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Asymptotic Properties of Recursive Particle
Maximum Likelihood Estimation

Vladislav Z. B. Tadić and Arnaud Doucet

Abstract— Using stochastic gradient search and the optimal
filter derivative, it is possible to perform recursive maximum
likelihood estimation in a non-linear state-space model. As the
optimal filter and its derivative are analytically intractable for
such a model, they need to be approximated numerically. In
Poyiadjis et al. (G. Poyiadjis, A. Doucet, and S. S. Singh,
Biometrika, vol. 98, no. 1, pp. 65–80, 2011), a recursive maximum
likelihood algorithm based on a particle approximation to the
optimal filter derivative has been proposed and studied through
numerical simulations. This algorithm and its asymptotic behav-
ior are here analyzed theoretically. Under regularity conditions,
we show that the algorithm accurately estimates maxima of the
underlying log-likelihood rate when the number of particles is
sufficiently large. We also provide qualitative upper bounds on
the estimation error in terms of the number of particles.

Index Terms— Non-linear state-space models, recursive max-
imum likelihood estimation, sequential Monte Carlo methods,
system identification.

I. INTRODUCTION

STATE-space models (also known as continuous-state hid-
den Markov models) are a class of stochastic processes

capable of modeling complex time-series data and stochastic
dynamical systems. These models can be viewed as a discrete-
time Markov process which can be observed only through
noisy measurements of its states.

In many applications, a state-space model depends on a
parameter whose value needs to be estimated given a set
of state-observations. Due to its practical and theoretical
importance, parameter estimation in state-space and hidden
Markov models has been extensively studied in the engi-
neering and statistics literature (see e.g. [8], [14] and ref-
erences cited therein). Among them, the methods based on
maximum likelihood principle have gained much attention.
Their asymptotic properties (convergence, convergence rate
and asymptotic normality) have been analyzed thoroughly
in a number of papers (see e.g. [4], [11], [12], [21], [23],
[26]–[28]). Unfortunately, to the best of our knowledge, the
existing results do not offer much information about recursive
(i.e., online) maximum likelihood estimation in non-linear
state-space models. However, in a number of different sce-
narios, the parameter indexing a state-space model needs to
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be estimated recursively. For example, this is much more
computationally efficient for long observation sequences. In
the maximum likelihood approach, this can be achieved using
stochastic gradient search and the optimal filter derivative.
Since the optimal filter and its derivative are not analytically
tractable for a non-linear state-space model, they need to
be approximated numerically. In [25], a recursive maximum
likelihood algorithm based on a particle approximation to
the optimal filter derivative has been proposed and it has
been shown experimentally that the algorithm is stable and
efficient. We show here that the algorithm proposed in [25]
produces asymptotically accurate estimates of maxima to the
underlying log-likelihood rate. More specifically, we show that
these estimates converge almost surely to a close vicinity of
stationary points of the underlying log-likelihood rate. We also
provide qualitative upper bounds on the radius of this vicinity.
These bounds are expressed in terms of the number of particles
used to approximate the filter and its derivative and directly
characterize the (asymptotic) error of the recursive particle
maximum likelihood algorithm proposed in [25]. The obtained
results hold under strong mixing assumptions which are very
commonly used in the particle filtering literature (see e.g. [8],
[9], [10], [14]). To the best of our knowledge, the results
presented here are the first to offer a rigorous analysis of
recursive maximum likelihood estimation in non-linear state-
space models.

The rest of this paper is organized as follows. In Section II,
non-linear state-space models and the corresponding recursive
maximum likelihood algorithm are specified. In the same
section, the main results of the paper are presented. In
Section III, a non-trivial example illustrating the main results
is provided. The main results are proved in Sections IV – VI.

II. MAIN RESULTS

A. State-Space Models and Parameter Estimation

To define state-space models, we use the following notation.
For a set Z in a metric space, B(Z) denotes the collection of
Borel subsets of Z . dx ≥ 1 and dy ≥ 1 are integers, while
X ∈ B(Rdx) and Y ∈ B(Rdy). P (x, dx�) is a transition kernel
on X , while Q(x, dy) is a conditional probability measure on
Y given x ∈ X . (Ω,F , P ) is a probability space. A state-space
model can be defined as the X ×Y-valued stochastic process
{(Xn, Yn)}n≥0 on (Ω,F , P ) which satisfies

P ((Xn+1, Yn+1) ∈ B|X0:n, Y0:n)

=
� �

IB(x, y)Q(x, dy)P (Xn, dx)

almost surely for each B ∈ B(X × Y), n ≥ 0. {Xn}n≥0

are the unobservable model states, while {Yn}n≥0 are the
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observations. States {Xn}n≥0 form a Markov chain, while
P (x, dx�) is their transition kernel. The observations {Yn}n≥0

are mutually independent conditionally on {Xn}n≥0, while
Q(Xn, dy) is the conditional distribution of Yn given X0:n.

In this paper, we assume that the model {(Xn, Yn)}n≥0,
can be accurately approximated by a parametric family of
state-space models. To define such a family, we rely on the
following notation. d ≥ 1 is an integer, while Θ ⊂ R

d is an
open set. P(X ) is the set of probability measures on X . μ(dx)
and ν(dy) are measures on X and Y (respectively). pθ(x�|x)
and qθ(y|x) are functions which map θ ∈ Θ, x, x� ∈ X , y ∈ Y
to [0,∞) and satisfy�

X
pθ(x�|x)μ(dx�) =

�
Y
qθ(y|x)ν(dy) = 1

for all θ ∈ Θ, x ∈ X . A parametric family of state-space
models can then be defined as a collection of X × Y-valued
stochastic processes

�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

on (Ω,F , P ) which
are parameterized by θ ∈ Θ, λ ∈ P(X ) and satisfy

P
�
(Xθ,ι

0 , Y θ,ι
0 ) ∈ B

�
=
��

IB(x, y)qθ(y|x)λ(dx),

P
�

(Xθ,ι
n+1, Y

θ,ι
n+1) ∈ B

���Xθ,ι
0:n , Y

θ,ι
0:n

�
=
��

IB(x, y)qθ(y|x)pθ(x|Xθ,ι
n )μ(dx)ν(dy)

almost surely for each B ∈ B(X × Y), n ≥ 0.
We are interested in the identification of model para-

meters. This problem can be formulated as the estima-
tion of the transition kernel P (x, dx�) and the conditional
probability Q(x, dy) given a realization of state-observations
{Yn}n≥0. If the identification is based on the recursive
maximum likelihood approach and the parametric model�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

, the estimation of P (x, dx�) and Q(x, dy)
reduces to the maximization of the log-likelihood rate asso-
ciated with models {(Xn, Yn)}n≥0 and

�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

.
Here, {(Xn, Yn)}n≥0 is considered as the true system, while
the parametric model

�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

is regarded as the
candidate model.

To define the log-likelihood rate associated with models
{(Xn, Yn)}n≥0 and

�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

, we use the following

notation. qn
θ (y1:n|λ) is the density of Y θ,ι

1:n , i.e.,

qn
θ (y1:n|λ) =

�
· · ·
�� � n	

k=1



qθ(yk|xk)pθ(xk|xk−1)

��

· μ(dxn) · · ·μ(dx1)λ(dx0)

for θ ∈ Θ, λ ∈ P(X ), y1:n = (y1, . . . , yn) ∈ Yn, n ≥ 1.
ln(θ, λ) is the expected (average) log-likelihood of Y1:n given
model

�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

, i.e.,

ln(θ, λ) = E


1
n

log qn
θ (Y1:n|λ)

�
.

Then, the log-likelihood rate for models {(Xn, Yn)}n≥0

and
�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

can be defined as the limit
limn→∞ ln(θ, λ). Under the assumptions adopted in this
paper, limn→∞ ln(θ, λ) exists and does not depend on λ
(see Lemmas 4.1 and 6.2). Throughout this paper, l(θ)

denotes the log-likelihood rate for models {(Xn, Yn)}n≥0 and�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

, i.e.,

l(θ) = lim
n→∞ ln(θ, λ).

B. Recursive Maximum Likelihood Algorithm

Recursive maximum likelihood estimation in state-space
models can be described as an online process maximizing the
log-likelihood rate l(θ). As l(θ) and its gradient do not admit
closed-form expressions for any non-linear state-space model,
they need to be approximated numerically. We analyze here
the recursive maximum likelihood algorithm proposed in [25].
In this algorithm, ∇l(θ) is approximated by a particle method,
while l(θ) is maximized by stochastic gradient search.

The recursive particle maximum likelihood algorithm pro-
posed in [25, Sections 3.2, 2.2, Equations (26), (27), (18) –
(22)] is defined by the following equations:

Wn+1,i =

�N
j=1 pθn(X̂n+1,i|X̂n,j)∇θqθn(Yn|X̂n,j)�N

j=1 pθn(X̂n+1,i|X̂n,j)qθn(Yn|X̂n,j)

+

�N
j=1 ∇θpθn(X̂n+1,i|X̂n,j)qθn(Yn|X̂n,j)�N

j=1 pθn(X̂n+1,i|X̂n,j)qθn(Yn|X̂n,j)

+

�N
j=1 pθn(X̂n+1,i|X̂n,j)qθn(Yn|X̂n,j)Wn,j�N

j=1 pθn(X̂n+1,i|X̂n,j)qθn(Yn|X̂n,j)
,

(1)

Ŵn+1,i =Wn+1,i − 1
N

N�
j=1

Wn+1,j , (2)

θn+1 = θn + αn

��N
j=1 qθn(Yn+1|X̂n+1,j)Ŵn+1,j�N

j=1 qθn(Yn+1|X̂n+1,j)

+

�N
j=1 ∇θqθn(Yn+1|X̂n+1,j)�N

j=1 qθn(Yn+1|X̂n+1,j)

�
(3)

for n ≥ 0, 1 ≤ i ≤ N . Here, N ≥ 1 is an integer
corresponding to the number of particles and {αn}n≥0 is a
sequence of positive real numbers.

�
X̂n+1,i : 1 ≤ i ≤ N

�
are

the particles generated through the sequential Monte Carlo
scheme

X̂n+1,i ∼
�N

j=1 pθn(x|X̂n,j)qθn(Yn|X̂n,j)μ(dx)�N
j=1 qθn(Yn|X̂n,j)

. (4)

In (4),
�
X̂n+1,i : 1 ≤ i ≤ N

�
are sampled independently one

from another and independently from
�
Xk : 0 ≤ k ≤ n

�
,�

θk, Yk, X̂k,i : 0 ≤ k < n, 1 ≤ i ≤ N
�

. Moreover, in (1) –
(4), θ0 ∈ Θ, {X̂0,i : 1 ≤ i ≤ N} ⊂ X and {W0,i : 1 ≤ i ≤
N} ⊂ R

d×N are selected independently from (X0, Y0).
Remark: Recursion (3) usually involves a device which

keeps {θn}n≥0 within a compact subset of Θ. This device
is usually based on the projection to a compact domain
(for details, see [6, Section 5.4], [18, Sections 5.1, 5.2] and
references cited therein). As algorithm (1) – (4) is already a
very complex procedure, this aspect is not considered here.
Instead, similarly as in [3, Part II], [6], [18], [28], our results
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on the asymptotic behavior of the algorithm (Theorem 2.1,
below) are expressed in a local form.

The variables appearing in algorithm (1) – (4) have the
following meaning. θ0, X̂0,1, . . . , X̂0,N and W0,1, . . . ,W0,N

are the initial conditions. X̂n,1, . . . , X̂n,N are particles whose
empirical distribution approximates the predictive distribution
of Xn given Y1, ..., Yn−1 and its derivative (computed using
parameter θn at time n), while Wn,1, . . . ,Wn,N are vector-
valued weights in the particle approximation to this deriva-
tive.1 θn is an estimate of maxima to the log-likelihood rate
l(θ). αn is the step-size in recursion (1). Recursion (3) is a
stochastic gradient search maximizing l(θ).2 Recursions (1)
and (4) are procedures through which the particle approxima-
tions to the optimal filter and its derivative are updated. More
details on the recursive particle maximum likelihood algorithm
can be found in [25].

C. Convergence Results

To formulate the assumptions under which the analysis of
the recursive particle maximum likelihood estimation proce-
dure is carried out, we introduce further notation. N0 is the
set of non-negative integers, while Cd is the set d-dimensional
complex valued vectors. For α = (a1, . . . , ad) ∈ Nd

0, θ =
(t1, . . . , td) ∈ Rd, notation |α| and ∂α

θ stand for

|α| = a1 + · · · + ad, ∂α
θ =

∂
|α|
θ

∂ta1
1 · · · tad

d

.

For η ∈ Cd, 	η	 denotes the Euclidean norm of η. For δ ∈
(0,∞), η ∈ Cd and A ⊂ Cd, Vδ(A), d(η,A) denote the δ-
vicinity of A and the distance between η, A, i.e.,

d(η,A) = inf
η′∈A

	η − η�	,
Vδ(A) = {η� ∈ C

d : ∃η�� ∈ A, 	η� − η��	 < δ}.
Let Q be any compact set satisfying Q ⊂ Θ. The asymptotic

properties of algorithm (1) – (4) are analyzed under the
following assumptions.

Assumption 2.1:
�∞

n=0 αn = ∞,
�∞

n=0 α
2
n < ∞ and�∞

n=0 |αn − αn+1| <∞.
Assumption 2.2: There exist a probability measure π(dx)

and real numbers ρ ∈ (0, 1), K ∈ [1,∞) such that

|Pn(x,B) − π(B)| ≤ Kρn

for all x ∈ X , B ∈ B(X ), n ≥ 0.
Assumption 2.3: There exists a real number εQ ∈ (0, 1)

such that

εQ ≤ pθ(x�|x) ≤ 1
εQ
, εQ ≤ qθ(y|x) ≤ 1

εQ

for all θ ∈ Q, x, x� ∈ X , y ∈ Y .

1The empirical measures

1

N

N�
i=1

δ
X̂n,i

(dx),
1

N

N�
i=1

�
�Wn,i − 1

N

N�
j=1

Wn,j

�
� δ

X̂n,i
(dx)

can be viewed as particle approximations (respectively) to the optimal (one-
step) predictor and its gradient at discrete-time n. Here and throughout the
paper, δx(dx′) denotes the Dirac measure centered at x ∈ X .

2The fraction on the right-hand side of (3) is a Monte Carlo estimate of
l(θ).

Assumption 2.4: There exists a real number K1,Q ∈ [1,∞)
such that

max{	∇θpθ(x�|x)	, 	∇θqθ(y|x)	} ≤ K1,Q,

max{|pθ(x�|x) − pθ′(x�|x)|, 	∇θpθ(x�|x) −∇θpθ′(x�|x)	}
≤ K1,Q	θ − θ�	,
max{|qθ(y|x) − qθ′(y|x)|, 	∇θqθ(y|x) −∇θqθ′(y|x)	}
≤ K1,Q	θ − θ�	

for all θ, θ� ∈ Q, x, x� ∈ X , y ∈ Y .
Assumption 2.5: pθ(x�|x) and qθ(y|x) are p-times differen-

tiable in θ for each θ ∈ Θ, x, x� ∈ X , y ∈ Y , where p > d.
Moreover, there exists a real number K2,Q ∈ [1,∞) such that

|∂α
θ pθ(x�|x)| ≤ K2,Q, |∂α

θ qθ(y|x)| ≤ K2,Q

for all θ ∈ Q, x, x� ∈ X , y ∈ Y , α ∈ Nd
0 satisfying |α| ≤ p.

Assumption 2.6: pθ(x�|x) and qθ(y|x) are real-analytic in
θ for each θ ∈ Θ, x, x� ∈ X , y ∈ Y . Moreover, pθ(x�|x)
and qθ(y|x) have (complex-valued) continuations p̂η(x�|x) and
q̂η(y|x) with the following properties:

(i) p̂η(x�|x) and q̂η(y|x) map η ∈ Cd, x, x� ∈ X , y ∈ Y
to C.

(ii) p̂θ(x�|x) = pθ(x�|x) and q̂θ(y|x) = qθ(y|x) for all θ ∈
Θ, x, x� ∈ X , y ∈ Y .

(iii) There exists a real number δQ ∈ (0, 1) such that
p̂η(x�|x) and q̂η(y|x) are analytic in η for each η ∈ VδQ(Q),
x, x� ∈ X , y ∈ Y .

(iv) There exists a real number K3,Q ∈ (0, 1) such that

|p̂η(x�|x)| ≤ K3,Q, |q̂η(y|x)| ≤ K3,Q

for all η ∈ VδQ(Q), x, x� ∈ X , y ∈ Y .
Assumption 2.1 corresponds to the step-size sequence

{αn}n≥0 and its asymptotic properties. This assumption is
standard in any asymptotic analysis of stochastic gradient
search and stochastic approximation (see e.g., [3], [6], [18]).
It holds when αn = 1/na for n ≥ 1, where a ∈ (1/2, 1].

Assumption 2.2 is related to the stability of the true system
{(Xn, Yn)}n≥0. It requires {Xn}n≥0 to be uniformly ergodic.
Assumption 2.3 implies the stability of the optimal filter
for
�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

(i.e., it ensures that the optimal filter
forgets its initial condition exponentially fast). Assumption 2.2
and 2.3 are restrictive from the theoretical point of view as they
implicitly require the state and observation spaces X and Y to
be bounded. However, these assumptions are very commonly
used in the literature (see, e.g., [8], [9], [14]).

Assumptions 2.4 – 2.6 are related to the parameterization
of the candidate models

�
(Xθ,ι

n , Y θ,ι
n )

�
n≥0

and its analytical
properties (i.e. to the analytical properties of conditional den-
sities pθ(x�|x) and qθ(y|x)). The purpose of Assumption 2.4 is
to ensure that the Poisson equation associated with algorithm
(1) – (4) has a locally Lipschitz solution (see Lemma 5.4).
Assumption 2.4 also ensures that the log-likelihood rate l(θ)
is Lipschitz continuously differentiable (see Lemmas 4.1, 6.2).
This Poisson equation plays a crucial role in the analysis of
the asymptotic error in the Monte Carlo estimation of ∇l(θ)
(see Lemma 6.1 and (21)), while the Lipschitz continuity of
∇l(θ) allows us to analyze algorithm (1) – (4) using the
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results on Lipschitz gradient flows (see Theorem 2.1, Part
(i)). The purpose of Assumption 2.5 is to provide for l(θ)
to be at least (d + 1)-times differentiable (see Lemma 6.2,
Part (ii)), while Assumption 2.6 ensures for l(θ) to be real-
analytic (see Lemma 6.2, Part (iii)). These analytical properties
of l(θ) allows us to establish qualitative upper bounds on the
asymptotic error in the estimation of maxima to l(θ) (see
Theorem 2.1, Parts (ii), (iii)).

In order to state the main results of the paper, we need
further notation. S and l(S) are the sets of stationary points
and critical values of l(θ) (respectively), i.e.,

S = {θ ∈ Θ : ∇l(θ) = 0}, l(S) = {l(θ) : θ ∈ S}. (5)

π : R × Θ → Θ is the solution to the ODE dθ/dt = ∇l(θ)
which satisfies the initial condition π(0, θ) = θ for θ ∈ Θ. R
is the set of chain-recurrent points of the ODE dθ/dt = ∇l(θ),
i.e., θ ∈ R if and only if for any δ, t ∈ (0,∞), there exist an
integer n ≥ 1, real numbers t1, . . . , tn ∈ [t,∞) and vectors
ϑ1, . . . , ϑn ∈ Θ (each of which can depend on θ, δ, t) such
that 	ϑ1 − θ	 ≤ δ, 	π(tn, ϑn) − θ	 ≤ δ and

	ϑk+1 − π(tk, ϑk)	 ≤ δ

for 1 ≤ k < n.
Remark: Chain-recurrent points R can be interpreted as

limit points of slightly perturbed solutions to the ODE dθ/dt =
∇l(θ). Since the piecewise linear interpolation of sequence
{θn}n≥0 is such a solution (see (21) and Lemma 6.1; see also
[30, Section 5]), the chain-recurrence is closely related to the
asymptotic behavior of algorithm (1) – (4). Regarding station-
ary and chain-recurrent points, the following relationship can
be established. If l(θ) is Lipschitz continuously differentiable,
then all stationary points S are chain-recurrent for the ODE
dθ/dt = ∇l(θ) (i.e., S ⊆ R). If additionally l(S) is of a
zero Lebesgue measure (which holds when l(θ) is d-times
continuously differentiable), then all chain-recurrent points R
are stationary for the ODE dθ/dt = ∇l(θ) (i.e., S = R).
However, if l(θ) is only Lipschitz continuously differentiable,
then S = R does not necessarily hold and R\S = ∅ is quite
possible (for details, see [16, Section 4]). For more details on
chain-recurrence, see [1], [2], [6].

Let Q be any compact set satisfying Q ⊂ Θ, while ΛQ is
the event defined by

ΛQ = lim inf
n→∞ {θn ∈ Q} =

∞�
n=0

∞�
k=n

{θk ∈ Q}. (6)

Then, the main results of this paper are summarized in the
next theorem.

Theorem 2.1: (i) If Assumptions 2.1 – 2.4 hold, then
there exists a non-decreasing function ψQ : [0,∞) →
[0,∞) depending only on l(θ), pθ(x�|x), qθ(y|x)) such that
limt→0 ψQ(t) = ψQ(0) = 0 and

lim sup
n→∞

d(θn,R) ≤ ψQ


1
N

�

almost surely on ΛQ.
(ii) If Assumptions 2.1 – 2.5 hold, then there exists a real

number L1,Q ∈ [1,∞) (independent of N and depending only

on l(θ), pθ(x�|x), qθ(y|x)) such that

lim sup
n→∞

	∇l(θn)	 ≤ L1,Q

N q/2
,

lim sup
n→∞

l(θn) − lim inf
n→∞ l(θn) ≤ L1,Q

N q

almost surely on ΛQ, where q = (p− d)/(p− 1).
(iii) If Assumptions 2.1 – 2.4 and 2.6 hold, then there exist

real numbers rQ ∈ (0, 1), L2,Q ∈ [1,∞) (independent of N
and depending only on l(θ), pθ(x�|x), qθ(y|x)) such that

lim sup
n→∞

d(θn,S) ≤ L2,Q

N rQ
,

lim sup
n→∞

	∇l(θn)	 ≤ L2,Q

N1/2
,

lim sup
n→∞

d(l(θn), l(S)) ≤ L2,Q

N

almost surely on ΛQ.
Theorem 2.1 is proved in Section VI.
Remark: The function ψQ(t) and the real numbers L1,Q,

L2,Q depend on pθ(x�|x), qθ(y|x) through constants εQ,
K1,Q (specified in Assumptions 2.3, 2.4). ψQ(t) also depends
on l(θ) through a Lipschitz constant of ∇l(θ), an upper
bound of 	∇l(θ)	 and the geometric properties of R. L1,Q,
L2,Q depend on l(θ) through a Lipschitz constant of ∇l(θ)
and an upper bound of 	∇l(θ)	. Additionally, L1,Q, L2,Q

also depend on l(θ) through the Yomdin and Lojasiewicz
constants for l(θ).3 rQ is the Lojasiewicz exponent for l(θ).
For further details on how ψQ(t), rQ, L1,Q, L2,Q depend on
l(θ), pθ(x�|x), qθ(y|x), see [30].

As algorithm (1) – (4) is a stochastic gradient search max-
imizing the log-likelihood rate l(θ), the asymptotic properties
of sequences {θn}n≥0, {l(θn)}n≥0 and {∇l(θn)}n≥0 provide
a natural way to characterize the asymptotic behavior of this
algorithm. If the estimation of ∇l(θ) in algorithm (1) – (4)
were based on the exact optimal filter instead of a particle
approximation, the corresponding estimator would be asymp-
totically consistent. Then, according to the existing results on
stochastic optimization, sequences {θn}n≥0, {l(θn)}n≥0 and
{∇l(θn)}n≥0 would exhibit the following behavior. If ∇l(θ)
was estimated using the exact optimal filter and l(θ) was

3If l(θ) is p-times differentiable and p > d (which is true under Assump-
tions 2.2 – 2.5; see Part (ii) of Lemma 6.2), there exists a real number
M1,Q ∈ [1,∞) such that

m ({l(θ) : θ ∈ Q, ‖∇l(θ)‖ ≤ ε}) ≤ M1,Qεq

for all ε ∈ [1,∞), where m(·) is the Lebesgue measure on R
d (q is specified

in the statement of Theorem 2.1). This result is known as the Yomdin theorem
(see [35, Theorem 1.2]), while M1,Q is referred to as the Yomdin exponent.

If l(θ) is real-analytic on Θ (which holds under Assumptions 2.2 – 2.4,
2.6; see Part (iii) of Lemma 6.2), there exist real numbers rQ ∈ (0, 1),
M2,Q, M3,Q ∈ [1,∞) such that

d(θ,S) ≤ M2,Q‖∇l(θ)‖rQ , d(l(θ), l(S)) ≤ M3,Q‖∇l(θ)‖

for all θ ∈ Q. These inequalities are known as the Lojasiewicz inequalities
(see [5, Theorem 6.4, Remark 6.5], [17, Theorem ŁI, Page 775]). M2,Q,
M3,Q are referred to as the Lojasiewicz constants, while rQ is called the
Lojasiewicz exponent.
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Lipschitz continuously differentiable, then the limits

lim
n→∞ d(θn,R) = 0, (7)

lim
n→∞ d(l(θn), l(R)) = 0, (8)

lim inf
n→∞ d(θn,S) = 0 (9)

would hold almost surely on the event {supn≥0 	θn	 < ∞,
infn≥0 d(θn,Θc) > 0} (see, e.g., [1, Proposition 4.1, Theo-
rem 5.7]). If l(θ) was additionally (d+1)-times differentiable,
then the limits

lim
n→∞ d(θn,S)=0, lim

n→∞∇l(θn)=0, (10)

lim
n→∞ d(l(θn), l(S))=0, lim sup

n→∞
l(θn)=lim inf

n→∞ l(θn) (11)

would hold almost surely on {supn≥0 	θn	 < ∞,
infn≥0 d(θn,Θc) > 0} (see e.g., [1, Corollary 6.7]). Since
algorithm (1) – (4) estimates ∇l(θ) using a particle approxi-
mation, the corresponding estimator is biased. Consequently,
the limits (7) – (11) do not hold for algorithm (1) – (4). Instead,
the following limits

lim sup
n→∞

d(θn,R), lim sup
n→∞

	∇l(θn)	, (12)

lim sup
n→∞

d(l(θn), l(R)), lim sup
n→∞

l(θn) − lim inf
n→∞ l(θn) (13)

take strictly positive values. These limits directly depend on
the accuracy of the particle approximations to the optimal filter
and its derivative.

Theorem 2.1 provides qualitative upper bounds on the limits
(12), (13) in terms of the number of particles N and the
analytical properties of the log-likelihood rate l(θ). These
bounds are of the almost sure type and based on the strong
mixing condition (Assumption 2.3). As such, they can be
considered as of the worst-case type. Moreover, these bounds
can be rather loose in scenarios for which the strong mixing
condition is too conservative or even undesirable (e.g., when
qθ(·|x) is concentrated, while pθ(·|x) is diffuse). This is partly
due to the fact that the recursive particle maximum likelihood
algorithm analyzed in the paper is based on the bootstrap par-
ticle filter (4), which is well-known to perform poorly in such
scenarios. We believe that the bounds could be improved using
more sophisticated schemes which sample particles relying
on a distribution dependent on the observations [24]. These
bounds could also be made tighter using the (non-mixing)
assumptions on the optimal filter stability adopted in [13].
However, this would require substantial generalization of the
existing results on the stability of the optimal filter derivatives
and their particle approximations (i.e., of the results of [29],
[33]). Since the analysis of the optimal filter derivatives and
their particle approximations would be very difficult under
non-mixing stability conditions and since the results presented
here are already complex, this generalization is left for future
research.

D. Outline of Proofs of Convergence Results

An outline/summary of the main steps and key ideas in the
proof of Theorem 2.1 is provided here. These steps and ideas
can be described as follows.

Step 1: Algorithm (1) – (4) is transformed to stochastic
approximation with Markovian dynamics. More specifically,
it is rewritten as

Wn+1 = WnAθn(Vn, Vn+1) +Bθn(Vn, Vn+1), (14)

θn+1 = θn + αn (Wn+1Cθn(Vn+1) +Dθn(Vn+1)) . (15)

The same algorithm is also rewritten as

θn+1 =θn + αnH(θn, Zn+1). (16)

Here, {Vn}n≥0, {Wn}n≥0 and {Zn}n≥0 are the stochastic
processes defined by Wn =



Wn,1, . . . ,Wn,N

�
and

Vn =


Yn, Xn, X̂n

�
, Zn =



Vn,Wn

�
, (17)

while X̂n is the vector of particles X̂n =


X̂n,1, . . . , X̂n,N

�
(Wn is the d × N matrix whose j-th column is Wn,j ).
Aθ(v, v�), Bθ(v, v�), Cθ(v), Dθ(v) and H(θ, z) are suitably
chosen functions which are defined precisely in (31) – (35).
Equations (14) – (16) are a compact form of (1) – (3), while
terms

Wn+1Cθn(Vn+1) +Dθn(Vn+1), H(θn, Zn+1) (18)

can be viewed as Monte Carlo estimators of ∇l(θn).
Aggregate process {(θn, Zn)}n≥0 is a Markov chain,
while stochastic processes {Vn}n≥0 and {Zn}n≥0 can be
interpreted as Markov chains controlled by estimates {θn}n≥0

(see (40), (41)).
Step 2: We analyze conditional probability measure of Vn+1

given Vn = v, θn = θ, which is denoted by Tθ(v, dv�)
and precisely defined in (38). It is shown that Tθ(v, dv�)
is geometrically ergodic with a rate (locally) uniform in θ.
It is also established that Tθ(v, dv�) is (locally) Lipschitz
continuous in θ. The details are included in Lemma 5.1.

Step 3: We consider the conditional expectations of the
products

Aθ0(V0, V1) · · ·Aθn−1(Vn−1, Vn)Cθn(Vn), (19)

Bθ0(V0, V1)Aθ1(V1, V2) · · ·Aθn−1(Vn−1, Vn)Cθn(Vn) (20)

given θ0 = θ, . . . , θn = θ, V0 = v. These conditional
expectations are denoted by Φn

θ (v), Ψn
θ (v) and defined pre-

cisely in (46) – (49). Using results on stochastic matrices
(see Appendix A) and the results of Step 2, it is shown that
functions Φn

θ (v), Ψn
θ (v) converge exponentially to zero as

n→ ∞ with rates (locally) uniform in θ. The same functions
are also shown to be (locally) Lipschitz continuous with
Lipschitz constants tending exponentially to zero as n → ∞.
The details are provided in Lemma 5.3.

Step 4: Function (ΠnH)(θ, z) and its properties are ana-
lyzed, where (ΠnH)(θ, z) is the conditional expectation of
H(θn, Zn+1) given θ0 = θ, . . . , θn = θ, Z0 = z (see
(87)). Πθ(z, dz�) is the conditional probability measure of
Zn+1 given Zn = z, θn = θ, which is defined precisely
in (39). Relying on the results of Step 3, it is shown that
there exists a function h(θ) such that (ΠnH)(θ, z) converges
exponentially to h(θ) as n → ∞ at a rate (locally) uniform
in θ. It is also shown that (ΠnH)(θ, z) − h(θ) is (locally)
Lipschitz continuous in θ with a Lipschitz constant tending
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exponentially to zero as n → ∞. The details are included in
Lemma 5.4 (see (51), (92), (97)).

Step 5: The Poisson equation associated with algorithm
(1) – (4) (i.e., with functions H(θ, z), h(θ) and the transition
kernel Πθ(z, dz�)) and its properties are considered. Relying
on the results of Step 4, it is shown that the Poisson equation
has a solution and that the solution is (locally) Lipschitz
continuous in θ. The details are provided in Lemma 5.4.

Step 6: The weight sequence {Wn}n≥0 and its stability are
studied. Using results on stochastic matrices (see Appendix A),
it is shown that Wn is (deterministically) bounded in n. The
details are contained in Lemma 5.5.

Step 7: The Monte Carlo estimators (18) and their statistical
properties are analyzed. By exploiting the results of [33],
it is shown that the asymptotic bias of these estimators are
inversely proportional to N with a multiplicative constant
uniform in θ. The details are included in Lemma 5.6.

Step 8: Algorithm (1) – (4) is transformed to a stochastic
gradient search with additive noise. More specifically, it is
rewritten as

θn+1 = θn + αn(∇l(θn) + ξn). (21)

Moreover, the additive noise ξn is decomposed as ξn = ζn +
ηn, where

ξn = H(θn, Zn+1) − h(θn), ζn = h(θn) −∇l(θn).

∇l(θn) + ξn can be interpreted as an estimator of ∇l(θn),
while ζn and ηn can be considered as the variance and bias of
this estimator. Using results of martingale limit theory and the
results of Steps 5 and 6, it is shown that {ζn}n≥0 satisfy the
Kushner-Clark noise condition. Relying on the results of Step
7, it is also shown that the asymptotic magnitude of {ηn}n≥0 is
inversely proportional to N with a deterministic multiplicative
constant. The details are provided in Lemma 6.1.

Step 9: Using the results presented in Section IV and the
results of [31], [32], Lemma 6.2 is proved. Then, relying on the
results obtained at Step 8 and the results of [30], Theorem 2.1
is established.

III. EXAMPLE

To illustrate the main results and their applicability, we use
them to study recursive maximum likelihood estimation for
the following non-linear state-space model:

Xθ,ι
n+1 = Aθ(Xθ,ι

n ) +Bθ(Xθ,ι
n )Vn, (22)

Y θ,ι
n = Cθ(Xθ,ι

n ) +Dθ(Xθ,ι
n )Wn, n ≥ 0. (23)

Here, θ ∈ Θ and λ ∈ P(X ) are the parameters indexing the
state-space model (22), (23). Aθ(x) and Bθ(x) are functions
which map θ ∈ Θ, x ∈ Rdx (respectively) to Rdx and
Rdx×dx , while Cθ(x) and Dθ(x) map θ ∈ Θ, x ∈ Rdx

(respectively) to Rdy and Rdy×dy . Xθ,ι
0 is an Rdx-valued

random variable defined on a probability space (Ω,F , P )
and distributed according to λ. {Vn}n≥0 are Rdx-valued i.i.d.
random variables distributed according the probability density
v(x) with respect to the Lebesgue measure while {Wn}n≥0

are Rdy -valued i.i.d. random variables distributed according
the probability density w(y) with respect to the Lebesgue

measure. We also assume that Xθ,ι
0 , {Vn}n≥0 and {Wn}n≥0

are (jointly) independent.
Let pθ(x�|x) and qθ(y|x) be the functions defined by

pθ(x�|x) =
v


B−1

θ (x)(x� −Aθ(x))
�
1X (x�)�

X v


B−1

θ (x)(x�� −Aθ(x))
�
dx��

, (24)

qθ(y|x) =
w


D−1

θ (x)(y − Cθ(x))
�
1Y(y)�

Y w


D−1

θ (x)(y� − Cθ(x))
�
dy�

(25)

for θ ∈ Θ, x, x� ∈ Rdx , y ∈ Rdy , where X ∈ B(Rdx),
Y ∈ B(Rdy). If X = Rdx , Y = Rdy , then pθ(x�|x) and
qθ(y|x) reduce to the conditional densities of Xθ,ι

n+1 and Y θ,ι
n

(respectively) given Xθ,ι
n = x. When X = Rdx , Y = Rdy ,

pθ(x�|x) and qθ(y|x) can be viewed as a truncation of state-
space model (22), (23) to domains X and Y . Due to the
finite precision of digital computers, this kind of truncation
is involved (explicitly or implicitly) in the implementation of
any numerical approximation to the optimal filter for state-
space model (22), (23). In [15], a truncation scheme similar
to (24), (25) has been theoretically analyzed and the choice of
the corresponding truncation domain has been addressed. In
the context of algorithm (1) – (4), the choice of domains X
and Y is much more complex as it involves many factors such
as the stability, accuracy, convergence and convergence rate of
algorithm (1) – (4), as well as the stability and accuracy of
the optimal filter for model (24), (25). As such, the choice of
X and Y is beyond the scope of this paper.

In this section, we rely on the following assumptions.
Assumption 3.1: X and Y are compact sets with non-empty

interiors.
Assumption 3.2: v(x) > 0 and w(y) > 0 for each x ∈ R

dx ,
y ∈ R

dy . Bθ(x) and Dθ(x) are invertible for each θ ∈ Θ,
x ∈ Rdx .

Assumption 3.3: v(x) and w(y) are differentiable for each
x ∈ Rdx , y ∈ Rdy . The first order derivatives of v(x) and w(y)
are locally Lipschitz continuous on Rdx , Rdy . Aθ(x), Bθ(x),
Cθ(x) and Dθ(x) are differentiable in θ for each θ ∈ Θ,
x ∈ Rdx . The first order derivatives in θ of Aθ(x), Bθ(x),
Cθ(x) and Dθ(x) are locally Lipschitz continuous in (θ, x)
on Θ × R

dx .
Assumption 3.4: v(x) and w(y) are p-times differentiable

for each x ∈ Rdx , y ∈ Rdy , where p > d. The p-th order
derivatives of v(x) and w(y) are locally bounded on Rdx , Rdy .
Aθ(x), Bθ(x), Cθ(x) and Dθ(x) are p-times differentiable in
θ for each θ ∈ Θ, x ∈ Rdx . The p-th order derivatives in θ of
Aθ(x), Bθ(x), Cθ(x) and Dθ(x) are locally bounded in (θ, x)
on Θ × Rdx .

Assumption 3.5: v(x) and w(y) are real-analytic for each
x ∈ Rdx , y ∈ Rdy . Aθ(x), Bθ(x), Cθ(x) and Dθ(x) are real-
analytic in (θ, x) for each θ ∈ Θ, x ∈ Rdx .

Regarding Assumptions 2.3–2.6 and 3.1–3.5, the following
relationships can be established. Assumptions 3.1–3.3 imply
Assumptions 2.3 and 2.4, while Assumptions 3.4 and 3.5 are
particular cases of Assumptions 2.5 and 2.6 (respectively). For
the proof of these relationships, see [31, Corollary 4.1], [32,
Corollary 4.1] (and the arguments used therein). Assumptions
3.1 – 3.5 are relevant for several practically important classes
of state-space models and cover, for example, stochastic
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volatility models, dynamic probit models and their truncated
versions. For other models satisfying (22), (23) and Assump-
tions 3.1 – 3.5, see [8], [9], [14] and references cited therein.

As a direct consequence of the relationships between
Assumptions 2.3 – 2.6 and 3.1 – 3.5, we get the following
corollary to Theorem 2.1.

Corollary 3.1: (i) If Assumptions 2.1, 2.2 and 3.1 – 3.3 are
satisfied, then the conclusions of Part (i) of Theorem 2.1 hold.

(ii) If Assumptions 2.1, 2.2 and 3.1 – 3.4 are fulfilled, then
the conclusions of Part (ii) of Theorem 2.1 hold.

(iii) If Assumptions 2.1, 2.2, 3.1 – 3.3 and 3.5 are satisfied,
then the conclusions of Part (iii) of Theorem 2.1 hold.

IV. RESULTS RELATED TO OPTIMAL FILTER AND

LOG-LIKELIHOOD RATE

In this section, we study the stability and analytical proper-
ties of the optimal filter and its derivative as well as some
regularity properties of the log-likelihood rate. The results
presented here are a prerequisite for Lemmas 5.6 and 6.2. Note
that we only consider here the results which are essential for
the proof of Theorem 2.1 and not well-covered in the existing
literature on optimal filtering.

Throughout this section and the whole paper, we use the
following notation. Q stands for any compact set satisfying
Q ⊂ Θ. Ms(X ) is the collection of signed measures on X ,
while Md

s(X ) is the set of d-dimensional vector measures on
X . For ξ ∈ Ms(X ), |ξ|(dx) and 	ξ	 denote (respectively)
the total variation and the total variation norm of ξ. For
ζ ∈ Md

s(X ), |ζ|(dx) and 	ζ	 denote (respectively) the total
variation and the total variation norm of ζ induced by l1 vector
norm.4 rθ(x�|y, x) is the function defined by

rθ(x�|y, x) = pθ(x�|x)qθ(y|x)
for θ ∈ Θ, x, x� ∈ X , y ∈ Y , while hθ,y(x|ξ, ζ) and Hθ,y(ξ, ζ)
are defined for ξ ∈ P(X ), ζ ∈ Md

s(X ) as

hθ,y(x|ξ, ζ) =
�
rθ(x|y, x�)ζ(dx�) +

� ∇θrθ(x|y, x�)ξ(dx�)�
qθ(y|x�)ξ(dx�) ,

Hθ,y(ξ, ζ) =
�
hθ,y(x|ξ, ζ)μ(dx). (26)

rm:n
θ,y (x�|x) is the function recursively defined by

rm:m+1
θ,y (x�|x) = rθ(x�|ym, x),

rm:n+1
θ,y (x�|x) =

�
rn:n+1
θ,y (x�|x��)rm:n

θ,y (x��|x)μ(dx��)

for n > m ≥ 0 and a sequence y = {yn}n≥0 in Y .
hm:n

θ,y (x|ξ, ζ) and Hm:n
θ,y (ξ, ζ) are the functions defined by

hm:n
θ,y (x|ξ, ζ)=

�
rm:n
θ,y (x|x�)ζ(dx�) +

� ∇θr
m:n
θ,y (x|x�)ξ(dx�)��

rm:n
θ,y (x��|x�)ξ(dx�)μ(dx��)

,

Hm:n
θ,y (ξ, ζ)=

�
hm:n

θ,y (x|ξ, ζ)μ(dx),

4If ζ ∈ Md
s(X ), then |ζ|(dx) =

�d
i=1 |eT

i ζ|(dx) and ‖ζ‖ =�d
i=1 ‖eT

i ζ‖, where ei is the i-th standard unit vector in R
d.

while fm:n
θ,y (x|ξ) and gm:n

θ,y (x|ξ, ζ) are defined as

fm:n
θ,y (x|ξ) =

�
rm:n
θ,y (x|x�)ξ(dx�)��

rm:n
θ,y (x��|x�)ξ(dx�)μ(dx��)

,

gm:n
θ,y (x|ξ, ζ) = hm:n

θ,y (x|ξ, ζ) − fm:n
θ,y (x|ξ)Hm:n

θ,y (ξ, ζ).

Fm:m
θ,y (dx|ξ), Fm:n

θ,y (dx|ξ) and Gm:m
θ,y (dx|ξ, ζ), Gm:n

θ,y (dx|ξ, ζ)
are the measures defined for B ∈ B(X ) by Fm:m

θ,y (B|ξ) =
ξ(B), Gm:m

θ,y (B|ξ, ζ) = ζ(B) and

Fm:n
θ,y (B|ξ) =

�
B

fm:n
θ,y (x|ξ)μ(dx), (27)

Gm:n
θ,y (B|ξ, ζ) =

�
B

gm:n
θ,y (x|ξ, ζ)μ(dx). (28)

Throughout this paper, the measures Fm:n
θ,y (dx|ξ) and

Gm:n
θ,y (dx|ξ, ζ) are also denoted by Fm:n

θ,y (ξ) and Gm:n
θ,y (ξ, ζ)

(short-hand notation). Then, it is easy to show that Fm:n
θ,y (ξ)

and Gm:n
θ,y (ξ, ζ) are the optimal (one-step) predictor and its

gradient, i.e.,

F 0:n
θ,y (B|λ) = P

�
Xθ,ι

n ∈ B
��Y θ,ι

0:n−1 = y0:n−1

�
,

G0:n
θ,y(B|λ,0) = ∇θF

0:n
θ,y (B|λ)

for each λ ∈ P(X ), n ≥ 1. Here, 0 is the d-dimensional
zero-measure (i.e., 0 ∈ Md

s(X ), 	0	 = 0).
Lemma 4.1: Let Assumptions 2.2 – 2.4 hold. Then, the fol-

lowing is true:
(i) l(θ) is well-defined and differentiable on Θ.
(ii) ∇l(θ) is locally Lipschitz continuous on Θ and satisfies

∇l(θ) = lim
n→∞E



Hθ,Yn



F 0:n

θ,Y (ξ), G0:n
θ,Y (ξ, ζ)

��
(29)

for all θ ∈ Θ, ξ ∈ P(X ), ζ ∈ Md
s(X ), where Y = {Yn}n≥0.

(iii) There exists a real number C1,Q ∈ [1,∞) (depending
only on pθ(x�|x), qθ(y|x)) such that��G0:n

θ,y(ξ, ζ)
�� ≤ C1,Q(1 + 	ζ	)

for all θ ∈ Q, ξ ∈ P(X ), ζ ∈ Md
s(X ), n ≥ 0 and any

sequence y = {yn}n≥0.
Lemma 4.1 is proved in Appendix B.

V. RESULTS RELATED TO SEQUENTIAL MONTE CARLO

APPROXIMATIONS

In this section, we study the asymptotic properties of the
particles {X̂n,i : n ≥ 0, 1 ≤ i ≤ N} and their weights {Wn,i :
n ≥ 0, 1 ≤ i ≤ N}. Using these properties, we show that the
Poisson equation associated with algorithm (1) – (4) has a
Lipschitz continuous solution (see Lemma 5.4). The results
presented here are needed to analyze the error in the Monte
Carlo estimation of ∇l(θ) (see Lemma 6.1 and (21)).

Throughout this section, we use the following notation. V
and Z are the sets defined by V = Y × X × XN and Z =
V ×Rd×N . e is the N -dimensional vector whose all elements
are one (i.e., e = (1, . . . , 1)T ∈ RN ). I is the N × N unit
matrix, while Λ is the N ×N matrix defined as

Λ = I − eeT

N
. (30)
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Aθ(v, v�) and Bθ(v, v�) are respectively RN×N and Rd×N -
valued functions defined by

Ai,j
θ (v, v�) =

rθ(x�j |y, xi)�N
k=1 rθ(x

�
j |y, xk)

, (31)

Bj
θ(v, v

�) =

�N
k=1 ∇θrθ(x�j |y, xk)�N

k=1 rθ(x
�
j |y, xk)

(32)

for θ ∈ Θ, x, x� ∈ X , y, y� ∈ Y , x̂ = (x1, . . . , xN ) ∈ XN ,
x̂� = (x�1, . . . , x

�
N ) ∈ XN , 1 ≤ i, j ≤ N and v = (y, x, x̂),

v� = (y�, x�, x̂�), where Ai,j
θ (v, v�) and Bj

θ(v, v
�) are the

(i, j)-entry of Aθ(v, v�) and the j-th column of Bθ(v, v�)
(respectively). Cθ(v) and Dθ(v) are respectively R

N and R
d-

valued functions defined by

Ci
θ(v) =

qθ(y|xi)�N
k=1 qθ(y|xk)

− 1
N
, (33)

Dθ(v) =
�N

k=1 ∇θqθ(y|xk)�N
k=1 qθ(y|xk)

, (34)

where Ci
θ(v) is the i-th element of Cθ(v). H(θ, z) is the

function defined by

H(θ, z) = WCθ(v) +Dθ(v) (35)

for v ∈ V , W ∈ Rd×N and z = (v,W ). Then, it is
straightforward to verify

eTAθ(v, v�) = eT , eTCθ(v) = 0 (36)

for all θ ∈ Θ, v, v� ∈ V , where Aθ(v, v�), Cθ(v) are defined
in (31), (33).

We rely here on the following notation, too. sθ(x|y, x̂) is
the function defined by

sθ(x|y, x̂) =
�N

k=1 pθ(x|xk)qθ(y|xk)�N
k=1 qθ(y|xk)

. (37)

For x̂ = (x1, . . . , xN ) ∈ XN , Sθ(dx̂�|y, x̂) is the conditional
probability measure on XN defined for B ∈ B(XN) as

Sθ(B|y, x̂) =
�

· · ·
�
IB(x�1, . . . , x

�
N )

�
N	

k=1

sθ(x�k|y, x̂)
�

· μ(dx�1) · · ·μ(dx�N ),

where IB denotes the indicator of B. Tθ(v, dv�) is the kernel
on V defined for B ∈ B(V) and v = (y, x, x̂) by

Tθ(v,B) =
���

IB(y�, x�, x̂�)Q(x�, dy�)

· P (x, dx�)Sθ(dx̂�|y, x̂). (38)

Πθ(z, dz�) is the kernel on Z defined for B ∈ B(Z), W ∈
Rd×N and z = (v,W ) as

Πθ(z,B) =
�
IB (v�,WAθ(v, v�) +Bθ(v, v�))Tθ(v, dv�).

(39)

Then, it is straightforward to verify that {Vn}n≥0 and
{Zn}n≥0 defined in (17) satisfy

P (Vn+1 ∈ A|θ0, V0, . . . , θn, Vn) = Tθn(Vn, A), (40)
P (Zn+1 ∈ B|θ0, Z0, . . . , θn, Zn) = Πθn(Zn, B) (41)

almost surely for each A ∈ B(V), B ∈ B(Z), n ≥ 0.

Using functions Aθ(v, v�), Bθ(v, v�) and Sθ(dx̂�|y, x̂), we
introduce the following notation. {X̂θ

n,i : n ≥ 0, 1 ≤ i ≤
N} are X -valued random variables generated through the
sequential Monte Carlo scheme

X̂θ
n+1,i ∼ sθ

�
x
��Yn,



X̂θ

n,1, . . . , X̂
θ
n,N

��
μ(dx), (42)

while X̂θ
n, V θ

n are the random variables defined by

X̂θ
n =



X̂θ

n,1, . . . , X̂
θ
n,N

�
, V θ

n =


Yn, Xn, X̂

θ
n

�
.

In (42), {X̂θ
n+1,i : 1 ≤ i ≤ N} are sampled independently

from one another and independently of {Xk : 0 ≤ k ≤ n},
{Yk, X̂

θ
k,i : 0 ≤ k < n, 1 ≤ i ≤ N}, while {X̂θ

0,i : 1 ≤
i ≤ N} are selected independently of (X0, Y0). {W θ

n}n≥0 are
d×N random matrices generated by the recursion

W θ
n+1 = W θ

nAθ(V θ
n , V

θ
n+1) +Bθ(V θ

n , V
θ
n+1), (43)

while Zθ
n is the random variable defined by Zθ

n = (V θ
n ,W

θ
n).

In (43), W θ
0 is selected independently of (X0, Y0). Then, it can

easily be shown that {V θ
n }n≥0 and {Zθ

n}n≥0 are Markov
chains whose transition kernels are Tθ(v, dv�) and Πθ(z, dz�)
(respectively).

Using functionsAθ(v, v�), Bθ(v, v�), Cθ(v), Dθ(v) (defined
in (31) – (34)) and stochastic process {V θ

n }n≥0, we introduce
the following notation. T n

θ (v, dv�) and τθ(dv) are (respec-
tively) the n-th step transition kernel and the invariant proba-
bility measure of {V θ

n }n≥0 (the existence and uniqueness of
τθ(dv) are guaranteed by Lemma 5.1). T̃ n

θ (v, dv�) is the kernel
on V defined for B ∈ B(V) by

T̃ n
θ (v,B) = T n

θ (v,B) − τθ(B). (44)

Ã0
θ(v) and Φ0

θ(v) are the functions defined by

Ã0
θ(v) = I, Φ0

θ(v) = Cθ(v). (45)

Ãn
θ (v0, . . . , vn) and Φn

θ (v) are the functions defined for
v, v0, . . . , vn ∈ V , n ≥ 1 by

Ãn
θ (v0, . . . , vn) = Aθ(v0, v1) · · ·Aθ(vn−1, vn), (46)

Φn
θ (v) = E

�
Ãn

θ (V θ
0 , . . . , V

θ
n )Cθ(V θ

n )
���V θ

0 = v
�
. (47)

B̃n
θ (v0, . . . , vn) and Ψn

θ (v) are the functions defined by

B̃n
θ (v0, . . . , vn) = Bθ(v0, v1)Ãn−1

θ (v1, . . . , vn), (48)

Ψn
θ (v) = E

�
B̃n

θ (V θ
0 , . . . , V

θ
n )Cθ(V θ

n )
���V θ

0 = v
�
. (49)

h(θ) is the function defined by

h(θ) =
�
Dθ(v)τθ(dv) +

∞�
n=1

�
Ψn

θ (v)τθ(dv). (50)

Then, for each θ ∈ Θ, v ∈ V , n ≥ 1, it is straightforward to
verify

Ψn
θ (v) = E



Bθ(V θ

0 , V
θ
1 )Φn

θ (V θ
1 )
��V θ

0 = v
�
. (51)

Remark: Throughout this and subsequent sections, the fol-
lowing convention is applied. Diacritic ˜ is used to denote a
locally defined quantity, i.e., a quantity whose definition holds
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only within the proof where the quantity appears. We also
recall here that Q stands for any compact set satisfying Q ⊂ Θ.

Lemma 5.1: Let Assumptions 2.2 – 2.4 hold. Then, the fol-
lowing is true:

(i) {V θ
n }n≥0 is geometrically ergodic for each θ ∈ Θ.

(ii) There exist real numbers ρ1,Q ∈ (0, 1), C2,Q ∈ [1,∞)
(possibly depending on N ) such that

|T̃ n
θ (v,B)| ≤ C2,Qρ

n
1,Q, (52)

|T̃ n
θ (v,B) − T̃ n

θ′(v,B)| ≤ C2,Qρ
n
1,Q	θ − θ�	, (53)

max{|τθ(B) − τθ′(B)|, |Tθ(v,B) − Tθ′(v,B)|}
≤ C2,Q	θ − θ�	 (54)

for all θ, θ� ∈ Q, v ∈ V , B ∈ B(V), n ≥ 0.
Proof: Using Assumption 2.2 and [22, Theorem 16.0.2],

we conclude that there exist an integer n0 ≥ 1, a real number
γ ∈ (0, 1) and a probability measure ξ(dx) on X such that
Pn0(x,A) ≥ γξ(A) for all x ∈ X , A ⊆ B(X ).

Throughout the proof, the following notation is used. θ,
θ� are any elements of Q. x, x1, . . . , xN are any elements of
X , while x̂ = (x1, . . . , xN ). y is any element of Y , while
v = (y, x, x̂). B is any element of B(V), while n is any
non-negative integer. ζ(dx̂) is the probability measure on XN

defined for A ∈ B(XN ) by

ζ(A)=


1
μ(X )

�N�
· · ·
�
IA(x1, . . . , xN )μ(dx1) · · ·μ(dxN ).

Let βQ = (εQμ(X ))N (εQ is specified in Assumption
2.3, while μ(dx) is defined in Subsection II-A). Relying on
Assumption 2.3, we deduce

εQ ≤ sθ(x|y, x̂) ≤ 1
εQ
. (55)

Consequently, for A ∈ B(XN), we get

Sθ(A|y, x̂) ≥εN
Q

�
· · ·
�
IA(x�1, . . . , x

�
N )μ(dx�1) · · ·μ(dx�N )

=βQζ(A).

Hence, we have

Tθ(v,B) =
���

IB(y�, x�, x̂�)Q(x�, dy�)

· P (x, dx�)Sθ(dx̂�|y, x̂)
≥βQ

���
IB(y�, x�, x̂�)Q(x, dy�)P (x, dx�)ζ(dx̂�).

Therefore, we get

T n+1
θ (v,B) = E



Tθ(V θ

n , B)|V θ
0 = v

�
≥ βQE

����
IB(y�, x�, x̂�)Q(x�, dy�)

· P (Xn, dx
�)ζ(dx̂�)

�����Y0 = y,X0 = x, X̂θ
0 = x̂

�

=βQ

���
IB(y�, x�, x̂�)Q(x�, dy�)Pn+1(x, dx�)ζ(dx̂�).

Since Pn0(x,A) ≥ γξ(A) for any A ⊆ B(X ), we get

T n0
θ (v,B) ≥ βQγ

���
IB(y�, x�, x̂�)Q(x�, dy�)ξ(dx�)ζ(dx̂�).

(56)

Let ρ1,Q = (1 − βQγ)1/(2n0). As v is any element in
V , [22, Theorem 16.0.2]) and (56) imply that {V θ

n }n≥0 is
geometrically ergodic. The same arguments also imply

|T̃ n
θ (v,B)| = |T n

θ (v,B) − τθ(B)| ≤ ρ2n
1,Q. (57)

Since Q is any compact set in Θ, we conclude that (i) is true.
Let C̃1,Q = 3ε−2

Q K1,Q, C̃2,Q = ε−N
Q C̃1,QN , C̃3,Q =

(μ(X ))N C̃2,Q (K1,Q is specified in Assumption 2.4). Owing
to Assumptions 2.3, 2.4, we have

|sθ(x|y, x̂) − sθ′(x|y, x̂)|

≤
�N

i=1 |pθ(x|xi) − pθ′(x|xi)|qθ(y|xi)�N
i=1 qθ(y|xi)

+
�N

i=1 pθ′(x|xi)|qθ(y|xi) − qθ′(y|xi)|�N
i=1 qθ(y|xi)

+
sθ′(x|y, x̂)

�N
i=1 |qθ(y|xi) − qθ′(y|xi)|�N
i=1 qθ(y|xi)

≤ 3K1,Q	θ − θ�	
ε2Q

= C̃1,Q	θ − θ�	.

Consequently, for any x�1, . . . , x
�
N ∈ X , (55) yields�����

N	
i=1

sθ(x�i|y, x̂) −
N	

i=1

sθ′(x�i|y, x̂)
�����

≤
N�

i=1

⎛
⎝i−1	

j=1

sθ(x�j |y, x̂)
⎞
⎠
⎛
⎝ N	

j=i+1

sθ′(x�j |y, x̂)
⎞
⎠

· |sθ(x�i|y, x̂) − sθ′(x�i|y, x̂)|

≤ C̃1,QN	θ − θ�	
εN−1

Q

≤ C̃2,Q	θ − θ�	.

Here and throughout the paper, we use the convention that the
product

�l
i=k is one whenever k > l. Hence, we have

|Sθ(B|y, x̂) − Sθ′(B|y, x̂)|

≤
�
· · ·
�
IB(x1, . . . , xN )

�����
N	

i=1

sθ(xi|y, x̂)−
N	

i=1

sθ′(xi|y, x̂)
�����

· μ(dx1) · · ·μ(dxN )

≤ C̃2,Q(μ(X ))N	θ − θ�	 = C̃3,Q	θ − θ�	.
Therefore, we get

|Tθ(v,B) − Tθ′(v,B)| ≤
���

IB(y�, x�, x̂�)Q(x�, dy�)

· P (x, dx�)|Sθ−Sθ′|(dx̂�|y, x̂)
≤C̃3,Q	θ − θ�	. (58)

Here, |Sθ − Sθ′|(dx̂�|y, x̂) denotes the total variation of the
signed measure Sθ(dx̂�|y, x̂) − Sθ′(dx̂�|y, x̂).
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Let C̃4,Q ∈ [1,∞) be an upper bound of sequence
{nρn−1

1,Q }n≥1, while C2,Q = 2C̃3,QC̃4,Q(1 − ρ1,Q)−1. Using
(57), (58), we conclude

|T n+1
θ (v,B) − T n+1

θ′ (v,B)|

=

�����
n�

i=0

��
T̃ i

θ(v
��, B)(Tθ − Tθ′)(v�, dv��)T n−i

θ′ (v, dv�)

�����
≤

n�
i=0

��
|T̃ i

θ(v
��, B)||Tθ − Tθ′ |(v�, dv��)T n−i

θ′ (v, dv�)

≤ C̃3,Q	θ − θ�	
n�

i=0

ρ2i
1,Q ≤ C2,Q	θ − θ�	. (59)

Similarly, we deduce

|T̃ n+1
θ (v,B) − T̃ n+1

θ′ (v,B)|

=

�����
n�

i=0

��
T̃ i

θ(v
��, B)(Tθ − Tθ′)(v�, dv��)T̃ n−i

θ′ (v, dv�)

�����
≤

n�
i=0

��
|T̃ i

θ(v
��, B)||Tθ − Tθ′|(v�, dv��)|T̃ n−i

θ′ |(v, dv�)

≤ C̃3,Qρ
2n
1,Q(n+ 1)	θ − θ�	 ≤ C2,Qρ

n+1
1,Q 	θ − θ�	. (60)

Combining (57), (59), we get

|τθ(B) − τθ′(B)| ≤|T n
θ (v,B) − T n

θ′(v,B)| + |T̃ n
θ (v,B)|

+ |T̃ n
θ′(v,B)|

≤C2,Q	θ − θ�	 + 2ρn
1,Q. (61)

Letting n→ ∞ in (61) and using (57), (58), (60), we conclude
that (52) – (54) hold.

Lemma 5.2: Let Assumptions 2.3 and 2.4 hold. Then,
the following is true:

(i) There exists a real number ρ2,Q ∈ (0, 1) (independent
of N and depending only on pθ(x�|x), qθ(y|x)) such that
Ai,j

θ (v, v�) ≥ ρ2,Q/N for all θ ∈ Q, v, v� ∈ V , 1 ≤ i, j ≤ N .
(ii) There exists a real number C3,Q ∈ [1,∞) (possibly

depending on N ) such that

max{	Aθ(v, v�)	, 	Bθ(v, v�)	, 	Cθ(v)	, 	Dθ(v)	} ≤ C3,Q,

(62)

max{	Aθ(v, v�) −Aθ′(v, v�)	, 	Bθ(v, v�) −Bθ′(v, v�)	}
≤ C3,Q	θ − θ�	, (63)

max{	Cθ(v) − Cθ′(v)	, 	Dθ(v) −Dθ′(v)	}
≤ C3,Q	θ − θ�	 (64)

for all θ, θ� ∈ Q, v, v� ∈ V .
Proof: Throughout the proof, the following notation is

used. θ, θ� are any elements of Q. x, x�, x1, x
�
1, . . . , xN , x

�
N

are any elements of X , while x̂ = (x1, . . . , xN ), x̂� =
(x�1, . . . , x�N ). y, y� are any elements of Y , while v = (y, x, x̂),
v� = (y�, x�, x̂�). i, j are any integers satisfying 1 ≤ i, j ≤ N .

Let ρ2,Q = ε4Q (εQ is specified in Assumption 2.3). Owing
to Assumption 2.3, we have ε2Q ≤ rθ(x�|y, x) ≤ 1/ε2Q.
Therefore, we get Ai,j

θ (v, v�) ≥ ε4Q/N = ρ2,Q/N . Hence,
(i) is true.

Due to Assumptions 2.3 and 2.4, we have

|rθ(x�|y, x) − rθ′(x�|y, x)| ≤|pθ(x�|x) − pθ′(x�|x)|qθ(y|x)
+ pθ′(x�|x)|qθ(y|x) − qθ′(y|x)|

≤2K1,Q	θ − θ�	
εQ

.

Then, we get

|Ai,j
θ (v, v�) −Ai,j

θ′ (v, v�)|

≤|rθ(x�j |y, xi) − rθ′(x�j |y, xi)|�N
k=1 rθ(x

�
j |y, xk)

+Ai,j
θ′ (v, v�)

�N
k=1 |rθ(x�j |y, xk) − rθ′(x�j |y, xk)|�N

k=1 rθ(x
�
j |y, xk)

≤ 2K1,Q	θ − θ�	
ε3Q


1
N

+Ai,j
θ′ (v, v�)

�
. (65)

Since
�N

i=1A
i,j
θ (v, v�) = 1 (due to (36)), (65) implies

N�
i=1

|Ai,j
θ (v, v�) −Ai,j

θ′ (v, v�)|

≤ 2K1,Q	θ − θ�	
ε3Q

�
1 +

N�
i=1

Ai,j
θ′ (v, v�)

�

=
4K1,Q	θ − θ�	

ε3Q
. (66)

It is straightforward to verify

Bj
θ(v, v

�) =
N�

i=1

Ai,j
θ (v, v�)

∇θrθ(x�j |y, xi)
rθ(x�j |y, xi)

. (67)

Moreover, using Assumptions 2.3 and 2.4, we conclude����∇θrθ(x�|y, x)
rθ(x�|y, x)

���� ≤
����∇θpθ(x�|x)

pθ(x�|x)
����+

����∇θqθ(y|x)
qθ(y|x)

����
≤2K1,Q

εQ
. (68)

Relying on the same assumptions, we deduce����∇θrθ(x�|y, x)
rθ(x�|y, x) − ∇θrθ′(x�|y, x)

rθ′(x�|y, x)
����

≤ 	∇θpθ(x�|x)−∇θpθ′(x�|x)	
pθ(x�|x)

+
����∇θpθ′(x�|x)

pθ′(x�|x)
���� |pθ(x�|x)−pθ′(x�|x)|

pθ(x�|x)
+

	∇θqθ(y|x) −∇θqθ′(y|x)	
qθ(y|x)

+
����∇θqθ′(y|x)

qθ′(y|x)
���� |qθ(y|x) − qθ′(y|x)|

qθ(y|x)

≤ 4K2
1,Q	θ − θ�	
ε2Q

. (69)

Then, (36), (67), (68) imply

	Bj
θ(v, v

�)	 ≤
N�

i=1

Ai,j
θ (v, v�)

�����∇θrθ(x�j |y, xi)
rθ(x�j |y, xi)

�����
≤2K1,Q

εQ
. (70)
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Similarly, (36), (66) – (69) yield

	Bj
θ(v, v

�) −Bj
θ′(v, v�)	

≤
N�

i=1

|Ai,j
θ (v, v�) −Ai,j

θ′ (v, v�)|
�����∇θrθ(x�j |y, xi)

rθ(x�j |y, xi)

�����
+

N�
i=1

Ai,j
θ′ (v, v�)

�����∇θrθ(x�j |y, xi)
rθ(x�j |y, xi)

− ∇θrθ′(x�j |y, xi)
rθ′(x�j |y, xi)

�����
≤ 12K2

1,Q	θ − θ�	
ε4Q

. (71)

Due to Assumptions 2.3, 2.4, we have

|Ci
θ(v)| ≤ max

�
1
N
,

qθ(y|xi)�N
k=1 qθ(y|xk)

�
≤ 1, (72)

	Dθ(v)	 ≤
�N

k=1 	∇θqθ(y|xk)	�N
k=1 qθ(y|xk)

≤ K1,Q

εQ
. (73)

Combining Assumptions 2.3, 2.4 and (72), we get

|Ci
θ(v) − Ci

θ′(v)| ≤ |qθ(y|xi) − qθ′(y|xi)|�N
k=1 qθ(y|xk)

+
|Ci

θ′(v)|�N
k=1 |qθ(y|xk) − qθ′(y|xk)|�N

k=1 qθ(y|xk)

≤2K1,Q	θ − θ�	
εQ

. (74)

Moreover, using Assumptions 2.3, 2.4 and (73), we get

	Dθ(v)−Dθ′(v)	 ≤
�N

k=1 	∇θqθ(y|xk) −∇θqθ′(y|xk)	�N
k=1 qθ(y|xk)

+
	Dθ′(v)	�N

k=1|qθ(y|xk)−qθ′(y|xk)|�N
k=1 qθ(y|xk)

≤2K2
1,Q	θ − θ�	
ε2Q

. (75)

Let C3,Q = 12ε−4
Q K2

1,QN . Then, relying on (36), (66) –
(75), we deduce that (62) – (64) hold. Hence, (ii) is true.

Lemma 5.3: Let Assumptions 2.3 and 2.4 hold. Then, there
exist real numbers ρ3,Q ∈ (0, 1), C4,Q ∈ [1,∞) (possibly
depending on N ) such that

max{	Φn
θ (v)	, 	Ψn

θ (v)	} ≤ C4,Qρ
n
3,Q,

max{	Φn
θ (v) − Φn

θ′(v)	, 	Ψn
θ (v) − Φn

θ′(v)	}
≤ C4,Qρ

n
3,Q	θ − θ�	

for all θ, θ� ∈ Q, v ∈ V , n ≥ 1.
Proof: Throughout the proof, the following notation is

used. θ, θ� are any elements of Q. v is any element of V , while
{vn}n≥0 is any sequence in V . n is any positive integer.

Let ρ3,Q = (1 − ρ2,Q)1/2, C̃1,Q = 4ρ−2
3,QN , C̃2,Q =

2C̃1,QC
2
3,Q, C̃3,Q = ρ−2

3,QC̃2,QC3,Q (ρ2,Q, C3,Q are specified
in Lemma 5.2). Owing to Lemmas 5.2, A1.2 (see Appendix)
and (36), we have���Ãn

θ (v0, . . . , vn)Cθ(vn)
��� ≤C̃1,Qρ

2n
3,Q	Cθ(vn)	

≤C̃1,QC3,Qρ
2n
3,Q

≤C̃2,Qρ
2n
3,Q. (76)

Since A0
θ(v) = I (due to (45)), Lemma 5.2 and (76) imply���B̃n

θ (v0, . . . , vn)Cθ(vn)
��� ≤

���Ãn−1
θ (v1, . . . , vn)Cθ(vn)

���
· 	Bθ(v0, v1)	

≤C̃2,QC3,Qρ
2(n−1)
3,Q

=C̃3,Qρ
2n
3,Q. (77)

Moreover, due to Lemmas 5.2, A1.2 (see Appendix A), we
have ���Ãn

θ (v0, . . . , vn)Cθ(vn) − Ãn
θ′(v0, . . . , vn)Cθ′(vn)

���
≤ C̃1,Qρ

2n
3,Q (	Cθ(vn)	 + 	Cθ′(vn)	)

·
n−1�
k=0

	Aθ(vk, vk+1) −Aθ′(vk, vk+1)	

+ C̃1,Qρ
2n
3,Q	Cθ(vn) − Cθ′(vn)	

≤ 2C̃1,QC
2
3,Qρ

2n
3,Q(n+ 1)	θ − θ�	

= C̃2,Qρ
2n
3,Q(n+ 1)	θ − θ�	. (78)

Combining this with Lemma 5.2 and (76), we get���B̃n
θ (v0, . . . , vn)Cθ(vn) − B̃n

θ′(v0, . . . , vn)Cθ′(vn)
���

≤ 	Bθ(v0, v1) −Bθ′(v0, v1)	
���Ãn−1

θ (v1, . . . , vn)Cθ(vn)
���

+
���Ãn−1

θ (v1, . . . , vn)Cθ(vn)−Ãn−1
θ′ (v1, . . . , vn)Cθ′(vn)

���
· 	Bθ′(v0, v1)	

≤ C̃2,QC3,Qρ
2(n−1)
3,Q (n+ 1)	θ − θ�	

= C̃3,Qρ
2n
3,Q(n+ 1)	θ − θ�	. (79)

Let Un
θ (dv1, . . . , dvn|v) be the conditional probability mea-

sure defined for B ∈ B(Vn) by

Un
θ (B|v) = E



IB(V θ

1 , . . . , V
θ
n )
��V θ

0 = v
�
.

Moreover, let un
θ,θ′(v) be the function defined by

un
θ,θ′(v) = sup

B∈B(Vn)

|Un
θ (B|v) − Un

θ′(B|v)| .

Then, for B ∈ B(Vn+1), we have

Un+1
θ (B|v)=

��
. . .

�
IB(v1, . . . , vn, vn+1)Tθ(vn, dvn+1)

· Un
θ (dv1, . . . , dvn|v).

Consequently, Lemma 5.1 implies��Un+1
θ (B|v) − Un+1

θ′ (B|v)��
≤
��

· · ·
�
IB(v1, . . . , vn, vn+1)|Tθ − Tθ′|(vn, dvn+1)

· Un
θ (dv1, . . . , dvn|v)

+
��

· · ·
�
IB(v1, . . . , vn, vn+1)Tθ′(vn, dvn+1)

· |Un
θ − Un

θ′ |(dv1, . . . , dvn|v)
≤ C2,Q	θ − θ�	 + un

θ,θ′(v)
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(C2,Q is specified in Lemma 5.1). For B ∈ B(V), Lemma 5.1
also yields��U1

θ (B|v) − U1
θ′(B|v)�� =|Tθ(v,B) − Tθ′(v,B)|

≤C2,Q	θ − θ�	.
Hence, we have

u1
θ,θ′(v) ≤ C2,Q	θ − θ�	,
un+1

θ,θ′ (v) ≤ un
θ,θ′(v) + C2,Q	θ − θ�	. (80)

Then, iterating (80), we conclude

un
θ,θ′(v) ≤ C2,Qn	θ − θ�	. (81)

Let C̃4,Q ∈ [1,∞) be an upper bound of sequence
{nρn−1

3,Q }n≥1, while C4,Q = 4C̃3,QC̃4,QC2,Q. It is straight-
forward to verify

Φn
θ (v) =

�
· · ·
�
Ãn

θ (v, v1, . . . , vn)Cθ(vn)

· Un
θ (dv1, . . . , dvn|v), (82)

Ψn
θ (v) =

�
· · ·
�
B̃n

θ (v, v1, . . . , vn)Cθ(vn)

· Un
θ (dv1, . . . , dvn|v). (83)

Combining this with (76), (77), we get

	Φn
θ (v)	 ≤

�
· · ·
� ���Ãn

θ (v, v1, . . . , vn)Cθ(vn)
���

· Un
θ (dv1, . . . , dvn|v)

≤C̃2,Qρ
2n
3,Q ≤ C4,Qρ

n
3,Q,

	Ψn
θ (v)	 ≤

�
· · ·
� ���B̃n

θ (v, v1, . . . , vn)Cθ(vn)
���

· Un
θ (dv1, . . . , dvn|v)

≤C̃3,Qρ
2n
3,Q ≤ C4,Qρ

n
3,Q.

Moreover, (78), (82), (81) imply

	Φn
θ (v) − Φn

θ′(v)	 ≤
�
· · ·
� ���Ãn

θ (v, v1, . . . , vn)Cθ(vn)

− Ãn
θ′(v, v1, . . . , vn)Cθ′(vn)

���
· Un

θ (dv1, . . . , dvn|v)
+
�
· · ·
� ���Ãn

θ′(v, v1, . . . , vn)Cθ′(vn)
���

· |Un
θ − Un

θ′ |(dv1, . . . , dvn|v)
≤2C̃2,QC2,Qρ

2n
3,Q(n+ 1)	θ − θ�	

≤C4,Qρ
n
3,Q	θ − θ�	.

Similarly, (79), (83), (81) yield

	Ψn
θ (v) − Ψn

θ′(v)	 ≤
�
· · ·
� ���B̃n

θ (v, v1, . . . , vn)Cθ(vn)

− B̃n
θ′(v, v1, . . . , vn)Cθ′(vn)

���
· Un

θ (dv1, . . . , dvn|v)
+
�
· · ·
� ���B̃n

θ′(v, v1, . . . , vn)Cθ′(vn)
���

· |Un
θ − Un

θ′|(dv1, . . . , dvn|v)
≤2C̃3,QC2,Qρ

2n
3,Q(n+ 1)	θ − θ�	

≤C4,Qρ
n
3,Q	θ − θ�	.

Lemma 5.4: Let Assumptions 2.2 – 2.4 hold. Then, the fol-
lowing is true:

(i) h(θ) is well-defined on Θ.
(ii) h(θ) = limn→∞ E



H(θ, Zθ

n)
�

for each θ ∈ Θ satisfy-
ing E(	W θ

0 Λ	) <∞.
(iii) There exists a function H̃(θ, z) mapping θ ∈ Θ, z ∈ Z

to Rd such that

H(θ, z) − h(θ) = H̃(θ, z) − (ΠH̃)(θ, z) (84)

for all θ ∈ Θ, z ∈ Z . Here, (ΠH̃)(θ, z) denotes�
H̃(θ, z�)Πθ(z, dz�).
(iv) There exists a real number C5,Q ∈ [1,∞) (possibly

depending on N ) such that

max{	H(θ, z)	, 	H̃(θ, z)	, 	(ΠH̃)(θ, z)	}
≤ C5,Q(1 + 	WΛ	),
	(ΠH̃)(θ, z) − (ΠH̃)(θ�, z)	 ≤ C5,Q	θ − θ�	(1 + 	WΛ	)

for all θ, θ� ∈ Q, v ∈ V , W ∈ Rd×N and z = (v,W ) (Λ is
defined in (30)).

Proof: Throughout the proof, the following notation is
used. θ, θ� are any elements of Q. v, W are any elements
of V , R

d×N (respectively), while z = (v,W ). n, k are any
positive integers.

Owing to (36), we have

eT Ãn
θ (V θ

0 , . . . , V
θ
n )Cθ(V θ

n ) = eTCθ(V θ
n ) = 0.

Therefore, we get

ΛÃn
θ (V θ

0 , . . . , V
θ
n )Cθ(V θ

n )

= Ãn
θ (V θ

0 , . . . , V
θ
n )Cθ(V θ

n ) − e

N
eT Ãn

θ (V θ
0 , . . . , V

θ
n )Cθ(V θ

n )

= Ãn
θ (V θ

0 , . . . , V
θ
n )Cθ(V θ

n ). (85)

Moreover, iterating (43), it is straightforward to verify

W θ
n = W θ

0 Ã
n
θ (V θ

0 , . . . , V
θ
n ) +

n−1�
k=0

B̃n−k
θ (V θ

k , . . . , V
θ
n ). (86)

Combining this with (85), we conclude

H(θ, Zθ
n) =Dθ(V θ

n ) +W θ
0 Ã

n
θ (V θ

0 , . . . , V
θ
n )Cθ(V θ

n )

+
n−1�
k=0

B̃n−k
θ (V θ

k , . . . , V
θ
n )Cθ(V θ

n )

=Dθ(V θ
n ) +W θ

0 ΛÃn
θ (V θ

0 , . . . , V
θ
n )Cθ(V θ

n )

+
n−1�
k=0

B̃n−k
θ (V θ

k , . . . , V
θ
n )Cθ(V θ

n ).
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Consequently, we have

(ΠnH)(θ, z) = E


H(θ, Zθ

n)
��Zθ

0 = z
�

=E


Dθ(V θ

n )
��V θ

0 = v
�

+ E
�
WΛÃn

θ (V θ
0 , . . . , V

θ
n )Cθ(V θ

n )
���V θ

0 = v
�

+
n−1�
k=0

E
�
E
�
B̃n−k

θ (V θ
k , . . . , V

θ
n )Cθ(V θ

n )
���V θ

k

����V θ
0 = v

�

= (T nD)θ(v) +WΛΦn
θ (v) +

n−1�
k=0

E


Ψn−k

θ (V θ
k )
��V θ

0 = v
�

= (T nD)θ(v) +WΛΦn
θ (v) +

n−1�
k=0

(T kΨn−k)θ(v). (87)

Here, (ΠnH)(θ, z) denotes
�
H(θ, z�)Πn

θ (z, dz�), while
(T nD)θ(v), (T kΨl)θ(v) stand for

�
Dθ(v�)T n

θ (v, dv�),�
Ψl

θ(v
�)T k

θ (v, dv�) (respectively).
Let βQ = max{ρ1/2

1,Q, ρ
1/2
3,Q}, C̃1,Q = 4C2,QC3,QC4,Q,

C̃2,Q = 2C̃1,Q(1 − βQ)−1 (ρ1,Q, ρ3,Q, C2,Q, C3,Q, C4,Q are
specified in Lemmas 5.1 – 5.3). Owing to Lemma 5.3, we have�

	Ψn
θ (v)	τθ(dv) ≤ C4,Qρ

n
3,Q ≤ C̃1,Qβ

2n
Q . (88)

Consequently, Lemma 5.2 yields�
	Dθ(v)	τθ(dv) +

∞�
n=1

�
	Ψn

θ (v)	τθ(dv)

≤ C3,Q + C̃1,Q

∞�
n=1

β2n
Q ≤ 2C̃1,Q(1 − βQ)−1 ≤ C̃2,Q<∞.

Hence, h(θ) is well-defined and satisfies 	h(θ)	 ≤ C̃2,Q.
Since Q is any compact set in Θ, we conclude that (i) holds.
Moreover, using (87), we deduce

(ΠnH)(θ, z) − h(θ) =(T̃ nD)θ(v) +WΛΦn
θ (v)

+
n−1�
k=0

(T̃ kΨn−k)θ(v)

−
∞�

k=n+1

�
Ψk

θ(v�)τθ(dv�). (89)

Here, (T̃ nD)θ(v), (T̃ kΨl)θ(v) denote
�
Dθ(v�)T̃ n

θ (v, dv�),�
Ψl

θ(v
�)T̃ k

θ (v, dv�) (respectively).
Let C̃3,Q ∈ [1,∞) be an upper bound of sequence

{nβn−1
Q }n≥1, while C̃4,Q = 2C̃2,QC̃3,Q(1 − βQ)−1, C5,Q =

C̃4,Q(1 − βQ)−1. Owing to Lemmas 5.1, 5.2, we have

	(T̃ nD)θ(v)	 ≤
�

	Dθ(v�)	|T̃ n
θ |(v, dv�)

≤C2,QC3,Qρ
n
1,Q ≤ C̃1,Qβ

2n
Q . (90)

Similarly, due to Lemmas 5.1, 5.3, we have

	(T̃ n−kΨk)θ(v)	 ≤
�

	Ψk
θ(v

�)	|T̃ n−k
θ |(v, dv�)

≤C2,QC4,Qρ
n−k
1,Q ρk

3,Q ≤ C̃1,Qβ
2n
Q . (91)

Combining Lemma 5.3 and (88), (89) – (91), we get

	(ΠnH)(θ, z) − h(θ)	 ≤	(T̃ nD)θ(v)	 + 	Φn
θ (v)		WΛ	

+
n�

k=1

	(T̃ n−kΨk)θ(v)	

+
∞�

k=n+1

��Ψk
θ(v�)

�� τθ(dv�)
≤C̃1,Qβ

2n
Q (n+ 1)+C4,Qρ

n
3,Q	WΛ	

+ C̃1,Q

∞�
k=n+1

β2k
Q

≤C̃1,Qβ
2n
Q (n+ 1)(1 + 	WΛ	)

+ C̃1,Qβ
2n
Q (1 − βQ)−1

≤C̃4,Qβ
n
Q(1 + 	WΛ	). (92)

Since 	h(θ)	 ≤ C̃2,Q and ΛCθ(v) = Cθ(v) (due to (36)),
Lemma 5.2 yields

	(Π0H)(θ, z)−h(θ)	 ≤	Cθ(v)		WΛ	+	Dθ(v)	+	h(θ)	
≤C3,Q(1 + 	WΛ	) + C̃2,Q

≤C̃4,Q(1 + 	WΛ	).

Hence, we have

∞�
n=0

	(ΠnH)(θ, z) − h(θ)	 ≤C̃4,Q(1 + 	WΛ	)
∞�

n=0

βn
Q

≤C5,Q(1 + 	WΛ	). (93)

Owing to Lemmas 5.1, 5.2, we have

	(T̃ nD)θ(v) − (T̃ nD)θ′(v)	
≤
�

	Dθ(v�) −Dθ′(v�)	|T̃ n
θ |(v, dv�)

+
�

	Dθ′(v�)	|T̃ n
θ − T̃ n

θ′|(v, dv�)
≤ 2C2,QC3,Qρ

n
1,Q	θ − θ�	 ≤ C̃1,Qβ

2n
Q 	θ − θ�	. (94)

Moreover, Lemmas 5.1, 5.3 imply

	(T̃ n−kΨk)θ(v) − (T̃ n−kΨk)θ′(v)	
≤
�

	Ψk
θ(v�) − Ψk

θ′(v�)	|T̃ n−k
θ |(v, dv�)

+
�

	Ψk
θ′(v�)	|T̃ n−k

θ − T̃ n−k
θ′ |(v, dv�)

≤ 2C2,QC4,Qρ
n−k
1,Q ρk

3,Q	θ − θ�	 ≤ C̃1,Qβ
2n
Q 	θ − θ�	 (95)

for n ≥ k. The same lemmas also yield����
�

Ψn
θ (v)τθ(dv)−

�
Ψn

θ′(v)τθ′(dv)
����

≤
�

	Ψn
θ (v) − Ψn

θ′(v)	τθ(dv) +
�

	Ψn
θ′(v)	|τθ − τθ′ |(dv)

≤ 2C2,QC4,Qρ
n
3,Q	θ − θ�	 ≤ C̃1,Qβ

2n
Q 	θ − θ�	. (96)
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Combining Lemma 5.3 and (89), (94) – (96), we get

	((ΠnH)(θ, z) − h(θ))−((ΠnH)(θ�, z) − h(θ�))	
≤ 	(T̃ nD)θ(v)−(T̃ nD)θ′(v)	+	Φn

θ (v) − Φn
θ′(v)		WΛ	

+
n�

k=1

	(T̃ n−kΨk)θ(v) − (T̃ n−kΨk)θ′(v)	

+
∞�

k=n+1

����
�

Ψk
θ(v�)τθ(dv�) −

�
Ψk

θ′(v�)τθ′(dv�)
����

≤ C̃1,Qβ
2n
Q (n+ 1)	θ − θ�	+C4,Qρ

n
3,Q	WΛ		θ− θ�	

+C̃1,Q	θ − θ�	
∞�

k=n+1

β2k
Q

≤ C̃1,Qβ
2n
Q (n+ 1)(1 + 	WΛ	)	θ− θ�	

+C̃1,Qβ
2n
Q (1 − βQ)−1	θ − θ�	

≤ C̃4,Qβ
n
Q	θ − θ�	(1 + 	WΛ	). (97)

Hence, we have
∞�

n=1

	((ΠnH)(θ, z) − h(θ)) − ((ΠnH)(θ�, z) − h(θ�))	

≤ C̃4,Q	θ − θ�	(1 + 	WΛ	)
∞�

n=1

βn
Q

≤ C5,Q	θ − θ�	(1 + 	WΛ	). (98)

Let H̃(θ, z) be the function defined by

H̃(θ, z) =
∞�

n=0

((ΠnH)(θ, z) − h(θ)).

Then, (93) implies that H̃(θ, z), (ΠH̃)(θ, z) are well-defined
and satisfy

(ΠH̃)(θ, z) =
∞�

n=1

((ΠnH)(θ, z) − h(θ)).

Consequently, (84) holds. Since Q is any compact set in Θ,
we conclude that (iii) also holds. Moreover, using (93), (98),
we deduce that (iv) is also true.

When E(	W θ
0 Λ	) <∞, (92) implies��E(H(θ, Zθ

n)) − h(θ)
�� =

��E 
(ΠnH)(θ, Zθ
0 ) − h(θ)

���
≤E 
��(ΠnH)(θ, Zθ

0 ) − h(θ)
���

≤C̃4,Qβ
n
Q(1 + E(	W θ

0 Λ	)).
Therefore, h(θ) = limn→∞E(H(θ, Zθ

n)) if E(	W θ
0 Λ	) <∞.

As Q is any compact set in Θ, we conclude that (ii) holds.
Lemma 5.5: Let Assumptions 2.3 and 2.4 hold. Then, there

exists a real number C6,Q ∈ [1,∞) (possibly depending on
N ) such that

	WnΛ	I{τQ≥n} ≤ C6,Q(1 + 	W0Λ	)
for n ≥ 1, where τQ is the stopping time defined by

τQ = inf ({n ≥ 0 : θn ∈ Q} ∪ {∞})
(Λ is specified in (30)).

Proof: Throughout the proof, the following notation is
used. n is any positive integer. An and Bn are the random
matrices defined by

An = Aθn−1(Vn−1, Vn), Bn = Bθn−1(Vn−1, Vn).

Ak,k and Ak,l are the random matrices defined by

Ak,k = I, Ak,l = Ak+1 · · ·Al

for l > k ≥ 0. Then, iterating (14), we get

Wn = W0A0,n +
n�

j=1

BjAj,n. (99)

Moreover, (36) implies eTAk,lΛ = eT Λ = 0 for l ≥ k ≥ 0.
Consequently, we have

ΛAk,lΛ = Ak,lΛ − e

N
eTAk,lΛ = Ak,lΛ.

Combining this with (99), we get

WnΛ =W0A0,nΛ +
n�

j=1

BjAj,nΛ

=W0ΛA0,nΛ +
n�

j=1

BkAj,nΛ. (100)

Let βQ = 1 − ρ2,Q, C̃1,Q = 4β−1
Q N , C̃2,Q = C̃1,QC3,Q,

C6,Q = C̃2,Q(1 − βQ)−1 (ρ2,Q, C3,Q are specified in
Lemma 5.2). Since θ0, . . . , θn−1 ∈ Q on {τQ ≥ n}, Lem-
mas 5.2, A1.2 (see Appendix A) and (36) imply

	Ak,nΛ	 I{τQ≥n}
=
��Aθk

(Vk, Vk+1) · · ·Aθn−1(Vn−1, Vn)Λ
�� I{τQ≥n}

≤ C̃1,Qβ
n−k
Q (101)

for n > k ≥ 0. Consequently, Lemma 5.2 yields

	BkAk,nΛ	 I{τQ≥n}
=
��Bθk−1(Vk−1, Vk)Ak,nΛ

�� I{τQ≥n}
≤ ��Bθk−1(Vk−1, Vk)

�� 	Ak,nΛ	 I{τQ≥n}
≤ C̃1,QC3,Qβ

n−k
Q ≤ C̃2,Qβ

n−k
Q

for n ≥ k ≥ 1. Combining this with (100), we get

	WnΛ	I{τQ≥n} ≤	W0Λ		A0,nΛ	I{τQ≥n}

+
n�

j=1

	BjAj,nΛ	I{τQ≥n}

≤C̃1,Qβ
n
Q	W0Λ	 + C̃2,Q

n�
j=1

βn−j
Q

≤C̃2,Q(1 − βQ)−1(1 + 	W0Λ	)
=C6,Q(1 + 	W0Λ	).

Lemma 5.6: Let Assumptions 2.2 – 2.4 hold. Then, there
exists a real number MQ ∈ [1,∞) (independent of N and
depending only on pθ(x�|x), qθ(y|x)) such that

	h(θ) −∇l(θ)	 ≤ MQ

N
(102)

for all θ ∈ Q.
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Proof: Throughout the proof, the following notation is
used. H �

θ,y(ξ, ζ) and H ��
θ,y(ξ, ζ) are the functions defined by

H �
θ,y(ξ, ζ) =

� ∇θqθ(y|x)ξ(dx)�
qθ(y|x)ξ(dx) ,

H ��
θ,y(ξ, ζ) =

�
qθ(y|x)ζ(dx)�
qθ(y|x)ξ(dx)

for θ ∈ Θ, y ∈ Y , ξ ∈ P(X ), ζ ∈ Md
s(X ). Aθ

1,n, Aθ
2,n and

Aθ
3,n are the random variables defined by

Aθ
1,n =

�
qθ(Yn|x)ξθ

n(dx),

Aθ
2,n =

�
qθ(Yn|x)ξ̃θ

n(dx),

Aθ
3,n =

�
qθ(Yn|x)F 0:n

θ,Y (dx|ξθ
0 )

for n ≥ 0. Bθ
1,n, Bθ

2,n and Bθ
3,n are the random variables

defined by

Bθ
1,n =

�
∇θqθ(Yn|x)ξθ

n(dx),

Bθ
2,n =

�
∇θqθ(Yn|x)ξ̃θ

n(dx),

Bθ
3,n =

�
∇θqθ(Yn|x)F 0:n

θ,Y (dx|ξθ
0 ).

Cθ
1,n, Cθ

2,n and Cθ
3,n are the random variables defined by

Cθ
1,n =

�
qθ(Yn|x)ζθ

n(dx),

Cθ
2,n =

�
qθ(Yn|x)ζ̃θ

n(dx),

Cθ
3,n =

�
qθ(Yn|x)G0:n

θ,Y (dx|ξθ
0 , ζ0).

For 1 ≤ i ≤ N , W θ
n,i is the i-th column of W θ

n . ξθ
n(dx) and

ζθ
n(dx) are the (empirical) measures defined by

ξθ
n(B) =

1
N

N�
i=1

δX̂θ
n,i

(B), (103)

ζθ
n(B) =

1
N

N�
i=1

⎛
⎝W θ

n,i −
1
N

N�
j=1

W θ
n,j

⎞
⎠ δX̂θ

n,i
(B) (104)

for B ∈ B(X ). ξ̃θ
n(dx) and ζ̃θ

n(dx) are the (random) measures
defined by

ξ̃θ
n(B) = ξθ

n(B) − F 0:n
θ,Y (B|ξθ

0 ),

ζ̃θ
n(B) = ζθ

n(B) −G0:n
θ,Y (B|ξθ

0 , ζ
θ
0 )

(Y , F 0:n
θ,y (dx|ξ), G0:n

θ,y(dx|ξ, ζ) are defined in the statement of
Lemma 4.1 and (27), (28)). Throughout the proof, we assume
(without loss of generality) that X̂θ

0 = x̂0, W θ
0 = 0 for each

θ ∈ Θ, where x̂0 ∈ XN is a deterministic vector and 0
is the d × N zero matrix. Consequently, ξθ

0(dx), ζθ
0 (dx) are

deterministic, independent of θ and satisfy 	ζθ
0	 = 0.

In the rest of the proof, let θ, y be any elements of Q, Y
(respectively), while ξ, ζ are any elements of P(X ), Md

s(X ).
Moreover, let n be any non-negative integer, while ϕ : X →

[−1, 1] is any function. Then, relying on [33, Theorem 2.1,
Proposition 5.1], we conclude that there exists a real number
C̃1,Q ∈ [1,∞) (independent of N and depending only on
pθ(x�|x), qθ(y|x)) such that 	ζθ

n	 ≤ C̃1,Q and����E
�

ϕ(x)ξ̃θ
n(dx)

����Y
����� ≤ C̃1,Q

N
, (105)����E

�
ϕ(x)ζ̃θ

n(dx)
����Y
����� ≤ C̃1,Q

N
(106)

almost surely. Similarly, using [10, Theorem 3.1], [20, The-
orem 5.8] (or [33, Proposition 6.4]), we deduce that there
exists a real number C̃2,Q ∈ [1,∞) (independent of N and
depending only on pθ(x�|x), qθ(y|x)) such that

E

�����
�
ϕ(x)ξ̃θ

n(dx)
����
2
�����Y
�

≤ C̃2,Q

N
, (107)

E

�����
�
ϕ(x)ζ̃θ

n(dx)
����

2
�����Y
�

≤ C̃2,Q

N
(108)

almost surely.
It is straightforward to verify

Hθ,y(ξ, ζ) = H �
θ,y(ξ, ζ) +H ��

θ,y(ξ, ζ) (109)

(Hθ,y(ξ, ζ) is defined in (26)). It is also easy to show

1
Aθ

1,n

=
1

Aθ
3,n

− Aθ
2,n

|Aθ
3,n|2

+
1

Aθ
1,n

�����A
θ
2,n

Aθ
3,n

�����
2

. (110)

Relying on (109), we conclude

H(θ, Zθ
n) =

�N
i=1 qθ(Yn|X̂θ

n,i)
�
W θ

n,i −N−1
�N

j=1W
θ
n,j

�
�N

i=1 qθ(Yn|X̂θ
n,i)

+

�N
i=1 ∇θqθ(Yn|X̂θ

n,i)�N
i=1 qθ(Yn|X̂θ

n,i)

=
�
qθ(Yn|x)ζθ

n(dx) +
� ∇θqθ(Yn|x)ξθ

n(dx)�
qθ(Yn|x)ξθ

n(dx)
=Hθ,Yn(ξθ

n, ζ
θ
n). (111)

Using (110), we also deduce

H �
θ,Yn

(ξθ
n, ζ

θ
n) −H �

θ,Yn
(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))

=
Bθ

2,n

Aθ
3,n

− Aθ
2,nB

θ
2,n

|Aθ
3,n|2

− Aθ
2,nB

θ
3,n

|Aθ
3,n|2

+
Bθ

1,n

Aθ
1,n

�����A
θ
2,n

Aθ
3,n

�����
2

, (112)

H ��
θ,Yn

(ξθ
n, ζ

θ
n) −H ��

θ,Yn
(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))

=
Cθ

2,n

Aθ
3,n

− Aθ
2,nC

θ
2,n

|Aθ
3,n|2

− Aθ
2,nC

θ
3,n

|Aθ
3,n|2

+
Cθ

1,n

Aθ
1,n

�����A
θ
2,n

Aθ
3,n

�����
2

. (113)

Moreover, due to Assumption 2.3, we have

Aθ
1,n =

�
qθ(Yn|x)ξθ

n(dx) ≥ εQ, (114)

Aθ
3,n =

�
qθ(Yn|x)F 0:n

θ,Y (dx|ξθ
0) ≥ εQ. (115)
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Similarly, owing to Assumption 2.4, we have

	Bθ
1,n	 ≤

�
	∇θqθ(Yn|x)	ξθ

n(dx) ≤ K1,Q, (116)

	Bθ
3,n	 ≤

�
	∇θqθ(Yn|x)	F 0:n

θ,Y (dx|ξθ
0 ) ≤ K1,Q. (117)

Since 	ζθ
n	 ≤ C̃1,Q, Assumption 2.3 and Lemma 4.1 yield

��Cθ
1,n

�� ≤
�
qθ(Yn|x)|ζθ

n|(dx) ≤
C̃1,Q

εQ
, (118)

	Cθ
3,n	 ≤

�
qθ(Yn|x)

��G0:n
θ,Y

��(dx|ξθ
0 , ζ

θ
0 ) ≤ C1,Q

εQ
. (119)

Let C̃3,Q = ε−4
Q

√
dC̃1,QC1,QK1,Q. Due to Assumptions

2.3, 2.4, we have

0 ≤ εQqθ(Yn|x) ≤ 1,
����∇θqθ(Yn|x)

K1,Q

���� ≤ 1.

Then, using (105), (106), we conclude��E 
Aθ
2,n

��Y ��� = ����E
�

qθ(Yn|x)ξ̃θ
n(dx)

����Y
�����

≤ C̃1,Q

εQN
, (120)

��E 
Bθ
2,n

��Y ��� =
����E
�

∇θqθ(Yn|x)ξ̃θ
n(dx)

����Y
�����

≤
√
dC̃1,QK1,Q

N
, (121)

��E 
Cθ
2,n

��Y ��� =
����E
�

qθ(Yn|x)ζ̃θ
n(dx)

����Y
�����

≤ C̃1,Q

εQN
(122)

almost surely. As Aθ
3,n is measurable with respect to Y , (115),

(121), (122) imply�����E
�
Bθ

2,n

Aθ
3,n

������ ≤ E

���E 
Bθ
2,n

��Y ���
Aθ

3,n

�

≤
√
dC̃1,QK1,Q

εQN
≤ C̃3,Q

N
, (123)�����E

�
Cθ

2,n

Aθ
3,n

������ ≤ E

���E 
Cθ
2,n

��Y ���
Aθ

3,n

�

≤ C̃1,Q

ε2QN
≤ C̃3,Q

N
. (124)

Since Aθ
3,n, Bθ

3,n, Cθ
3,n are measurable with respect to Y ,

(115), (117), (119), (120) yield�����E
�
Aθ

2,nB
θ
3,n��Aθ

3,n

��2
������ ≤ E

���E 
Aθ
2,n

��Y ��� ��Bθ
3,n

����Aθ
3,n

��2
�

≤ C̃1,QK1,Q

ε3QN
≤ C̃3,Q

N
, (125)�����E

�
Aθ

2,nC
θ
3,n��Aθ

3,n

��2
������ ≤ E

���E 
Aθ
2,n

��Y ��� ��Cθ
3,n

����Aθ
3,n

��2
�

≤ C̃1,QC1,Q

ε4QN
≤ C̃3,Q

N
. (126)

Let C̃4,Q =
√
dε−4

Q C̃2,QK1,Q, C̃5,Q = ε−2
Q C̃1,QC̃4,QK1,Q.

Relying on Assumptions 2.3, 2.4 and (107), (108), we deduce

E

 |Aθ

2,n|2
��Y � = E

�����
�
qθ(Yn|x)ξ̃θ

n(dx)
����
2
�����Y
�

≤ C̃2,Q

ε2QN
, (127)

E

	Bθ

2,n	2
��Y � = E

�����
�

∇θqθ(Yn|x)ξ̃θ
n(dx)

����
2
�����Y
�

≤ dC̃2,QK
2
1,Q

N
, (128)

E

	Cθ

2,n	2
��Y � = E

�����
�
qθ(Yn|x)ζ̃θ

n(dx)
����

2
�����Y
�

≤ C̃2,Q

ε2QN
(129)

almost surely. Then, Hölder inequality and (115), (127) – (129)
imply�����E

�
Aθ

2,nB
θ
2,n��Aθ

3,n

��2
������ ≤

�
E

�
E

 |Aθ

2,n|2
��Y ���Aθ

3,n

��2
��1/2

·
�
E

�
E

	Bθ

2,n	2
��Y ���Aθ

3,n

��2
��1/2

≤
√
dC̃2,QK1,Q

ε3QN
≤ C̃4,Q

N
, (130)

�����E
�
Aθ

2,nC
θ
2,n��Aθ

3,n

��2
������ ≤

�
E

�
E

 |Aθ

2,n|2
��Y ���Aθ

3,n

��2
��1/2

·
�
E

�
E

	Cθ

2,n	2
��Y ���Aθ

3,n

��2
��1/2

≤ C̃2,Q

ε4QN
≤ C̃4,Q

N
. (131)

Moreover, due to (115), (127), we have

E

⎛
⎝
�����A

θ
2,n

Aθ
3,n

�����
2
⎞
⎠ = E

�
E

 |Aθ

2,n|2
��Y ���Aθ

3,n

��2
�

≤ C̃2,Q

ε4QN
≤ C̃4,Q

N
.

(132)

Owing to (114), (116), (118), (132), we also have������E
⎛
⎝Bθ

1,n

Aθ
1,n

�����A
θ
2,n

Aθ
3,n

�����
2
⎞
⎠
������ ≤ E

⎛
⎝��Bθ

1,n

��
Aθ

1,n

�����A
θ
2,n

Aθ
3,n

�����
2
⎞
⎠

≤ K1,Q

εQ
E

⎛
⎝
�����A

θ
2,n

Aθ
3,n

�����
2
⎞
⎠ ≤ C̃4,QK1,Q

εQN
≤ C̃5,Q

N
, (133)

������E
⎛
⎝Cθ

1,n

Aθ
1,n

�����A
θ
2,n

Aθ
3,n

�����
2
⎞
⎠
������ ≤ E

⎛
⎝��Cθ

1,n

��
Aθ

1,n

�����A
θ
2,n

Aθ
3,n

�����
2
⎞
⎠

≤ C̃1,Q

ε2Q
E

⎛
⎝
�����A

θ
2,n

Aθ
3,n

�����
2
⎞
⎠ ≤ C̃1,QC̃4,Q

ε2QN
≤ C̃5,Q

N
. (134)
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Let MQ = 4(C̃3,Q + C̃4,Q + C̃5,Q). Then, (112), (123),
(125), (130), (133) imply��E 
H �

θ,Yn
(ξθ

n, ζ
θ
n) −H �

θ,Yn
(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
���

≤ 2C̃3,Q + C̃4,Q + C̃5,Q

N
≤ MQ

2N
.

Similarly, (113), (124), (126), (131), (134) yield��E 
H ��
θ,Yn

(ξθ
n, ζ

θ
n) −H ��

θ,Yn
(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
���

≤ 2C̃3,Q + C̃4,Q + C̃5,Q

N
≤ MQ

2N
.

Combining this with (109), (111), we get��E 
H(θ, Zθ
n) −Hθ,Yn(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
���

≤ ��E 
H �
θ,Yn

(ξθ
n, ζ

θ
n) −H �

θ,Yn
(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
���

+
��E 
H ��

θ,Yn
(ξθ

n, ζ
θ
n) −H ��

θ,Yn
(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
���

≤ MQ

N
.

Hence, we have

	h(θ) −∇l(θ)	
≤��E 
H(θ, Zθ

n)
�− h(θ)

��
+
��E 
Hθ,Yn(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
�−∇l(θ)��

+
��E 
H(θ, Zθ

n) −Hθ,Yn(F 0:n
θ,Y (ξθ

0), G0:n
θ,Y (ξθ

0 , ζ
θ
0 ))
���

≤��E 
H(θ, Zθ
n)
�− h(θ)

��
+
��E 
Hθ,Yn(F 0:n

θ,Y (ξθ
0), G0:n

θ,Y (ξθ
0 , ζ

θ
0 ))
�−∇l(θ)��+

MQ

N
.

Then, letting n→ ∞ and using Lemmas 4.1, 5.4, we conclude
that (102) holds.

VI. PROOF OF MAIN RESULTS

In this section, we study the Monte Carlo estimation of the
log-likelihood rate gradient ∇l(θ) (see Lemma 6.1). We also
study the analytical properties of l(θ) (see Lemma 6.2). Using
these results (together with the results of [30]–[31]), we prove
Theorem 2.1.

Throughout the section, the following notation is used.
{ζn}n≥0, {ηn}n≥0 and {ξn}n≥0 are the stochastic processes
defined by

ζn = H(θn, Zn+1) − h(θn),
ηn = h(θn) −∇l(θn),
ξn = ζn + ηn

for n ≥ 0 (H(θ, z), h(θ), {Zn}n≥0 are specified in (35), (17),
(50)). Then, using (15), it is easy to show that (21) holds for
each n ≥ 0.

Remark: Due to (21), algorithm (1) – (4) is stochastic
gradient search which maximizes log-likelihood rate l(θ),
while {ξn}n≥0 can be interpreted as noise in the (Monte Carlo)
estimation of ∇l(θ). We also recall here that Q is any compact
set satisfying Q ⊂ Θ.

Lemma 6.1: Let Assumptions 2.1 – 2.4 hold. Then, relations

lim
n→∞ sup

k≥n

�����
k�

i=n

αiζi

����� = 0, lim sup
n→∞

	ηn	 ≤ MQ

N
(135)

hold almost surely on ΛQ (ΛQ is defined in (6)).

Proof: Let τQ be the stopping time defined in Lemma 5.5.
Moreover, let Λ̃Q be the event defined by Λ̃Q =

�∞
n=0{θn ∈

Q}. Hence, on ΛQ, θn ∈ Q for all, but finitely many n ≥ 0.
Then, using Lemma 5.6, we conclude that the second part of
(135) holds almost surely on ΛQ.

Throughout the rest of the proof, the following nota-
tion is used. Fk is the σ-algebra defined by Fk =
σ{θ0, Z0, · · · , θk, Zk} for k ≥ 0. n is any positive integer,
while ζ1,n, ζ2,n and ζ3,n are the random variables defined by

ζ1,n = H̃(θn, Zn+1) − (ΠH̃)(θn, Zn),

ζ2,n = (ΠH̃)(θn, Zn) − (ΠH̃)(θn−1, Zn),

ζ3,n = −(ΠH̃)(θn, Zn+1).

Then, for l ≥ k > 1, it is straightforward to verify
l�

i=k

αiζi =
l�

i=k

αiζ1,i +
l�

i=k

αiζ2,i +
l�

i=k

(αi − αi+1)ζ3,i

+ αl+1ζ3,l − αkζ3,k−1. (136)

As a direct consequence of Lemmas 5.4, 5.5, we have

	ζ1,n	I{τQ>n} ≤C5,Q(2 + 	WnΛ	 + 	Wn+1Λ	)I{τQ>n}
≤4C5,QC6,Q(1 + 	W0Λ	).

Since W0 is measurable with respect to F0, Assumption 2.1
yields

E

� ∞�
n=1

α2
n	ζ1,n	2I{τQ>n}

�����F0

�

≤ 16C2
5,QC

2
6,Q(1 + 	W0Λ	)2

� ∞�
n=0

α2
n

�
<∞ (137)

almost surely. As {τQ > n} ∈ Fn, we also have

E


ζ1,nI{τQ>n}

��Fn

�
=
�
E
�
H̃(θn, Zn+1)

���Fn

�
− (ΠH̃)(θn, Zn)

�
I{τQ>n} = 0

almost surely. Then, Doob theorem and (137) imply that�∞
n=1 αnζ1,nI{τQ>n} is almost surely convergent. Since

Λ̃Q ⊆ {τQ > n},
�∞

n=1 αnζ1,n converges almost surely on
Λ̃Q.

Due to Lemmas 5.4, 5.5 and (15), we have

	ζ2,n	I{τQ>n} ≤C5,Q	θn − θn−1	(1 + 	WnΛ	)I{τQ>n}
=C5,Qαn−1	H(θn−1, Zn)	

· (1 + 	WnΛ	)I{τQ>n}
≤C2

5,Qαn−1(1 + 	WnΛ	)2I{τQ>n}
≤4C2

5,QC
2
6,Qαn−1(1 + 	W0Λ	)2.

Combining this with Assumption 2.1, we get
∞�

n=1

αn	ζ2,n	I{τQ>n}

≤ 4C2
5,QC

2
6,Q(1 + 	W0Λ	)2

� ∞�
n=0

αnαn+1

�

≤ 2C2
5,QC

2
6,Q(1 + 	W0Λ	)2

� ∞�
n=0

α2
n

�
<∞.
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Hence,
�∞

n=0 αnζ2,nI{τQ>n} converges almost surely. There-
fore,

�∞
n=0 αnζ2,n is convergent almost surely on Λ̃Q.

As a direct consequence of Lemmas 5.4, 5.5, we have

	ζ3,n	I{τQ>n} ≤C5,Q(1 + 	Wn+1Λ	)I{τQ>n}
≤2C5,QC6,Q(1 + 	W0Λ	).

Consequently, Assumption 2.1 yields

∞�
n=1

α2
n+1	ζ3,n	2I{τQ>n}

≤ 4C2
5,QC

2
6,Q(1 + 	W0Λ	)2

� ∞�
n=0

α2
n

�
<∞, (138)

∞�
n=1

|αn − αn+1|	ζ3,n	I{τQ>n}

≤ 2C5,QC6,Q(1 + 	W0Λ	)
� ∞�

n=0

|αn − αn+1|
�
<∞.

(139)

Therefore, we have

lim
n→∞αn+1ζ3,nI{τQ>n} = 0

almost surely. Hence, limn→∞ αn+1ζ3,n = 0 almost surely on
Λ̃Q. Moreover, due to (139),

∞�
n=1

(αn − αn+1)ζ3,nI{τQ>n}

is almost surely convergent. Thus,
�∞

n=1(αn − αn+1)ζ3,n

converges almost surely on Λ̃Q. Since
�∞

n=1 αnζ1,n,�∞
n=1 αnζ2,n are almost surely convergent on Λ̃Q, (136)

implies that
�∞

n=0 αnζn converges almost surely on Λ̃Q,
too. As Q is any compact set in Θ, we conclude that�∞

n=0 αnζn is almost surely convergent on {supn≥0 	θn	 <
∞, infn≥0 d(θn,Θc) > 0}. Consequently, the first part of
(137) holds almost surely on ΛQ.

Lemma 6.2: Let Assumptions 2.2 – 2.4 hold. Then, the fol-
lowing is true:

(i) l(θ) is well-defined for each θ ∈ Θ. Moreover, l(θ) is
Lipschitz continuously differentiable on Θ.

(ii) If Assumption 2.5 also holds, then l(θ) is p-times
differentiable on Θ.

(iii) If Assumption 2.6 also holds, then l(θ) is real-analytic
on Θ.

Proof: (i) See Lemma 4.1. (ii) See [32, Theorem 3.1]. (iii)
See [31, Theorem 2.1].

Proof of Theorem 2.1: Let η = lim supn→∞ 	ηn	. Then,
Lemma 6.1 yields η ≤ MQ/N almost surely on ΛQ. More-
over, due to Assumption 2.1 and Lemmas 6.1, 6.2, Algo-
rithm (21) satisfies all conditions which [30, Theorem 2.1] is
based on. Consequently, [30, Theorem 2.1] implies that there
exist a function ψQ(t) and real numbers rQ, L1,Q, L2,Q with
the properties specified in the statement Theorem 2.1.

APPENDIX A

In this section, we present results on stochastic matrices
which are needed for the proof of Lemmas 5.3 and 5.5. Here,
we rely on the following notation. 	 · 	 denotes the Euclidean
vector norm and Frobenius matrix norm, while 	·	1 stands for
the l1 vector norm. N ≥ 1 is an integer. PN is the set of N -
dimensional (column) probability vectors, while PN×N is the
set of N ×N (column) stochastic matrices (i.e., A ∈ PN×N

if and only if the columns of A are elements of PN ). e is
the N -dimensional vector whose all elements are one. For
1 ≤ i ≤ N , ei is the i-th standard unit vector in RN (i.e., ei is
the element of PN whose i-th element is one). I is the N×N
unit matrix. Λ is the matrix defined by Λ = I − eeT/N . For
A ∈ PN×N , τ(A) is the (Dobrushin) ergodicity coefficient,
i.e.,

τ(A) =
1
2

max
1≤j,j′≤N

N�
i=1

|Ai,j −Ai,j′ |,

where Ai,j is the (i, j) entry of A.
Lemma A1.1: (i) If A ∈ PN×N , then we have

τ(A) = 1 − min
1≤j,j′≤N

N�
i=1

min{Ai,j , Ai,j′},

where Ai,j is the (i, j) entry of A.
(ii) If A ∈ PN×N and z, z� ∈ PN , then we have

	A(z − z�)	1 ≤ τ(A)	z − z�	1.

Moreover, if A,A� ∈ PN×N , then τ(AA�) ≤ τ(A)τ(A�).
Proof: (i) See [7, Definition 15.2.1, Equation (15.9)]. (ii)

See [7, Theorems 15.2.4, 15.2.5].
Lemma A1.2: Let {An}n≥1, {Bn}n≥1 and {Cn}n≥1 be

sequences in PN×N . Moreover, let a, b, c ∈ R
N . Assume the

following:
(i) There exists a real number α ∈ (0, 1) such that

min{An,i,j , Bn,i,j , Cn,i,j} ≥ α/N for each 1 ≤ i, j ≤ N ,
n ≥ 1, where An,i,j , Bn,i,j , Cn,i,j are the (i, j) entries of
An, Bn, Cn (respectively).

(ii) eTa = eT b = eT c = 0.
Then, we have

	A1 · · ·AnΛ	 ≤ Kβn,

	A1 · · ·Ana	 ≤ Kβn	a	,
	B1 · · ·Bnb− C1 · · ·Cnc	

≤ Kβn(	b	 + 	c	)
n�

i=1

	Bi − Ci	 +Kβn	b− c	

for each n ≥ 1, where β = 1 − α and K = 4β−1N .
Proof: Throughout the proof, the following notation is

used. n, k, l are any integers satisfying n ≥ 1, l ≥ k ≥ 0. Ãk,k,
B̃k,k, C̃k,k and Ãk,m, B̃k,m, C̃k,m are the matrices defined by
Ãk,k = B̃k,k = C̃k,k = I and

Ãk,m = Ak+1 · · ·Am,

B̃k,m = Bk+1 · · ·Bm,

C̃k,m = Ck+m · · ·Cm
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for m > k ≥ 0. Then, using Lemma A1.1, we conclude

τ


Ãk,m

� ≤ τ(Ak+1) · · · τ(Am) ≤ βm−k.

Relying on the same lemma, we deduce

τ(An)= 1 − min
1≤j,j′≤N

N�
i=1

min{An,i,j , An,i,j′}≤ 1 − α= β.

Noticing ei, e/N ∈ PN and applying Lemma A1.1 again,
we get���Ãk,l

�
ei − e

N

����
1
≤ τ



Ãk,l

� ���ei − e

N

���
1
≤ 2βl−k (140)

for 1 ≤ i ≤ N . Since Ãk,l



ei − e

N

�
is the i-th column of

Ãk,lΛ, (140) yields��Ãk,lΛ
�� ≤ N1/2 max

1≤i≤N

���Ãk,l

�
ei − e

N

����
1
≤ 2N1/2βl−k.

(141)

Hence, we get

	A1 · · ·AnΛ	 =
��Ã0,nΛ

�� ≤ 2N1/2βn ≤ Kβn.

Moreover, we have

Ãk,lΛa = Ãk,la− Ãk,le

N
eTa = Ak,la.

Consequently, (141) implies��Ãk,la
�� =

��Ãk,lΛa
�� ≤ ��Ãk,lΛ

��	a	 ≤ 2N1/2βl−k	a	.
(142)

Thus, we get

	A1 · · ·Ana	 =
��Ã0,na

�� ≤ 2N1/2βn	a	 ≤ Kβn	a	.
Since eTBn = eTCn = eT , we have

Λ(Bn − Cn) = Bn − Cn − e

N
(eTBn − eTCn) = Bn − Cn.

Therefore, we get

B̃0,nb − C̃0,nc =
n�

i=1

B̃0,i−1(Bi − Ci)C̃i,nb+ C̃0,n(b − c)

=
n�

i=1

B̃0,i−1Λ(Bi − Ci)C̃i,nb+ C̃0,n(b− c).

Then, applying (141), (142) to {Bn}n≥1, {Cn}n≥1, b, c,
we get

��B̃0,nb− C̃0,nc
�� ≤

n�
i=1

��B̃0,i−1Λ
��	Bi − Ci	

��C̃i,nb
��

+
��C̃0,n(b− c)

��
≤4Nβn−1	b	

n�
i=1

	Bi − Ci	

+ 2N1/2βn	b− c	

≤Kβn(	b	 + 	c	)
n�

i=1

	Bi − Ci	

+Kβn	b− c	.

Hence, we have

	B1 · · ·Bnb− C1 · · ·Cnc	 =
��B̃0,nb− C̃0,nc

��
≤Kβn(	b	+	c	)

n�
i=1

	Bi − Ci	

+Kβn	b− c	.

APPENDIX B

In this section, we prove Lemma 4.1. We rely on the
following notation. r̃θ(y, x�|x) is the function defined for
θ ∈ Θ, x, x� ∈ X , y ∈ Y by

r̃θ(y, x�|x) = qθ(y|x�)pθ(x�|x). (143)

h̃θ,y(x|ξ, ζ) and H̃θ,y(ξ, ζ) are the functions defined for ξ ∈
P(X ), ζ ∈ Md

s(X ) by

h̃θ,y(x|ξ, ζ) =
�
r̃θ(y, x|x�)ζ(dx�) +

� ∇θ r̃θ(y, x|x�)ξ(dx�)��
r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

,

(144)

H̃θ,y(ξ, ζ) =
�
h̃θ,y(x|ξ, ζ)μ(dx), (145)

while f̃θ,y(x|ξ) and g̃θ,y(x|ξ, ζ) are defined as

f̃θ,y(x|ξ) =
�
r̃θ(y, x|x�)ξ(dx�)��

r̃θ(y, x��|x)μ(dx��)ξ(dx�)
,

g̃θ,y(x|ξ, ζ) = h̃θ,y(x|ξ, ζ) − f̃θ,y(x|ξ)H̃θ,y(ξ, ζ).

F̃θ,y(dx|ξ) and G̃θ,y(dx|ξ, ζ) are the measures defined forB ∈
B(X ) by

F̃θ,y(B|ξ) =
�

B

f̃θ,y(x|ξ)μ(dx),

G̃θ,y(B|ξ, ζ) =
�

B

g̃θ,y(x|ξ, ζ)μ(dx).

Measures F̃θ,y(dx|ξ) and G̃θ,y(dx|ξ, ζ) are also denoted by
F̃θ,y(ξ) and G̃θ,y(ξ, ζ) (short-hand notation). r̃m:n

θ,y (x�|x) is the
function recursively defined by

r̃m:m+1
θ,y (x�|x) = r̃θ(ym+1, x

�|x),
r̃m:n+1
θ,y (x�|x) =

�
r̃n:n+1
θ,y (x�|x��)r̃m:n

θ,y (x��|x)μ(dx��)

for n > m ≥ 0 and a sequence y = {yn}n≥0 in Y .
h̃m:n

θ,y (x|ξ, ζ) and H̃m:n
θ,y (ξ, ζ) are the functions defined by

hm:n
θ,y (x|ξ, ζ)=

�
rm:n
θ,y (x|x�)ζ(dx�)+� ∇θr

m:n
θ,y (x|x�)ξ(dx�)��

rm:n
θ,y (x��|x�)ξ(dx�)μ(dx��)

,

H̃m:n
θ,y (ξ, ζ)=

�
h̃m:n

θ,y (x|ξ, ζ)μ(dx), (146)

while f̃m:n
θ,y (x|ξ) and g̃m:n

θ,y (x|ξ, ζ) are defined as

f̃m:n
θ,y (x|ξ) =

�
r̃m:n
θ,y (x|x�)ξ(dx�)��

r̃m:n
θ,y (x��|x�)ξ(dx�)μ(dx��)

,

g̃m:n
θ,y (x|ξ, ζ) = h̃m:n

θ,y (x|ξ, ζ) − f̃m:n
θ,y (x|ξ)H̃m:n

θ,y (ξ, ζ).
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F̃m:m
θ,y (dx|ξ), F̃m:n

θ,y (dx|ξ) and G̃m:m
θ,y (dx|ξ, ζ), G̃m:n

θ,y (dx|ξ, ζ)
are the measures defined by F̃m:m

θ,y (B|ξ) = ξ(B),
G̃m:m

θ,y (B|ξ, ζ) = ζ(B) and

F̃m:n
θ,y (B|ξ) =

�
B

f̃m:n
θ,y (x|ξ)μ(dx),

G̃m:n
θ,y (B|ξ, ζ) =

�
B

g̃m:n
θ,y (x|ξ, ζ)μ(dx).

Measures F̃m:n
θ,y (dx|ξ) and G̃m:n

θ,y (dx|ξ, ζ) are also denoted by
F̃m:n

θ,y (ξ) and G̃m:n
θ,y (ξ, ζ) (short-hand notation). Then, it is easy

to show that F̃m:n
θ,y (ξ) and G̃m:n

θ,y (ξ, ζ) are the optimal filter and
its gradient, i.e.,

F̃ 0:n
θ,y (B|λ) = P

�
Xθ,ι

n ∈ B
��Y θ,ι

1:n = y1:n

�
,

G̃0:n
θ,y(B|λ,0) = ∇θF̃

0:n
θ,y (B|λ)

for each λ ∈ P(X ), n ≥ 1. Moreover, it is straightforward to
verify

F̃m:n+1
θ,y (ξ) = F̃θ,yn+1

�
F̃m:n

θ,y (ξ)
�
,

G̃m:n+1
θ,y (ξ, ζ) = G̃θ,yn+1

�
F̃m:n

θ,y (ξ), G̃m:n
θ,y (ξ, ζ)

�
for each ξ ∈ P(X ), ζ ∈ Md

s(X ), n ≥ m ≥ 0.
Remark: We recall here that Q stands for any compact set

satisfying Q ⊂ Θ.
Lemma A2.1: Let Assumptions 2.3 and 2.4 hold. Then,

there exists a real number C7,Q ∈ [1,∞) (independent of N
and depending only on pθ(x�|x), qθ(y|x)) such that��F̃θ,y(ξ) − F̃θ′,y(ξ)

�� ≤ C7,Q	θ − θ�	,��G̃θ,y(ξ, ζ) − G̃θ′,y(ξ, ζ)
�� ≤ C7,Q	θ − θ�	(1 + 	ζ	),��H̃θ,y(ξ, ζ) − H̃θ′,y(ξ�, ζ�)
��

≤ C7,Q(	θ − θ�	 + 	ξ − ξ�	)(1 + 	ζ	) + C7,Q	ζ − ζ�	
for all θ, θ� ∈ Q, ξ, ξ� ∈ P(X ), ζ, ζ� ∈ Md

s(X ).
Proof: Throughout the proof, the following notation is

used. θ, θ� are any elements of Q. x, x� are any elements
of X , while y is any element of Y . ξ, ξ� are any elements of
P(X ), while ζ, ζ� are any elements of Md

s(X ).
Let C̃1,Q = 2ε−3

Q K1,Q(1+ 	μ	) (εQ, K1,Q are specified in
Assumptions 2.3, 2.4, while μ(dx) is defined in Subsection II-
A). Owing to Assumption 2.3, we have

ε2Q ≤ εQpθ(x�|x) ≤ r̃θ(y, x�|x) ≤ 1
εQ
pθ(x�|x) ≤ 1

ε2Q
. (147)

Consequently, we get

εQ ≤
�
r̃θ(y, x�|x)μ(dx�) ≤ 1

εQ
, (148)

ε3Q ≤ f̃θ,y(x|ξ) ≤ 1
ε3Q

≤ C̃1,Q. (149)

Moreover, due to Assumptions 2.3, 2.4, we have

	∇θr̃θ(x�|y, x)	 ≤	∇θqθ(y|x�)	pθ(x�|x)
+ qθ(y|x�)	∇θpθ(x�|x)	

≤2K1,Q

εQ
. (150)

Therefore, we get

��h̃θ,y(x|ξ, ζ)
�� ≤

� 	∇θr̃θ(y, x|x�)	ξ(dx�)��
r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

+
�
r̃θ(y, x|x�)|ζ|(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

≤2K1,Q

ε3Q
(1 + 	ζ	) ≤ C̃1,Q(1 + 	ζ	). (151)

Hence, we have��H̃θ,y(ξ, ζ)
�� ≤

�
	h̃θ,y(x|ξ, ζ)	μ(dx)

≤2K1,Q	μ	
ε3Q

(1 + 	ζ	) ≤ C̃1,Q(1 + 	ζ	).

(152)

Let C̃2,Q = 6ε−3
Q C̃1,QK

2
1,Q(1 + 	μ	). Due to Assumptions

2.3, 2.4, we have

|r̃θ(x�|y, x)−r̃θ′(x�|y, x)| ≤|qθ(y|x�)−qθ′(y|x�)|pθ(x�|x)
+ qθ′(y|x�)|pθ(x�|x)−pθ′(x�|x)|

≤2K1,Q

εQ
	θ − θ�	. (153)

Owing to Assumptions 2.3, 2.4, we also have

	∇θr̃θ(x�|y, x) −∇θ r̃θ′(x�|y, x)	
≤ 	∇θqθ(y|x�) −∇θqθ′(y|x�)	pθ(x�|x)

+ 	∇qθ′(y|x�)	|pθ(x�|x) − pθ′(x�|x)|
+ |qθ(y|x�) − qθ′(y|x�)|	∇θpθ(x�|x)	
+ qθ′(y|x�)	∇θpθ(x�|x) −∇θpθ′(x�|x)	

≤ 4K2
1,Q

εQ
	θ − θ�	. (154)

Then, using (148), (149), (153), we conclude��f̃θ,y(x|ξ) − f̃θ′,y(x|ξ)��
≤
� |r̃θ(y, x|x�) − r̃θ′(y, x|x�)|ξ(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

+
�� |r̃θ(y, x��|x�)−r̃θ′(y, x��|x�)|μ(dx��)ξ(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

· f̃θ′,y(x|ξ)

≤
�

2K1,Q

ε2Q
+

2C̃1,QK1,Q	μ	
ε2Q

�
	θ − θ�	

≤ C̃2,Q	θ − θ�	. (155)

Similarly, relying on (148), (151), (153), (154), we deduce��h̃θ,y(x|ξ, ζ) − h̃θ′,y(x|ξ, ζ)��
≤
� |r̃θ(y, x|x�) − r̃θ′(y, x|x�)| |ζ|(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

+
� 	∇θr̃θ(y, x|x�) −∇θ r̃θ′(y, x|x�)	ξ(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

+
�� |r̃θ(y, x��|x�) − r̃θ′(y, x��|x�)|μ(dx��)ξ(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ(dx�)

· ��h̃θ′,y(x|ξ, ζ)��
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≤ 2K1,Q

ε2Q
	θ − θ�		ζ	 +

4K2
1,Q

ε2Q
	θ − θ�	

+
2C̃1,QK1,Q	μ	

ε2Q
	θ − θ�	(1+	ζ	)

≤ C̃2,Q	θ − θ�	(1 + 	ζ	). (156)

Moreover, (147) – (151) imply��h̃θ,y(ξ, ζ) − h̃θ,y(ξ�, ζ�)
��

≤
� 	∇θr̃θ(y, x|x�)	|ξ − ξ�|(dx�)��

r̃θ(y, x��|x�)μ(dx��)ξ�(dx�)

+
�
r̃θ(y, x|x�)|ζ − ζ�|(dx�)��
r̃θ(y, x��|x�)μ(dx��)ξ�(dx�)

+
��h̃θ,y(ξ, ζ)

���� r̃θ(y, x��|x�)μ(dx��)|ξ − ξ�|(dx�)��
r̃θ(y, x��|x�)μ(dx��)ξ�(dx�)

≤ 2K1,Q

ε2Q
	ξ − ξ�	 +

1
ε3Q

	ζ − ζ�	 +
C̃1,Q

ε3Q
	ξ − ξ�	(1 + 	ζ	)

≤ C̃2,Q	ξ − ξ�	(1 + 	ζ	) + C̃2,Q	ζ − ζ�	. (157)

Let C̃3,Q = 2C̃1,QC̃2,Q(1+	μ	). Then, (148), (149), (151),
(155), (156) imply��g̃θ,y(x|ξ, ζ) − g̃θ′,y(x|ξ, ζ)��

≤ ��h̃θ,y(x|ξ, ζ) − h̃θ′,y(x|ξ, ζ)��
+
��f̃θ,y(x|ξ) − f̃θ′,y(x|ξ)�� � ��h̃θ,y(x�|ξ, ζ)

��μ(dx�)

+ f̃θ′,y(x|ξ)
� ��h̃θ,y(x�|ξ, ζ) − h̃θ′,y(x�|ξ, ζ)��μ(dx�)

≤ (C̃2,Q + 2C̃1,QC̃2,Q	μ	)	θ − θ�	(1 + 	ζ	)
≤ C̃3,Q	θ − θ�	(1 + 	ζ	). (158)

Moreover, (156) yields��H̃θ,y(ξ, ζ) − H̃θ′,y(ξ, ζ)
��

≤
� ��h̃θ,y(x|ξ, ζ) − h̃θ′,y(x|ξ, ζ)

��μ(dx)

≤ C̃2,Q	μ		θ− θ�	(1 + 	ζ	) ≤ C̃3,Q	θ − θ�	(1 + 	ζ	).
(159)

Similarly, (157) implies��H̃θ,y(ξ, ζ) − H̃θ,y(ξ�, ζ�)
��

≤
� ��h̃θ,y(x|ξ, ζ) − h̃θ,y(x|ξ�, ζ�)

��μ(dx)

≤ C̃2,Q	μ		ξ − ξ�	(1 + 	ζ	) + C̃2,Q	μ		ζ − ζ�	
≤ C̃3,Q	ξ − ξ�	(1 + 	ζ	) + C̃3,Q	ζ − ζ�	. (160)

Let C7,Q = C̃3,Q(1+	μ	). Then, using (155), we conclude��F̃θ,y(ξ) − F̃θ′,y(ξ)
��

≤
� ��f̃θ,y(x|ξ) − f̃θ′,y(x|ξ)��μ(dx)

≤ C̃1,Q	μ		θ− θ�	 ≤ C7,Q	θ − θ�	

(notice that C̃1,Q ≤ C̃3,Q). Similarly, relying on (158),
we deduce

��G̃θ,y(ξ, ζ) − G̃θ′,y(ξ, ζ)
��

≤
� ��g̃θ,y(x|ξ, ζ) − g̃θ′,y(x|ξ, ζ)

��μ(dx)

≤ C̃3,Q	μ		θ − θ�	(1 + 	ζ	) ≤ C7,Q	θ − θ�	(1 + 	ζ	).

Moreover, combining (159), (160), we get

��H̃θ,y(ξ, ζ) − H̃θ′,y(ξ�, ζ�)
��

≤ ��H̃θ,y(ξ, ζ) − H̃θ′,y(ξ, ζ)
��+
��H̃θ′,y(ξ, ζ) − H̃θ′,y(ξ�, ζ�)

��
≤ C̃3,Q(	θ − θ�	 + 	ξ − ξ�	)(1 + 	ζ	) + C̃3,Q	ζ − ζ�	
≤ C7,Q(	θ − θ�	 + 	ξ − ξ�	)(1 + 	ζ	) + C7,Q	ζ − ζ�	.

Lemma A2.2: Let Assumptions 2.3 and 2.4 hold. Then,
the following is true:

(i) There exist real numbers ρ4,Q ∈ (0, 1), C8,Q ∈ [1,∞)
(independent of N and depending only on pθ(x�|x), qθ(y|x))
such that

��G̃m:n
θ,y (ξ, ζ)

�� ≤ C8,Q(1 + 	ζ	), (161)��F̃m:n
θ,y (ξ) − F̃m:n

θ,y (ξ�)
�� ≤ C8,Qρ

n−m
4,Q 	ξ − ξ�	, (162)��G̃m:n

θ,y (ξ, ζ) − G̃m:n
θ,y (ξ�, ζ�)

��
≤ C8,Qρ

n−m
4,Q 	ξ − ξ�	(1 + 	ζ	) + C8,Qρ

n−m
4,Q 	ζ − ζ�	

(163)

for all θ ∈ Q, ξ, ξ� ∈ P(X ), ζ, ζ� ∈ Md
s(X ), n ≥ m ≥ 0 and

any sequence y = {yn}n≥0 in Y .
(ii) There exists a real number C9,Q ∈ [1,∞) (independent

of N and depending only on pθ(x�|x), qθ(y|x)) such that

��F̃m:n
θ,y (ξ) − F̃m:n

θ′,y (ξ)
�� ≤ C9,Q	θ − θ�	,��G̃m:n

θ,y (ξ, ζ) − G̃m:n
θ′,y(ξ, ζ)

�� ≤ C9,Q	θ − θ�	(1 + 	ζ	)

for all θ, θ� ∈ Q, ξ ∈ P(X ), ζ ∈ Md
s(X ), n ≥ m ≥ 0 and

any sequence y = {yn}n≥0 in Y .
Proof: (i) See [29, Theorems 3.1, 3.2] (or [32, Theo-

rem 2.2]).
(ii) Throughout this part of the proof, the following notation

is used. θ, θ� are any elements of Q. ξ, ζ are any elements of
P(X ), Md

s(X ) (respectively). y = {yn}n≥0 is any sequence
in Y . n,m are any integers satisfying n > m ≥ 0.

It is straightforward to verify

F̃m:n
θ,y (ξ) − F̃m:n

θ′,y (ξ)

=
n−1�
i=m

�
F̃ i:n

θ,y



F̃m:i

θ′,y(ξ)
�− F̃ i+1:n

θ,y



F̃m:i+1

θ′,y (ξ)
��

=
n−1�
i=m

�
F̃ i+1:n

θ,y



F̃θ,yi



F̃m:i

θ′,y(ξ)
��− F̃ i+1:n

θ,y



F̃m:i+1

θ′,y (ξ)
��
.

(164)
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It is also easy to show

G̃m:n
θ,y (ξ, ζ) − G̃m:n

θ′,y(ξ, ζ)

=
n−1�
i=m

�
G̃i:n

θ,y



F̃m:i

θ′,y(ξ), G̃m:i
θ′,y(ξ, ζ)

�
− G̃i+1:n

θ,y



F̃m:i+1

θ′,y (ξ), G̃m:i+1
θ′,y (ξ, ζ)

��

=
n−1�
i=m

�
G̃i+1:n

θ,y



F̃θ,yi



F̃m:i

θ′,y(ξ)
�
, G̃θ,yi



F̃m:i

θ′,y(ξ), G̃m:i
θ′,y(ξ, ζ)

��
− G̃i+1:n

θ,y



F̃m:i+1

θ′,y (ξ), G̃m:i+1
θ′,y (ξ, ζ)

��
. (165)

Let C9,Q = 4C7,QC
2
8,Q(1 − ρ4,Q)−1 (C7,Q is specified in

Lemma A2.1). Relying on Lemma A2.1 and (162), (164),
we deduce��F̃m:n

θ,y (ξ) − F̃m:n
θ′,y (ξ)

��
≤

n−1�
i=m

���F̃ i+1:n
θ,y



F̃θ,yi



F̃m:i

θ′,y(ξ)
��− F̃ i+1:n

θ,y



F̃m:i+1

θ′,y (ξ)
����

≤ C8,Q

n−1�
i=m

ρn−i−1
4,Q

���F̃θ,yi



F̃m:i

θ′,y(ξ)
�− F̃θ′,yi



F̃m:i

θ′,y(ξ)
����

≤ C7,QC8,Q	θ − θ�	
n−1�
i=m

ρn−i−1
4,Q

≤ C7,QC8,Q(1 − ρ4,Q)−1	θ − θ�	 ≤ C9,Q	θ − θ�	.
Similarly, using (163), (165), we conclude��G̃m:n

θ,y (ξ, ζ) − G̃m:n
θ′,y(ξ, ζ)

��
≤

n−1�
i=m

���G̃i+1:n
θ,y



F̃θ,yi



F̃m:i

θ′,y(ξ)
�
, G̃θ,yi



F̃m:i

θ′,y(ξ), G̃m:i
θ′,y(ξ, ζ)

��
− G̃i+1:n

θ,y



F̃m:i+1

θ′,y (ξ), G̃m:i+1
θ′,y (ξ, ζ)

����
≤C8,Q

n−1�
i=m

ρn−i−1
4,Q

���F̃θ,yi



F̃m:i

θ′,y(ξ)
�− F̃θ′,yi



F̃m:i

θ′,y(ξ)
����

·
�
1 +

��G̃m:i+1
θ′,y (ξ, ζ)

���

+ C8,Q

n−i−1�
i=m

ρn−i−1
4,Q

���G̃θ,yi



F̃m:i

θ′,y(ξ), G̃m:i
θ′,y(ξ, ζ)

�
−G̃θ′,yi



F̃m:i

θ′,y(ξ), G̃m:i
θ′,y(ξ, ζ)

����.
Consequently, Lemma A2.1 and (161) imply��G̃m:n

θ,y (ξ, ζ) − G̃m:n
θ′,y(ξ, ζ)

��
≤C7,QC8,Q	θ − θ�	

n−1�
i=m

ρn−i−1
4,Q

�
1 +

��G̃m:i+1
θ′,y (ξ, ζ)

���

+ C7,QC8,Q	θ − θ�	
n−1�
i=m

ρn−i−1
4,Q

�
1 +

��G̃m:i
θ′,y(ξ, ζ)

���

≤ 4C7,QC
2
8,Q	θ − θ�	(1 + 	ζ	)

n−1�
i=m

ρn−i−1
4,Q

≤ 4C7,QC
2
8,Q(1 − ρ4,Q)−1	θ − θ�	(1 + 	ζ	)

= C9,Q	θ − θ�	(1 + 	ζ	).

Proof of Lemma 4.1: (i) See [32, Theorem 3.1].
(ii) and (iii) Throughout these parts of the proof, Ex,y(·)

and EX0,Y0(·) denote the conditional expectations E(·|X0 =
x, Y0 = y) and E(·|X0, Y0) (respectively). Due to [32,
Proposition 7.2], there exist real numbers βQ ∈ (0, 1), C̃1,Q ∈
[1,∞) (independent of N and depending only on pθ(x�|x),
qθ(y|x)) such that���Ex,y

�
H̃θ,Yn



F̃ 0:n−1

θ,Y (ξ), G̃0:n−1
θ,Y (ξ, ζ)

� −∇l(θ)
����

≤ C̃1,Qβ
n
Q(1 + 	ζ	) (166)

for all θ ∈ Q, x ∈ X , y ∈ Y , ξ ∈ P(X ), ζ ∈ Md
s(X ), n ≥ 1.

Throughout the proof of (ii), (iii), the following notation is
used, too. θ, θ, θ� are any elements of Q. x, y are any elements
of X , Y (respectively), while B, ξ, ζ are any elements
of B(X ), P(X ), Md

s(X ) (respectively). y = {yn}n≥0 is
any sequence in Y . n is any positive integer. α̃θ,y(dx|ξ),
β̃θ,y(dx|ξ, ζ) are the measures defined by

α̃θ,y(B|ξ) =

�
B
qθ(y|x)ξ(dx)�
qθ(y|x)ξ(dx) ,

β̃θ,y(B|ξ, ζ) =

�
B qθ(y|x)ζ(dx) +

�
B ∇θqθ(y|x)ξ(dx)�

qθ(y|x)ξ(dx) .

It is straightforward to verify

F 0:n
θ,y (B|ξ) =

��
IB(x�)pθ(x�|x)μ(dx�)

· F̃ 0:n−1
θ,y



dx|α̃θ,y0(ξ)

�
,

(167)

G0:n
θ,y(B|ξ, ζ) =

��
IB(x�)∇θpθ(x�|x)μ(dx�)

· F̃ 0:n−1
θ,y



dx|α̃θ,y0(ξ)

�
+
��

IB(x�)pθ(x�|x)μ(dx�)

· G̃0:n−1
θ,y



dx|α̃θ,y0(ξ), β̃θ,y0(ξ, ζ)

�
.

(168)

(for a detailed derivation of (167), (168), see [33,
Lemma SM2.1]). Then, using (26), (146), we conclude

Hθ,yn



F 0:n

θ,y (ζ), G0:n
θ,y(ξ, ζ)

�
= H̃θ,yn



F̃ 0:n−1

θ,y



α̃θ,y0(ξ)

�
, G̃0:n−1

θ,y



α̃θ,y0(ξ), β̃θ,y0(ξ, ζ)

��
.

Hence, we have

Ex,y



Hθ,Yn



F 0:n

θ,Y (ζ), G0:n
θ,Y (ξ, ζ)

��
= Ex,y

�
H̃θ,Yn



F̃ 0:n−1

θ,Y



α̃θ,y(ξ)

�
,

G̃0:n−1
θ,Y



α̃θ,y(ξ), β̃θ,y(ξ, ζ)

���
. (169)

Let C̃2,Q = ε−2
Q K1,Q, C̃3,Q = 5C7,QC8,QC9,Q, while

C1,Q = 3C8,QC̃2,Q(1+	μ	) (εQ, K1,Q, C7,Q, C8,Q are spec-
ified in Assumption 2.3, 2.4 and Lemmas A2.1, A2.2, while
μ(dx) is defined in Subsection II-A). Owing to Assumptions
2.3, 2.4, we have��β̃θ,y(ξ, ζ)

�� ≤
�
qθ(y|x)|ζ|(dx) +

� 	∇θqθ(y|x)	ξ(dx)�
qθ(y|x)ξ(dx)

≤ 1
ε2Q

	ζ	 +
K1,Q

εQ
≤ C̃2,Q(1 + 	ζ	). (170)
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Consequently, Assumption 2.4, Lemma A2.2 and (168) yield��G0:n
θ,y(ξ, ζ)

��
≤
��

	∇θpθ(x�|x)	μ(dx�)F̃ 0:n−1
θ,y



dx|α̃θ,y0(ξ)

�
+
��

pθ(x�|x)μ(dx�)
��G̃0:n−1

θ,y

��
dx|α̃θ,y0(ξ), β̃θ,y0(ξ, ζ)
�

≤ K1,Q	μ	 +
��G̃0:n−1

θ,y



α̃θ,y0(ξ), β̃θ,y0(ξ, ζ)

���
≤ K1,Q	μ	 + C8,Q

�
1 +

��β̃θ,y0(ξ, ζ)
���

≤ K1,Q	μ	 + 2C8,QC̃2,Q(1 + 	ζ	) ≤ C1,Q(1 + 	ζ	).
Hence, (iii) holds.

Combining (166), (169), (170), we get��Ex,y



Hθ,Yn



F 0:n

θ,Y (ξ), G0:n
θ,Y (ξ, ζ)

�−∇l(θ)���
≤ C̃1,Qβ

n
Q

�
1 +

��β̃θ,y(ξ, ζ)
��� ≤ 2C̃1,QC̃2,Qβ

n
Q(1 + 	ζ	).

Therefore, we have��E 
Hθ,Yn



F 0:n

θ,Y (ξ), G0:n
θ,Y (ξ, ζ)

��−∇l(θ)��
≤ E


��EX0,Y0



Hθ,Yn



F 0:n

θ,Y (ξ), G0:n
θ,Y (ξ, ζ)

�−∇l(θ)����
≤ 2C̃1,QC̃2,Qβ

n
Q(1 + 	ζ	).

Thus, (29) holds.
Owing to Lemmas A2.1, A2.2, we have���H̃θ,Yn



F̃ 0:n−1

θ,Y (ξ), G̃0:n−1
θ,Y (ξ, ζ)

�
− H̃θ′,Yn



F̃ 0:n−1

θ′,Y (ξ), G̃0:n−1
θ′,Y (ξ, ζ)

����
≤ C7,Q

�
	θ − θ�	 +

��F̃ 0:n−1
θ,Y (ξ) − F̃ 0:n−1

θ′,Y (ξ)
���

·
�
1 +

��G̃0:n−1
θ,Y (ξ, ζ)

���
+ C7,Q

��G̃0:n−1
θ,Y (ξ, ζ) − G̃0:n−1

θ′,Y (ξ, ζ)
��

≤ 5C7,QC8,QC9,Q	θ − θ�	(1 + 	ζ	)
≤ C̃3,Q	θ − θ�	(1 + 	ζ	).

Moreover, due to (166), we have���E �H̃θ,Yn



F̃ 0:n−1

θ,Y (ξ), G̃0:n−1
θ,Y (ξ, ζ)

�� −∇l(θ)
���

≤E
����EX0,Y0

�
H̃θ,Yn



F̃ 0:n−1

θ,Y (ξ), G̃0:n−1
θ,Y (ξ, ζ)

�−∇l(θ)
�����

≤ C̃1,Qβ
n
Q(1 + 	ζ	).

Therefore, we get

	∇l(θ) −∇l(θ�)	
≤ E

����H̃θ,Yn



F̃ 0:n−1

θ,Y (ξ), G̃0:n−1
θ,Y (ξ, ζ)

�
− H̃θ′,Yn



F̃ 0:n−1

θ′,Y (ξ), G̃0:n−1
θ′,Y (ξ, ζ)

�����
+
���E �H̃θ,Yn



F̃ 0:n−1

θ,Y (ξ), G̃0:n−1
θ,Y (ξ, ζ)

��−∇l(θ)
���

+
���E �H̃θ′,Yn



F̃ 0:n−1

θ′,Y (ξ), G̃0:n−1
θ′,Y (ξ, ζ)

��−∇l(θ�)
���

≤ C̃3,Q	θ − θ�	(1 + 	ζ	) + 2C̃1,Qβ
n
Q(1 + 	ζ	).

Letting n→ ∞, we deduce

	∇l(θ) −∇l(θ�)	 ≤ C̃3,Q	θ − θ�	.
Since Q is any compact set in Θ, we deduce that (ii) holds.
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[33] V. Z. B. Tadić and A. Doucet, “Bias of particle approximations to
optimal filter derivative,” 2018, arXiv:1806.09590. [Online]. Available:
http://arxiv.org/abs/1806.09590

[34] J. L. Taylor, Several Complex Variables With Connections to Algebraic
Geometry and Lie Groups. Providence, RI, USA: American Mathemat-
ical Society, 2002.

[35] Y. Yomdin, “The geometry of critical and near-critical values of differen-
tiable mappings,” Mathematische Annalen, vol. 264, no. 4, pp. 495–515,
Sep. 1983.
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