an integer. Suppose that ∂α

θ hθ exists and satisfies (175) for
each θ ∈ Θ , α ∈ Nd

0 , |α| ≤ l. Then, to show (i), it is sufficient to demonstrate that ∂α
θ hθ exists

and satisfies (175) for all θ ∈ Θ , α ∈ Nd
0 , |α| = l + 1.

Let θ be any element of Θ , while α is any multi-index in Nd
0 satisfying |α| = l + 1. Then,

there exists e ∈ Nd
0 such that e ≤ α, |e| = 1. As |α −e| = |α|−1 = l, the induction hypothesis

yields

∂α−e
θ hθ =

∑
β∈Ndz

0 \{0}

|β|≤l

∂β g( fθ )Pα−e,β(Fθ,α−e). (176)

Since l < p, the right-hand side of (176) involves only the derivatives of fθ , g(z) of the order
up to p − 1. Then, Assumption A.1 implies that ∂α

θ hθ = ∂e
θ

(
∂α−e
θ hθ

)
exist and satisfies

∂α
θ hθ =

∑
β∈Ndz

0 \{0}

|β|≤l

∂β g( fθ ) ∂e
θ Pα−e,β(Fθ,α−e)

+

dz∑
k=1

∑
β∈Ndz

0 \{0}

|β|≤l

∂β+ek g( fθ ) ∂e
θ fθ,k Pα−e,β(Fθ,α−e)

=

∑
β∈Ndz

0 \{0}

|β|≤l

∂β g( fθ ) ∂e
θ Pα−e,β(Fθ,α−e)

+

dz∑
k=1

∑
β∈Ndz

0 \{0}

ek≤β,|β|≤l+1

∂β g( fθ ) ∂e
θ fθ,k Pα−e,β−ek (Fθ,α−e), (177)

where ek is the kth standard unit vector in Ndz
0 . Moreover, terms

∂e
θ Pα−e,β(Fθ,α−e), ∂e

θ fθ,k Pα−e,β−ek (Fθ,α−e)

are polynomial in derivatives
{
∂

γ
θ fθ, j : γ ∈ Nd

0 \ {0}, γ ≤ α, 1 ≤ j ≤ dz
}
. Apparently, the or-

der of these polynomials is up to |α − e| + 1 = |α|, while the corresponding coefficients are
independent of θ and depend only on α, β. Therefore, the right-hand side of (177) admits
representation (175). Hence, the same holds for ∂α

θ hθ .
(ii) Let C̃α,β be the maximum absolute value of the coefficients of polynomial Pα,β(·), where

α ∈ Nd
0 \ {0}, β ∈ Ndz

0 \ {0}, |α| ≤ p, |β| ≤ |α|. As the number of different power terms in
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Pα,β(·) is at most mα , Assumption A.2 and (i) yield⏐⏐∂β g( fθ ) Pα,β(Fθ,α)
⏐⏐ ≤ K C̃α,β mα|g( fθ )|(1 + ∥ fθ∥)|β|φ

|α|

θ

≤ K C̃α,β mα|hθ |(1 + φθ )|α|φ
|α|

θ

≤ 2|α|K C̃α,β mα|hθ |φ
2|α|

θ .

Then, using (i) again, we conclude that there exists a real number L ∈ [1,∞) with the
properties specified in the lemma’s statement. □

Appendix B

As the previous section, this section provides auxiliary results relevant for the proof of
Corollaries 4.1 and 4.2. Let Θ and d have the same meaning as in Section 2.1. We consider
here functions fθ and gθ mapping θ ∈ Θ to R and R \ {0} (respectively). We also consider
function hθ defined by hθ = fθ/gθ for θ ∈ Θ . The results presented in this section rely on the
following assumptions.

Assumption B.1. fθ and gθ are p-times differentiable on Θ , where p ≥ 1 is an integer.

Assumption B.2. There exist functions φθ and ψθ mapping θ ∈ Θ to [1,∞) such that⏐⏐∂α
θ fθ

⏐⏐ ≤ | fθ |φ
|α|

θ ,
⏐⏐∂α
θ gθ

⏐⏐ ≤ ψθ

for all θ ∈ Θ and any multi-index α ∈ Nd
0 satisfying |α| ≤ p.

Throughout this section, we use the following notation. For α = (α1, . . . , αd ) ∈ Nd
0 , nα and

mα are the integers defined by

nα = (α1 + 1) · · · (αd + 1), mα =

(
nα

|α|

)
.

For θ ∈ Θ and α ∈ Nd
0 , |α| ≤ p, Gθ,α is the nα-dimensional vector whose components

are derivatives
{
∂

β
θ gθ : β ∈ Nd

0 \ {0},β ≤ α, 1 ≤ k ≤ dz

}
. In Gθ,α , the components are ordered

lexicographically in β.

Lemma B.1. (i) Let Assumption B.1 hold. Then, hθ is p-times differentiable on Θ . Moreover,
the first and higher-order derivatives of hθ admit representation

∂α
θ hθ =

∑
β∈Nd

0
β≤α

∂
β
θ fθ Pα,β(Gθ,α)

g|α|+1
θ

(178)

for all θ ∈ Θ and any multi-index α ∈ Nd
0 satisfying |α| ≤ p. Here, Pα,β : Rnα → R is a

polynomial of the degree up to |α| whose coefficients are independent of θ and depend only
on α, β.

(ii) Let Assumptions B.1 and B.2 hold. Then, there exists a real number K ∈ [1,∞) such
that ⏐⏐∂α

θ hθ
⏐⏐ ≤ K

⏐⏐⏐⏐ fθ
gθ

⏐⏐⏐⏐ (φθψθ|gθ |

)|α|

for all θ ∈ Θ and any multi-index α ∈ Nd
0 satisfying |α| ≤ p.
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Proof. (i) This part of lemma is proved by induction in |α|. It is straightforward to show
that ∂α

θ hθ exists and satisfies (178) for all θ ∈ Θ , α ∈ Nd
0 , |α| ∈ {0, 1}. Now, the induction

hypothesis is formulated. Let 1 ≤ l < p be an integer. Suppose that ∂α
θ hθ exists and satisfies

(178) for each θ ∈ Θ , α ∈ Nd
0 , |α| ≤ l. Then, to show (i), it is sufficient to demonstrate that

∂α
θ hθ exists and satisfies (178) for all θ ∈ Θ , α ∈ Nd

0 , |α| = l + 1.
Let θ be any element of Θ , while α is any multi-index in Nd

0 satisfying |α| = l + 1. Then,
there exists e ∈ Nd

0 such that e ≤ α, |e| = 1. As |α −e| = |α|−1 = l, the induction hypothesis
yields

∂α−e
θ hθ =

∑
β∈Nd

0
β≤α−e

∂
β
θ fθ Pα−e,β(Gθ,α−e)

g|α|

θ

. (179)

Since l < p, the right-hand side of (179) involves only the derivatives of fθ , gθ of the order
up to p − 1. Then, Assumption B.1 implies that ∂α

θ hθ = ∂e
θ

(
∂α−e
θ hθ

)
exist and satisfies

∂α
θ hθ =

∑
β∈Nd

0
β≤α−e

∂
β+e
θ fθ Pα−e,β(Gθ,α−e) + ∂

β
θ fθ ∂e

θ Pα−e,β(Gθ,α−e)

g|α|

θ

− |α|

∑
β∈Nd

0
β≤α−e

∂
β
θ fθ ∂e

θ gθ Pα−e,β(Gθ,α−e)

g|α|+1
θ

=

∑
β∈Nd

0
β≤α−e

∂
β
θ fθ

(
gθ ∂e

θ Pα−e,β(Gθ,α−e) − |α|∂e
θ gθ Pα−e,β(Gθ,α−e)

)
g|α|+1
θ

+

∑
β∈Nd

0
e≤β≤α

∂
β
θ fθ Pα−e,β−e(Gθ,α−e)

g|α|

θ

(180)

Moreover, terms

∂e
θ gθ Pα−e,β(Gθ,α−e), gθ ∂e

θ Pα−e,β(Gθ,α−e), gθ Pα−e,β−e(Gθ,α−e)

are polynomial in derivatives
{
∂

γ
θ gθ : γ ∈ Nd

0 , γ ≤ α
}
. Apparently, the order of these polyno-

mials is up to |α − e| + 1 = |α|, while the corresponding coefficients are independent of θ
and depend only on α, β. Therefore, the right-hand side of (180) admits representation (178).
Hence, the same holds for ∂α

θ hθ .
(ii) Let C̃α,β be the maximum absolute value of the coefficients of polynomial Pα,β(·),

where α,β ∈ Nd
0 , α ≤ β. As the number of different power terms in Pα,β(·) is at most mα ,

Assumption B.2 and (i) yield⏐⏐⏐⏐⏐∂β
θ fθ Pα,β(Gθ,α)

g|α|+1
θ

⏐⏐⏐⏐⏐ ≤ C̃α,β mαφ
|β|

θ

⏐⏐⏐⏐ fθ
gθ

⏐⏐⏐⏐ ( ψθ|gθ |

)|α|

≤ C̃α,β mα

⏐⏐⏐⏐ fθ
gθ

⏐⏐⏐⏐ (φθψθ|gθ |

)|α|

for all θ ∈ Θ and any α,β ∈ Nd
0 \ {0}, β ≤ α. Then, using (i) again, we conclude that there

exists a real number K ∈ [1,∞) with the properties specified in the lemma’s statement. □
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Appendix C

In this section, we present auxiliary results which Proposition 7.1 and Theorem 2.1 crucially
rely on. Let Θ and d have the same meaning as in Section 2. Moreover, let Z be a Borel set
in Rdz , where dz ≥ 1 is an integer. We consider here functions Fθ (z) and gθ mapping θ ∈ Θ ,
z ∈ Z to R and R \ {0} (respectively). We also consider non-negative measure µ(dz) on Z .
The analysis carried out in this section relies on the following assumptions.

Assumption C.1. Fθ (z) and gθ are p-times differentiable in θ for each θ ∈ Θ , z ∈ Z , where
p ≥ 1.

Assumption C.2. There exists a function φ : Z → [1,∞) such that

|∂α
θ Fθ (z)| ≤ φ(z),

∫
φ(z′)µ(dz′) < ∞

for all θ ∈ Θ , z ∈ Z and any multi-index α ∈ Nd
0 , |α| ≤ p.

Throughout this section, we use the following notation. fθ , hθ , Hθ (z) are the functions
defined by

fθ =

∫
Fθ (z′)µ(dz′), hθ =

fθ
gθ
, Hθ (z) =

Fθ (z)
gθ

for θ ∈ Θ , z ∈ Z . ξθ (dz) and ζθ (dz) are the signed measures on Z defined by

ξθ (B) =

∫
B

Fθ (z)µ(dz), ζθ (B) =

∫
B

Hθ (z)µ(dz)

for B ∈ B(Z). ξα
θ (dz) and ζ α

θ (dz) are the signed measures on Z defined by

ξα
θ (B) =

∫
B
∂α
θ Fθ (z)µ(dz), ζ α

θ (B) =

∫
B
∂α
θ Hθ (z)µ(dz)

for α ∈ Nd
0 , |α| ≤ p.

Lemma C.1. Let Assumptions C.1 and C.2 hold. Then, the following is true.
(i) fθ and gθ are well-defined for each θ ∈ Θ . Moreover, fθ and gθ are p-times differentiable

and satisfy

∂α
θ fθ =

∫
∂α
θ Fθ (z)µ(dz), ∂α

θ hθ =

∫
∂α
θ Hθ (z)µ(dz) (181)

for all θ ∈ Θ and any multi-index α ∈ Nd
0 , |α| ≤ p.

(ii) ξθ (B), ζθ (B), ξα
θ (B) and ζ α

θ (B) are well-defined for each θ ∈ Θ , B ∈ B(Z). Moreover,
ξθ (B) and ζθ (B) are p-times differentiable (in θ ) and satisfy

∂α
θ ξθ (B) = ξα

θ (B), ∂α
θ ζθ (B) = ζ α

θ (B) (182)

for all θ ∈ Θ , B ∈ B(Z) and any multi-index α ∈ Nd
0 , |α| ≤ p.

Proof. Let θ be any element of Θ , while α is any multi-index in Nd
0 satisfying |α| ≤

p. Moreover, let z be any element of Z , while B is any element of B(Z). Owing to
Assumptions C.1, C.2, fθ , ξθ (B), ξα

θ (B) are well-defined. Consequently, hθ , ζθ (B) are also
well-defined. Moreover, due to the dominated convergence theorem and Assumptions C.1 and
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C.2, fθ , ξθ (B) are p-times differentiable in θ on Θ and satisfy the first part of (181), (182).
Therefore, hθ , ζθ (B) are also p-times differentiable in θ on Θ .

Using Lemma B.1, we conclude that ∂α
θ hθ , ∂α

θ Hθ (z), ∂α
θ ζθ (B) admit the following represen-

tation:

∂α
θ hθ =

∑
β∈Nd

0
β≤α

Gα,β
θ ∂

β
θ fθ

(gθ )|α|+1 , ∂α
θ Hθ (x) =

∑
β∈Nd

0
β≤α

Gα,β
θ ∂

β
θ Fθ (z)

(gθ )|α|+1 , (183)

∂α
θ ζθ (B) =

∑
β∈Nd

0
β≤α

Gα,β
θ ∂

β
θ ξθ (B)

(gθ )|α|+1 , (184)

where Gα,β
θ is a polynomial function of derivatives

{
∂

γ
θ gθ : γ ∈ N0, γ ≤ α

}
. Owing to (183)

and the first part of (181), we have

∂α
θ hθ =

∑
β∈Nd

0
β≤α

Gα,β
θ

(gθ )|α|+1

∫
∂

β
θ Fθ (z)µ(dz) =

∫
∂α
θ Hθ (z)µ(dz).

Similarly, due to (184) and the first part of (182), we have

∂α
θ ζθ (B) =

∑
β∈Nd

0
β≤α

Gα,β
θ

(gθ )|α|+1

∫
B
∂

β
θ Fθ (z)µ(dz) =

∫
B
∂α
θ Hθ (z)µ(dz) = ζ α

θ (B).

Hence, ∂α
θ hθ , ζ α

θ (B) are well-defined and satisfy the second part of (181), (182). □
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