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ASYMPTOTIC BIAS OF STOCHASTIC GRADIENT SEARCH

BY VLADISLAV B. TADIĆ AND ARNAUD DOUCET1

University of Bristol and University of Oxford

The asymptotic behavior of the stochastic gradient algorithm using bi-
ased gradient estimates is analyzed. Relying on arguments based on dynamic
system theory (chain-recurrence) and differential geometry (Yomdin theorem
and Lojasiewicz inequalities), upper bounds on the asymptotic bias of this al-
gorithm are derived. The results hold under mild conditions and cover a broad
class of algorithms used in machine learning, signal processing and statistics.
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1. Introduction. Many problems in automatic control, system identification,
signal processing, machine learning, operations research and statistics can be
posed as a stochastic optimization problem, that is, as a minimization (or max-
imization) of an unknown objective function whose values are available only
through noisy observations. Such a problem can be solved efficiently by stochastic
gradient search (also known as the stochastic gradient algorithm). Stochastic gra-
dient search is a procedure of the stochastic approximation type which iteratively
approximates the minima of the objective function using a statistical or Monte
Carlo estimator of the gradient of the objective function. Often, the estimator is
biased, since unbiased gradient estimation is usually either too computationally
expensive or not available at all. As a result of using biased gradient estimates, the
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stochastic gradient search is also biased, that is, the algorithm does not converge
to the minima, but to their vicinity. In order to interpret the results produced by
such an algorithm and to tune the algorithm’s parameters (e.g., to achieve a better
bias/variance tradeoff and a better convergence rate), it is important to study the
asymptotic behavior and the asymptotic bias of the algorithm iterates.

Despite its practical and theoretical importance, the asymptotic behavior of
stochastic gradient search using biased gradient estimates (also referred to as bi-
ased stochastic gradient search) has not attracted much attention in the literature.
To the best of the authors’ knowledge, this has only been analyzed in [11, 15, 16]
and [14]. Although these results provide a good insight, they hold under restrictive
conditions which are very hard to verify for complex stochastic gradient algo-
rithms. Moreover, unless the objective function is of a simple form (e.g., convex
or polynomial), none of these papers offers explicit bounds on the asymptotic bias
of the algorithm iterates.

In this paper, we provide an original analysis of the asymptotic behavior of bi-
ased stochastic gradient search. Using arguments based on dynamic system theory
(chain-recurrence) and differential geometry (Yomdin theorem and Lojasiewicz
inequalities), we prove that the algorithm iterates converge to a vicinity of the set
of minima. Relying on the same arguments, we also derive upper bounds on the
radius of the vicinity (i.e., on the asymptotic bias of the algorithm iterates). Our
results hold under mild and easily verifiable conditions and cover a broad class of
complex stochastic gradient algorithms. We illustrate here how these results can
be applied to the asymptotic analysis of a popular policy-gradient (reinforcement)
learning algorithm proposed in [2]. In [33] (an extended version of this paper),
these results have also been used to evaluate the asymptotic bias of an adaptive
population Monte Carlo method and the asymptotic bias of recursive maximum
split-likelihood estimation procedure for hidden Markov models.

The rest of this paper is organized as follows. The main results are presented
in Section 2, where the biased stochastic gradient search is analyzed. In Section 3,
these general results are applied to stochastic gradient algorithms with Markovian
dynamics. In Section 4, we apply the results of Sections 2 and 3 to a policy-gradient
algorithm. The results presented in Sections 2–4 are proved in Sections 5–8.

2. Main results. In this section, the asymptotic behavior of the following al-
gorithm is analyzed:

θn+1 = θn − αn

(∇f (θn) + ξn

)
, n ≥ 0.(2.1)

Here, f :Rdθ →R is a differentiable function, while {αn}n≥0 is a sequence of pos-
itive real numbers. θ0 is an R

dθ -valued random variable defined on a probability
space (�,F,P ), while {ξn}n≥0 is an R

dθ -valued stochastic process defined on the
same probability space. To allow more generality, we assume that for each n ≥ 0,
ξn is a random function of θ0, . . . , θn. In the area of stochastic optimization, recur-
sion (2.1) is known as a stochastic gradient search or stochastic gradient algorithm.
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The recursion minimizes the objective function f (·). The term ∇f (θn) + ξn is in-
terpreted as an estimator of the gradient ∇f (θn), ξn representing the estimator’s
noise. For further details, see [27, 30] and references given therein.

Throughout the paper, the following notation is used. ‖ · ‖ and d(·, ·) stand for
the Euclidean norm and the distance induced by the Euclidean norm (respectively).
For t ∈ (0,∞) and n ≥ 0, a(n, t) is the integer defined as

a(n, t) = max

{
k ≥ n :

k−1∑
i=n

αi ≤ t

}
.

S and f (S) denote the sets of stationary points and critical values of f (·), that is,

S = {
θ ∈ R

dθ : ∇f (θ) = 0
}
, f (S) = {

f (θ) : θ ∈ S
}
.(2.2)

For θ ∈ R
dθ , π(·; θ) is the solution to the ODE dθ/dt = −∇f (θ) satisfying

π(0; θ) = θ . R denotes the set of chain-recurrent points of this ODE, that is, θ ∈ R
if and only if for any δ, t ∈ (0,∞), there exist an integer N ≥ 1, real numbers
t1, . . . , tN ∈ [t,∞) and vectors ϑ1, . . . , ϑN ∈ R

dθ (each of which can depend on θ ,
δ, t) such that

(2.3) ‖ϑ1 − θ‖ ≤ δ,
∥∥π(tN ;ϑN) − θ

∥∥ ≤ δ,
∥∥ϑk+1 − π(tk;ϑk)

∥∥ ≤ δ

for 1 ≤ k < N .
Elements of R can be considered as limits to slightly perturbed solutions to the

ODE dθ/dt = −∇f (θ). As the piecewise linear interpolation of sequence {θn}n≥0
falls into the category of such solutions, the concept of chain-recurrence is tightly
connected to the asymptotic behavior of stochastic gradient search. In [3, 4], it has
been shown that for unbiased gradient estimates, all limit points of {θn}n≥0 belong
to R and that each element of R can potentially be a limit point of {θn}n≥0 with a
nonzero probability.

If f (·) is Lipschitz continuously differentiable, it can be established that S ⊆ R.
If additionally f (S) is of a zero Lebesgue measure (which holds when f (S) is dis-
crete or when f (·) is dθ -times continuously differentiable), then S = R. However,
if f (·) is only Lipschitz continuously differentiable, then it is possible to have
R \S 
=∅ (see [18], Section 4). Hence, in general, a limit point of {θn}n≥0 is in R
but not necessarily in S . For more details on chain-recurrence, see [3, 4, 11] and
references therein. Given these results, it will prove useful to involve both R and
S in the asymptotic analysis of biased stochastic gradient search.

The algorithm (2.1) is here analyzed under the following assumptions.

ASSUMPTION 2.1. limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

ASSUMPTION 2.2. {ξn}n≥0 admits the decomposition ξn = ζn + ηn for each
n ≥ 0. {ζn}n≥0 and {ηn}n≥0 are R

dθ -valued stochastic processes [defined on
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(�,F,P )] which satisfy

lim
n→∞ max

n≤k<a(n,t)

∥∥∥∥∥
k∑

i=n

αiζi

∥∥∥∥∥ = 0, lim sup
n→∞

‖ηn‖ < ∞(2.4)

almost surely on {supn≥0 ‖θn‖ < ∞} for any t ∈ (0,∞).

ASSUMPTION 2.3.a. ∇f (·) is locally Lipschitz continuous on R
dθ .

ASSUMPTION 2.3.b. f (·) is p-times differentiable on R
dθ , where p > dθ .

ASSUMPTION 2.3.c. f (·) is real-analytic on R
dθ .

REMARK. Due to Assumption 2.1, a(n, t) is well defined and finite for all
t ∈ (0,∞), n ≥ 0.

Assumption 2.1 corresponds to the step-size sequence {αn}n≥0 and is commonly
used in the asymptotic analysis of stochastic gradient algorithms. It is satisfied if
αn = n−a for n ≥ 1, where a ∈ (0,1].

Assumption 2.2 is a noise condition. It can be interpreted as a decomposition of
the gradient estimator’s noise {ξn}n≥0 into a zero-mean sequence {ζn}n≥0 (which
is averaged out by step-sizes {αn}n≥0) and the estimator’s bias {ηn}n≥0. Assump-
tion 2.2 is satisfied if {ζn}n≥0 is a martingale-difference or mixingale sequence,
and if {ηn}n≥0 are continuous functions of {θn}n≥0. It also holds for gradient search
with Markovian dynamics (see Section 3). If the gradient estimator is asymptoti-
cally unbiased (i.e., limn→∞ ηn = 0 almost surely), Assumption 2.2 reduces to the
Kushner–Clark condition, the weakest noise assumption under which the almost
sure convergence of (2.1) can be demonstrated.

Assumptions 2.3.a, 2.3.b and 2.3.c are related to the objective function f (·) and
its analytical properties. Assumption 2.3.a is involved in practically any asymp-
totic result for stochastic gradient search (as well as in many other asymptotic
and nonasymptotic results for stochastic and deterministic optimization). Although
much more restrictive than Assumption 2.3.a, Assumptions 2.3.b and 2.3.c hold for
a number of algorithms routinely used in engineering, statistics, machine learning
and operations research. In Section 4, Assumptions 2.3.b and 2.3.c are shown to
hold for a policy-gradient algorithm. In [33], the same assumptions are verified
for an adaptive population Monte Carlo method and for recursive maximum split-
likelihood estimation in hidden Markov models. In [31], Assumption 2.3.c (which
is a special case of Assumption 2.3.b) has been shown to hold for recursive max-
imum (full) likelihood estimation in hidden Markov models. In [32], the same
assumption has also been verified for supervised and temporal-difference learn-
ing, online principal component analysis, Monte Carlo optimization of controlled
Markov chains and recursive parameter estimation in linear stochastic systems.
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Compared to Assumption 2.3.a, Assumptions 2.3.b and 2.3.c allow some so-
phisticated results from differential geometry to be applied to the asymptotic anal-
ysis of stochastic gradient search. More specifically, Yomdin theorem (a qualitative
version of the Morse–Sard theorem; see [34] and Proposition 6.1 in Section 6) can
be applied to functions satisfying Assumption 2.3.b, while Lojasiewicz inequali-
ties (see [23, 24]; see also Proposition 6.2 in Section 6) hold for functions verifying
Assumption 2.3.c. Using the Yomdin theorem and Lojasiewicz inequalities, a more
precise characterization of the asymptotic bias of the stochastic gradient search can
be obtained [see Parts (ii) and (iii) of Theorem 2.1].

In order to state the main results of this section, we need some further notation.
Let η denote the asymptotic magnitude of the gradient estimator’s bias {ηn}n≥0,
that is,

η = lim sup
n→∞

‖ηn‖.(2.5)

Moreover, for a compact set Q ⊂ R
dθ , let �Q denote the event

�Q = lim inf
n→∞ {θn ∈ Q} =

∞⋃
n=0

∞⋂
k=n

{θk ∈ Q}.(2.6)

With this notation, our main result on the asymptotic bias of the recursion (2.1)
can be stated as follows.

THEOREM 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Let Q ⊂ R
dθ be

any compact set. Then the following are true:

(i) If f (·) satisfies Assumption 2.3.a, there exists a (deterministic) nondecreas-
ing function ψQ : [0,∞) → [0,∞) [independent of η and depending only on f (·)]
such that limt→0 ψQ(t) = ψQ(0) = 0 and

lim sup
n→∞

d(θn,R) ≤ ψQ(η)(2.7)

almost surely on �Q.
(ii) If f (·) satisfies Assumption 2.3.b, there exists a real number KQ ∈ (0,∞)

[independent of η and depending only on f (·)] such that

lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ KQηq/2,(2.8)

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≤ KQηq(2.9)

almost surely on �Q, where q = (p − dθ )/(p − 1).
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(iii) If f (·) satisfies Assumption 2.3.c, there exist real numbers rQ ∈ (0,1),
LQ ∈ (0,∞) [independent of η and depending only on f (·)] such that

lim sup
n→∞

d(θn,S) ≤ LQηrQ,(2.10)

lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ LQη1/2,(2.11)

lim sup
n→∞

d
(
f (θn), f (S)

) ≤ LQη(2.12)

almost surely on �Q.

Theorem 2.1 is proved in Sections 5 and 6, while its global version is provided
in Appendix A.

REMARK. If Assumption 2.3.b (or Assumption 2.3.c) is satisfied, then S = R.
Hence, under Assumption 2.3.b, (2.7) still holds if R is replaced with S .

REMARK. Function ψQ(·) depends on f (·) in two ways. First, it depends on
f (·) through R and its geometric properties. Second, it depends on f (·) through
upper bounds of ‖∇f (·)‖ and Lipschitz constants of ∇f (·). An explicit construc-
tion of ψQ(·) is provided in the proof of Part (i) of Theorem 2.1 (Section 5).

REMARK. Like ψQ(·), constants KQ and LQ depend on f (·) through upper
bounds of ‖∇f (·)‖ and Lipschitz constants of ∇f (·). KQ and LQ also depend on
f (·) through the Yomdin and Lojasiewicz constants (quantities MQ, M1,Q, M2,Q

specified in Propositions 6.1, 6.2). Explicit formulas for KQ and LQ are included
in the proof of Parts (ii) and (iii) of Theorem 2.1 (Section 6).

According to the literature on stochastic optimization and stochastic approxima-
tion, stochastic gradient search with unbiased gradient estimates (the case when
η = 0) exhibits the following asymptotic behavior. Under mild conditions, se-
quences {θn}n≥0 and {f (θn)}n≥0 converge to R and f (R) (respectively), that is,

lim
n→∞d(θn,R) = 0, lim

n→∞d
(
f (θn), f (R)

) = 0(2.13)

almost surely on {supn≥0 ‖θn‖ < ∞} (see [4], Proposition 4.1, Theorem 5.7, which
hold under Assumptions 2.1, 2.2, 2.3.a). Under more restrictive conditions, se-
quences {θn}n≥0 and {f (θn)}n≥0 converge to S and a point in f (S) (respectively),
that is,

lim
n→∞d(θn,S) = 0, lim

n→∞∇f (θn) = 0,(2.14)

lim
n→∞d

(
f (θn), f (S)

) = 0, lim sup
n→∞

f (θn) = lim inf
n→∞ f (θn)(2.15)
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almost surely on {supn≥0 ‖θn‖ < ∞} (see [4], Corollary 6.7, which holds under
Assumptions 2.1, 2.2, 2.3.b). The same asymptotic behavior occurs when As-
sumptions 2.1, 2.3.a hold and {ξn}n≥0 is a martingale-difference sequence (see
[9], Proposition 1). When the gradient estimator is biased (the case where η > 0),
(2.13)–(2.15) are not true any more. Now, the quantities

lim sup
n→∞

d(θn,R), lim sup
n→∞

∥∥∇f (θn)
∥∥,(2.16)

lim sup
n→∞

d
(
f (θn), f (R)

)
, lim sup

n→∞
f (θn) − lim inf

n→∞ f (θn)(2.17)

are strictly positive and depend on η (it is reasonable to expect these quantities to
decrease in η and to tend to zero as η → 0). Hence, the quantities (2.16), (2.17)
and their dependence on η can be considered as a sensible characterization of
the asymptotic bias of the gradient search with biased gradient estimation. In the
case of algorithm (2.1), such a characterization is provided by Theorem 2.1. The
theorem includes relatively tight, explicit bounds on the quantities (2.16), (2.17) in
the terms of the gradient estimator’s bias η and analytical properties of f (·).

The results of Theorem 2.1 are of a local nature. They hold only on the event
where algorithm (2.1) is stable (i.e., where sequence {θn}n≥0 belongs to a com-
pact set Q). Stating results on the asymptotic bias of stochastic gradient search in
such a local form is quite sensible due to the following reasons. The stability of
stochastic gradient search is based on well-understood arguments which are rather
different from the arguments used here to analyze the asymptotic bias. Moreover
(and more importantly), as demonstrated in Appendix A, it is relatively easy to get
a global version of Theorem 2.1 by combining the theorem with stability results
for stochastic approximation (e.g., with the results of [12]). It is also worth men-
tioning that local asymptotic results are quite common in the areas of stochastic
optimization and stochastic approximation (e.g., most of the results of [7], Part II,
similarly as Theorem 2.1, hold only on set �Q).

Stochastic gradient search with biased gradient estimation has found many ap-
plications in areas such as statistical inference, system identification and machine
learning (see, e.g., [8, 13, 17, 27–29] and reference cited therein). However, to the
best of the authors’ knowledge, the asymptotic properties of biased stochastic gra-
dient search and biased stochastic approximation have only been studied in [11],
Section 5.3, [15, 16], [14], Section 2.7. The results obtained in these papers pro-
vide a good insight into the asymptotic behavior of the biased gradient search but
are based on restrictive conditions. They only hold if f (·) is unimodal or if {θn}n≥0
belongs to the domain of an asymptotically stable attractor of dθ/dt = −∇f (θ).
Additionally, they do not provide any explicit bound on the asymptotic bias of the
stochastic gradient search unless f (·) is of a simple form (e.g., convex or polyno-
mial). Unfortunately, in the case of complex stochastic gradient algorithms (such
as those studied in Section 4 and [33]), f (·) is usually multimodal with lot of
unisolated local extrema and saddle points. For such algorithms, not only it is hard
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to verify the assumptions adopted in [11], Section 5.3, [15, 16], [14], Section 2.7,
but these assumptions are likely not to hold at all.

Relying on the chain-recurrence, Yomdin theorem and Lojasiewicz inequali-
ties, Theorem 2.1 overcomes the described difficulties. The theorem allows the
objective function f (·) to be multimodal (with manifolds of unisolated extrema
and saddle points) and does not require dθ/dt = −∇f (θ) to have an asymptot-
ically stable attractor which is infinitely often visited by {θn}n≥0. In addition to
this, Theorem 2.1 provides relatively tight, explicit bounds on the asymptotic bias
of algorithm (2.1).

3. Stochastic gradient search with Markovian dynamics. In order to illus-
trate the results of Section 2 and to set up a framework for the analysis carried
out in Section 4 and [33], we apply Theorem 2.1 to stochastic gradient algorithms
with Markovian dynamics. These algorithms are defined by the following differ-
ence equation:

θn+1 = θn − αn

(
F(θn,Zn+1) + ηn

)
, n ≥ 0.(3.1)

In this recursion, F : Rdθ × R
dz → R

dθ is a Borel-measurable function, while
{αn}n≥0 is a sequence of positive real numbers. θ0 is an R

dθ -valued random vari-
able defined on a probability space (�,F,P ). {Zn}n≥0 is an R

dz -valued stochas-
tic process defined on (�,F,P ), while {ηn}n≥0 is an R

dθ -valued stochastic pro-
cess defined on the same probability space. {Zn}n≥0 is a Markov process con-
trolled by {θn}n≥0, that is, there exists a family of transition probability kernels
{θ(·, ·) : θ ∈R

dθ } defined on R
dz such that

P(Zn+1 ∈ B|θ0,Z0, . . . , θn,Zn) = θn(Zn,B)(3.2)

almost surely for any Borel-measurable set B ⊆ R
dz and n ≥ 0. {ηn}n≥0 are ran-

dom functions of {θn}n≥0, that is, ηn is a random function of θ0, . . . , θn for each
n ≥ 0. In the context of stochastic gradient search, F(θn,Zn+1)+ ηn represents an
estimator of the gradient ∇f (θn).

The algorithm (3.1) is analyzed under the following assumptions.

ASSUMPTION 3.1.
∑∞

n=0 αn = ∞,
∑∞

n=0 α2
n < ∞ and

∑∞
n=0 |αn − αn+1| <

∞.

ASSUMPTION 3.2. There exist a differentiable function f : Rdθ → R and a
Borel-measurable function F̃ : Rdθ ×R

dz → R
dθ such that ∇f (·) is locally Lips-

chitz continuous and

F(θ, z) − ∇f (θ) = F̃ (θ, z) − (F̃ )(θ, z)(3.3)

for each θ ∈R
dθ , z ∈ R

dz , where (F̃ )(θ, z) = ∫
F̃ (θ, z′)θ(z, dz′).
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ASSUMPTION 3.3. For any compact set Q ⊂ R
dθ , there exists a Borel-

measurable function ϕQ :Rdz → [1,∞) such that

max
{∥∥F(θ, z)

∥∥,∥∥F̃ (θ, z)
∥∥,∥∥(F̃ )(θ, z)

∥∥} ≤ ϕQ(z),∥∥(F̃ )
(
θ ′, z

) − (F̃ )
(
θ ′′, z

)∥∥ ≤ ϕQ(z)
∥∥θ ′ − θ ′′∥∥

for all θ, θ ′, θ ′′ ∈ Q, z ∈R
dz . Moreover,

sup
n≥0

E
(
ϕ2

Q(Zn+1)I{τQ>n}|θ0 = θ,Z0 = z
)
< ∞

for all θ ∈ R
dθ , z ∈ R

dz , where τQ is the stopping time defined by τQ = inf({n ≥
0 : θn /∈ Q} ∪ {∞}).

ASSUMPTION 3.4. lim supn→∞ ‖ηn‖ < ∞ almost surely on {supn≥0 ‖θn‖ <

∞}.
Let R, S and f (S) have the same meaning as in Section 2 for the objective

function f (·) now specified in Assumption 3.2. Moreover, let η and �Q have the
same meaning as in (2.5), (2.6). Then our results on the asymptotic behavior of the
recursion (3.1) read as follows.

THEOREM 3.1. Suppose that Assumptions 3.1–3.4 hold. Let f (·) be the func-
tion specified in Assumption 3.2, and let Q ⊂ R

dθ be any compact set. Then the
following are true:

(i) If f (·) satisfies Assumption 2.3.a, Part (i) of Theorem 2.1 holds.
(ii) If f (·) satisfies Assumption 2.3.b, Part (ii) of Theorem 2.1 holds.

(iii) If f (·) satisfies Assumption 2.3.c, Part (iii) of Theorem 2.1 holds.

Theorem 3.1 is proved in Section 7, while its global version is provided in Ap-
pendix B.

Assumption 3.1 is related to the sequence {αn}n≥0. It is satisfied if αn = 1/na

for n ≥ 1, where a ∈ (1/2,1] is a constant. Assumptions 3.2 and 3.3 correspond
to the stochastic process {Zn}n≥0 and are standard for the asymptotic analysis
of stochastic approximation algorithms with Markovian dynamics. Basically, As-
sumptions 3.2 and 3.3 require the Poisson equation associated with algorithm (3.1)
to have a solution which is Lipschitz continuous in θ . They hold if the following
are satisfied: (i) θ(·, ·) is geometrically ergodic for each θ ∈ R

dθ , (ii) the conver-
gence rate of n

θ(·, ·) is locally uniform in θ , and (iii) θ(·, ·) is locally Lipschitz
continuous in θ on R

dθ (for further details, see [7], Chapter II.2, [26], Chapter 17,
and references cited therein). Assumptions 3.2 and 3.3 have been introduced by
Métivier and Priouret in [25] (see also [7], Part II), and later generalized by Kush-
ner and his co-workers (see [22] and references cited therein). However, none of
these results cover the scenario where biased gradient estimates are used. The-
orem 3.1 fills this gap in the literature on stochastic optimization and stochastic
approximation.
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4. Application to reinforcement learning. In this section, Theorems 2.1 and
3.1 are applied to the asymptotic analysis of a popular policy-gradient search
algorithm for average-cost Markov decision problems introduced in [2]. Policy-
gradient search is one of the most important classes of reinforcement learning (for
further details see, e.g., [8, 28]).

In order to define controlled Markov chains with parametrized randomized
control and to formulate the corresponding average-cost decision problems, we
use the following notation. dθ ≥ 1, Nx > 1, Ny > 1 are integers, while X =
{1, . . . ,Nx} and Y = {1, . . . ,Ny}. φ(x, y) is a nonnegative (real-valued) function
of (x, y) ∈ X ×Y . p(x′|x, y) and qθ (y|x) are nonnegative (real-valued) functions
of (θ, x, x′, y) ∈ R

dθ × X × X × Y with the following properties: qθ (y|x) is dif-
ferentiable in θ for each θ ∈ R

dθ , x ∈X , y ∈ Y , and∑
x′∈X

p
(
x′|x, y

) = 1,
∑
y′∈Y

qθ

(
y′|x) = 1

for the same θ , x, y. For θ ∈ R
dθ , {(Xθ

n,Y θ
n )}n≥0 is an X ×Y-valued Markov chain

which is defined on a (canonical) probability space (�,F,Pθ ) and satisfies

Pθ

(
Xθ

n+1 = x′, Y θ
n+1 = y′|Xθ

n = x,Y θ
n = y

) = qθ

(
y′∣∣x′)p(

x′∣∣x, y
)

for each x, x′ ∈ X , y, y′ ∈ Y . f (·) is a function defined by

f (θ) = lim
n→∞Eθ

(
1

n

n∑
i=1

φ
(
Xθ

i , Y θ
i

))
(4.1)

for θ ∈ R
dθ .2 With this notation, an average-cost Markov decision problem with

parameterized randomized control can be defined as the minimization of f (·). In
the literature on reinforcement learning and operations research, {Xθ

n}n≥0 are re-
ferred to as a controlled Markov chain, while {Y θ

n }n≥0 are called control actions.
p(x′|x, y) is referred to as the (chain) transition probability, while qθ (y|x) is called
the (control) action probability. For further details on Markov decision processes,
see [8, 28] and references cited therein.

Since f (·) and its gradient rarely admit a closed-form expression, f (·) is mini-
mized using methods based on stochastic gradient search and Monte Carlo gradi-
ent estimation. Such a method can be derived as follows. Let sθ (x, y) be the score
function defined by

sθ (x, y) = ∇θqθ (y|x)

qθ (y|x)

2Notice that f (θ) is well defined when {Xθ
n}n≥0 is irreducible.
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for θ ∈ R
dθ , x ∈ X , y ∈ Y . If {(Xθ

n,Y θ
n )}n≥0 is geometrically ergodic, we have

f (θ) = limn→∞ Eθ(φ(Xθ
n,Y θ

n )) and

∇f (θ) = lim
n→∞Eθ

(
φ

(
Xθ

n,Y θ
n

) n−1∑
i=0

sθ
(
Xθ

n−i , Y
θ
n−i

))

[see the proof of Lemma 8.2 and in particular (8.4), (8.7)]. Hence, quantity

φ
(
Xθ

n,Y θ
n

) n−1∑
i=0

sθ
(
Xθ

n−i , Y
θ
n−i

)
is an asymptotically unbiased estimator of ∇f (θ). However, it can have a very
large variance for large n so that the term sθ (X

θ
n−i , Y

θ
n−i) is “discounted” by λi ,

where λ ∈ [0,1) is a constant referred to as the discounting factor. This leads to
the following gradient estimator:

φ
(
Xθ

n,Y θ
n

) n−1∑
i=0

λisθ
(
Xθ

n−i , Y
θ
n−i

)
.(4.2)

This gradient estimator (4.2) is biased and its bias is of the order O(1 − λ) when
λ → 1 (see Lemma 8.2). Combining gradient search with the estimator (4.2), we
get the policy-gradient algorithm proposed in [2]. This algorithm is defined by the
following difference equations:

(4.3)
Wn+1 = λWn + sθn(Xn+1, Yn+1),

θn+1 = θn − αnφ(Xn+1, Yn+1)Wn+1, n ≥ 0.

In the recursion (4.3), {αn}n≥0 is a sequence of positive reals, while θ0,W0 ∈ R
dθ

are any (deterministic) vectors. {Xn}n≥1 and {Yn}n≥1 are X and Y valued stochas-
tic processes (respectively) generated through the following Monte Carlo simula-
tions:

(4.4)
Xn+1|θn,Xn,Yn, . . . , θ0,X0, Y0 ∼ p(·|Xn,Yn),

Yn+1|Xn+1, θn,Xn,Yn, . . . , θ0,X0, Y0 ∼ qθn(·|Xn+1), n ≥ 0,

where X0 ∈X , Y0 ∈ Y are deterministic quantities. Hence, {(Xn,Yn)}n≥1 satisfies

P(Xn+1 = x,Yn+1 = y|θn,Xn,Yn, . . . , θ0,X0, Y0) = qθn

(
y|x)

p
(
x|Xn,Yn

)
for all x ∈ X , y ∈ Y , n ≥ 1.

Algorithm (4.3) is analyzed under the following assumptions.

ASSUMPTION 4.1. For all θ ∈ R
dθ , {Xθ

n}n≥0 is irreducible and aperiodic.

ASSUMPTION 4.2. For all θ ∈ R
dθ , x ∈ X , y ∈ Y , sθ (x, y) is well defined

(and finite). Moreover, for each x ∈X , y ∈ Y , sθ (x, y) is locally Lipschitz contin-
uous in θ on R

dθ .
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ASSUMPTION 4.3.a. For each x ∈ X , y ∈ Y , qθ (y|x) is p-times differentiable
in θ on R

dθ , where p > dθ .

ASSUMPTION 4.3.b. For each x ∈ X , y ∈ Y , qθ (y|x) is real-analytic in θ on
R

dθ .

Assumption 4.1 is related to the stability of the controlled Markov chain
{Xθ

n}n≥0. In this or similar form, it is often involved in the asymptotic analysis
of reinforcement learning algorithms (see, e.g., [8, 28]). Assumptions 4.2, 4.3.a
and 4.3.b correspond to the parameterization of the action probabilities qθ (y|x).
They are satisfied for many commonly used parameterizations (such as natural,
exponential and trigonometric).

Let R, S and f (S) have the same meaning as in Section 2 for the objective
function f (·) now defined in (4.1). Moreover, let �Q have the same meaning as
in (2.6). Then our results on the asymptotic behavior of the recursion (4.3) read as
follows.

THEOREM 4.1. Suppose that Assumptions 3.1, 4.1 and 4.2 hold. Let Q ⊂R
dθ

be any compact set. Then the following are true:

(i) There exists a (deterministic) nondecreasing function ψQ : [0,∞) →
[0,∞) [independent of λ and depending only on φ(x, y), p(x ′|x, y), qθ (y|x)]
such that limt→0 ψQ(t) = ψQ(0) = 0 and

lim sup
n→∞

d(θn,R) ≤ ψQ(1 − λ)

almost surely on �Q.
(ii) If Assumption 4.3.a is additionally satisfied, there exists a real num-

ber KQ ∈ (0,∞) [independent of λ and depending only on φ(x, y), p(x′|x, y),
qθ (y|x)] such that

lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ KQ(1 − λ)q/2,

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≤ KQ(1 − λ)q

almost surely on �Q, where q = (p − dθ )/(p − 1).
(iii) If Assumption 4.3.b is additionally satisfied, there exist real numbers rQ ∈

(0,1), LQ ∈ (0,∞) [independent of λ and depending only on φ(x, y), p(x′|x, y),
qθ (y|x)] such that

lim sup
n→∞

d(θn,S) ≤ LQ(1 − λ)rQ,

lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ LQ(1 − λ)1/2,

lim sup
n→∞

d
(
f (θn), f (S)

) ≤ LQ(1 − λ)

almost surely on �Q.
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Theorem 4.1 is proved in Section 8.

REMARK. Function ψQ(·) depends on φ(x, y), p(x′|x, y), qθ (y|x) through
function f (·) defined in (4.1) and its properties. It also depends on p(x′|x, y),
qθ (y|x) through the properties of {(Xθ

n,Y θ
n )}n≥0 (see Lemma 8.1). Additionally,

it depends on φ(x, y), qθ (y|x) through upper bounds on |φ(x, y)|, ‖sθ (x, y)‖.
Further details can be found in the proofs of Lemmas 8.1, 8.2 and Theorem 4.1
(Section 8).

REMARK. Like ψQ(·), constants KQ and LQ depend on φ(x, y), p(x′|x, y),
qθ (y|x) through function f (·) [defined in (4.1)] and its properties. KQ and LQ

also depend on φ(x, y), p(x′|x, y), qθ (y|x) through the ergodicity properties of
{(Xθ

n,Y θ
n )}n≥0. Moreover, KQ and LQ depend on φ(x, y), p(x′|x, y), qθ (y|x)

through upper bounds on |φ(x, y)|, ‖sθ (x, y)‖. For further details, see the proofs
of Lemmas 8.1, 8.2 and Theorem 4.1 (Section 8).

Although gradient search with “discounted” gradient estimation (4.2) is widely
used in reinforcement learning (apart from policy-gradient search, temporal-
difference and actor-critic learning also rely on the same approach), the available
literature does not give a quite satisfactory answer to the problem of its asymp-
totic behavior. To the best of the present authors’ knowledge, the existing results
do not offer even the guarantee that the asymptotic bias of recursion (4.3) goes to
zero as λ → 1 (i.e., that {θn}n≥0 converges to a vicinity of S whose radius tends
to zero as λ → 1). The paper [20] can be considered as the strongest result on
the asymptotic behavior of reinforcement learning with “discounted” gradient es-
timation. However, [20] only claims that a subsequence of {θn}n≥0 converges to
a vicinity of S whose radius goes to zero as λ → 1. The main difficulty stems
from the fact that reinforcement learning algorithms are so complex that the exist-
ing asymptotic results for biased stochastic gradient search and biased stochastic
approximation [11], Section 5.3, [15, 16], [14], Section 2.7, cannot be applied. Re-
lying on the results presented in Sections 2 and 3, Theorem 4.1 overcomes these
difficulties. Under mild and easily verifiable conditions, Theorem 4.1 guarantees
that the asymptotic bias of algorithm (4.3) converges to zero as λ → 1 [Part (i)].
Theorem 4.1 also provides relatively tight, polynomial bounds on the rate at which
the bias goes to zero [Parts (ii), (iii)].

5. Proof of part (i) of Theorem 2.1. In this section, we rely on the following
notation. For a set A ⊆ R

dθ and ε ∈ (0,∞), let Vε(A) be the ε-vicinity of A, that
is, Vε(A) = {θ ∈ R

dθ : d(θ,A) ≤ ε}. For θ ∈ R
dθ and γ ∈ [0,∞), let Fγ (θ) be the

set defined by

Fγ (θ) = {−∇f (θ) + ϑ : ϑ ∈ R
dθ ,‖ϑ‖ ≤ γ

}
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[notice that Fγ (θ) is a set-valued function of θ ]. For γ ∈ [0,∞), let �γ be
the family of solutions to the differential inclusion dθ/dt ∈ Fγ (θ), that is, �γ

is the collection of absolutely continuous functions ϕ : [0,∞) → R
dθ satisfy-

ing dϕ(t)/dt ∈ Fγ (ϕ(t)) almost everywhere (in t) on [0,∞). For a compact
set Q ⊂ R

dθ and γ ∈ [0,∞), let HQ,γ be the largest invariant set of the differ-
ential inclusion dθ/dt ∈ Fγ (θ) contained in Q, that is, HQ,γ is the largest set
H with the following property: For any θ ∈ H, there exists a solution ϕ ∈ �γ

such that ϕ(0) = θ and ϕ(t) ∈ H for all t ∈ [0,∞). For a compact set Q ⊂ R
dθ

and γ ∈ [0,∞), let RQ,γ be the set of chain-recurrent points of the differential
inclusion dθ/dt ∈ Fγ (θ) contained in Q, that is, θ ∈ RQ,γ if and only if for
any δ, t ∈ (0,∞), there exist an integer N ≥ 1, real numbers t1, . . . , tN ∈ [t,∞)

and solutions ϕ1, . . . , ϕN ∈ �γ (each of which can depend on θ, δ, t) such that
ϕk(0) ∈ HQ,γ for 1 ≤ k ≤ N and∥∥ϕ1(0) − θ

∥∥ ≤ δ,
∥∥ϕN(tN) − θ

∥∥ ≤ δ,
∥∥ϕk(tk) − ϕk+1(0)

∥∥ ≤ δ

for 1 ≤ k < N . For more details on differential inclusions and their solutions, in-
variant sets and chain-recurrent points, see [1, 5] and references cited therein.

LEMMA 5.1. Suppose that Assumption 2.3.a holds. Then, given a compact set
Q ⊂ R

dθ , there exists a nondecreasing function φQ : [0,∞) → [0,∞) such that
limγ→0 φQ(γ ) = φQ(0) = 0 and RQ,γ ⊆ VφQ(γ )(R) for all γ ∈ [0,∞).

PROOF. Let Q ⊂ R
dθ be any compact set. Moreover, let φQ : [0,∞) →

[0,∞) be the function defined by φQ(0) = 0 and

φQ(γ ) = sup
({

d(θ,R) : θ ∈ RQ,γ

} ∪ {0})
for γ ∈ (0,∞). Then it is easy to show that φQ(·) is well defined and satisfies
RQ,γ ⊆ VφQ(γ )(R) for all γ ∈ [0,∞). It is also easy to check that Fγ (θ) ⊆
Fδ(θ) for all θ ∈ R

dθ , γ, δ ∈ [0,∞) satisfying γ ≤ δ. Consequently, �γ ⊆ �δ ,
HQ,γ ⊆ HQ,δ , RQ,γ ⊆ RQ,δ for all γ, δ ∈ [0,∞) satisfying γ ≤ δ. Thus, φQ(·)
is nondecreasing. Moreover, [6], Theorem 3.1, implies that given ε ∈ (0,∞),
there exists a real number γQ(ε) ∈ (0,∞) such that RQ,γ ⊆ Vε(R) for all γ ∈
[0, γQ(ε)). Therefore, φQ(γ ) ≤ ε for all ε ∈ (0,∞), γ ∈ [0, γQ(ε)). Consequently,
limγ→0 φQ(γ ) = φQ(0) = 0. �

PROOF OF PART (i) OF THEOREM 2.1. Let Q ⊂ R
dθ be any compact set

and let ψQ : [0,∞) → [0,∞) be the function defined by ψQ(t) = φQ(2t) for
t ∈ [0,∞) [φQ(·) is specified in the statement of Lemma 5.1]. Then, due to
Lemma 5.1, ψQ(·) is nondecreasing and limt→0 ψQ(t) = ψQ(0) = 0. Moreover,
owing to Assumption 2.2, there exists an event NQ ∈ F such that the following
holds: P(NQ) = 0 and (2.4) is satisfied on �Q \ NQ for all t ∈ (0,∞). Let ω be
an arbitrary sample in �Q \ NQ. To prove Part (i) of Theorem 2.1, it is sufficient
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to show (2.7) for ω. Notice that all formulas that follow in the proof correspond
to ω.

If η = 0, then [4], Proposition 4.1, Theorem 5.7, imply that all limit points of
{θn}n≥0 are included in R. Hence, (2.7) holds when η = 0.

Now, suppose η > 0. Then there exists n0 ≥ 0 (depending on ω) such that θn ∈
Q, ‖ηn‖ ≤ 2η for n ≥ n0. Therefore,

θn+1 − θn

αn

+ ζn = −(∇f (θn) + ηn

) ∈ F2η(θn)

for n ≥ n0. Consequently, [5], Proposition 1.3, Theorem 3.6, imply that all limit
points of {θn}n≥0 are contained in RQ,2η. Combining this with Lemma 5.1, we
conclude that the limit points of {θn}n≥0 are included in VφQ(2η)(R) = VψQ(η)(R).
Thus, (2.7) holds when η > 0. �

6. Proof of parts (ii), (iii) of Theorem 2.1. In this section, the following no-
tation is used. φ is the random variable defined by

φ = lim sup
n→∞

∥∥∇f (θn)
∥∥.

For t ∈ (0,∞) and n ≥ 0, φ1,n(t), φ2,n(t), φn(t) are the random quantities defined
as

φ1,n(t) = −(∇f (θn)
)T a(n,t)−1∑

i=n

αi

(∇f (θi) − ∇f (θn)
)
,

φ2,n(t) =
∫ 1

0

(∇f
(
θn + s(θa(n,t) − θn)

) − ∇f (θn)
)T

(θa(n,t) − θn) ds,

φn(t) = φ1,n(t) + φ2,n(t).

Then it is straightforward to show that

(6.1)

f (θa(n,t)) − f (θn) = −∥∥∇f (θn)
∥∥2

a(n,t)−1∑
i=n

αi − (∇f (θn)
)T a(n,t)−1∑

i=n

αiξi

+ φn(t)

≤ −∥∥∇f (θn)
∥∥(∥∥∇f (θn)

∥∥ a(n,t)−1∑
i=n

αi −
∥∥∥∥∥
a(n,t)−1∑

i=n

αiξi

∥∥∥∥∥
)

+ ∣∣φn(t)
∣∣

for t ∈ (0,∞), n ≥ 0. Moreover, Assumption 2.1 implies

lim
n→∞

a(n,t)−1∑
i=n

αi = lim
n→∞

a(n,t)∑
i=n

αi = t(6.2)

for t ∈ (0,∞).
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We also need the following additional notation. The Lebesgue measure is de-
noted by m(·). For a compact set Q ⊂ R

dθ and ε ∈ (0,∞), AQ,ε is the set defined
by

AQ,ε = {
f (θ) : θ ∈ Q,

∥∥∇f (θ)
∥∥ ≤ ε

}
.(6.3)

In order to treat Assumptions 2.3.b, 2.3.c in a unified way and to provide a uni-
fied proof of Parts (ii), (iii) of Theorem 2.1, we introduce the following assumption.

ASSUMPTION 6.1. There exists a real number s ∈ (0,1] and for any compact
set Q ⊂ R

dθ , there exists a real number MQ ∈ [1,∞) such that m(AQ,ε) ≤ MQεs

for all ε ∈ (0,∞).

PROPOSITION 6.1. Suppose that Assumption 2.3.b holds. Let Q ⊂ R
dθ be

any compact set. Then there exists a real number MQ ∈ [1,∞) [depending only on
f (·)] such that m(AQ,ε) ≤ MQεq for all ε ∈ (0,∞) (q is specified in the statement
of Theorem 2.1).

PROOF. The proposition is a particular case of Yomdin theorem [34], Theo-
rem 1.2. �

PROPOSITION 6.2. Suppose that Assumption 2.3.c holds. Let Q ⊂ R
dθ be any

compact set. Then the following are true:

(i) There exists a real number MQ ∈ [1,∞) [depending only on f (·)] such
that m(AQ,ε) ≤ MQε for all ε ∈ (0,∞).

(ii) There exist real numbers rQ ∈ (0,1), M1,Q,M2,Q ∈ [1,∞) [depending
only on f (·)] such that

d(θ,S) ≤ M1,Q

∥∥∇f (θ)
∥∥rQ, d

(
f (θ), f (S)

) ≤ M2,Q

∥∥∇f (θ)
∥∥(6.4)

for all θ ∈ Q [S and f (S) are specified in (2.2)].

PROOF. Let Q ⊂ R
dθ be any compact set. Owing to Lojasiewicz (ordinary) in-

equality (see [10], Theorem 6.4, Remark 6.5), there exist real numbers rQ ∈ (0,1),
M1,Q ∈ [1,∞) such that the first inequality in (6.4) holds for all θ ∈ Q. More-
over, due to Lojasiewicz gradient inequality (see [21], Theorem ŁI, page 775), we
have the following: For any a ∈ f (Q) = {f (θ) : θ ∈ Q}, there exist real numbers
δQ,a ∈ (0,1), νQ,a ∈ (1,2], NQ,a ∈ [1,∞) such that∣∣f (θ) − a

∣∣ ≤ NQ,a

∥∥∇f (θ)
∥∥νQ,a(6.5)

for all θ ∈ Q satisfying |f (θ) − a| ≤ δQ,a .
Now, we show by contradiction that f (S ∩Q) = {f (θ) : θ ∈ S ∩Q} has finitely

many elements. Suppose the opposite. Then there exists a sequence {ϑn}n≥0 in S ∩
Q such that {f (ϑn)}n≥0 contains infinitely many different elements. Since S ∩ Q
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is compact, {ϑn}n≥0 has a convergent subsequence {ϑ̃n}n≥0 such that {f (ϑ̃n)}n≥0
also contains infinitely many different elements. Let ϑ = limn→∞ ϑ̃n, a = f (ϑ).
As δQ,a > 0, there exists an integer n0 ≥ 0 such that |f (ϑ̃n)−a| ≤ δQ,a for n ≥ n0.
Since ∇f (ϑ̃n) = 0 for n ≥ 0, (6.5) implies f (ϑ̃n) = a for n ≥ n0. However, this is
impossible, since {f (ϑ̃n)}n≥0 has infinitely many different elements.

Let nQ be the number of elements in f (S ∩ Q), while {ai : 1 ≤ i ≤ nQ} are the
elements of f (S ∩ Q). For 1 ≤ i ≤ nQ, let

BQ,i = {
θ ∈ Q : ∥∥∇f (θ)

∥∥ < 1, f (θ) ∈ (ai − δQ,ai
, ai + δQ,ai

)
}
,

while BQ = ⋃nQ

i=1 BQ,i , εQ = inf{‖∇f (θ)‖ : θ ∈ Q \ BQ}. As BQ is open and
S ∩ Q ⊂ BQ, we have εQ > 0.

Let C̃1,Q ∈ [1,∞) be an upper bound of |f (·)| on Q. Moreover, let C̃2,Q =
max1≤i≤nQ

NQ,ai
, M2,Q = 2 max{ε−1

Q C̃1,Q, C̃2,Q}. Then, if θ ∈ BQ, we have

d
(
f (θ), f (S)

) = min
1≤i≤nQ

∣∣f (θ) − ai

∣∣ ≤ max
1≤i≤nQ

NQ,ai

∥∥∇f (θ)
∥∥νQ,ai

≤ C̃2,Q

∥∥∇f (θ)
∥∥ ≤ M2,Q

∥∥∇f (θ)
∥∥

[notice that ‖∇f (θ)‖ < 1, νQ,ai
> 1]. If θ ∈ Q \ BQ, we get

d
(
f (θ), f (S)

) = min
1≤i≤nQ

∣∣f (θ) − ai

∣∣ ≤ 2ε−1
Q C̃1,Q

∥∥∇f (θ)
∥∥ ≤ M2,Q

∥∥∇f (θ)
∥∥

[notice that |f (θ)−ai | ≤ 2C̃1,Q, ‖∇f (θ)‖ ≥ εQ]. Hence, the second inequality in
(6.4) holds for all θ ∈ Q.

Let MQ = 2M2,QnQ. Owing to the second inequality in (6.4), we have

AQ,ε ⊆
nQ⋃
i=1

[
f (ai) − M2,Qε, f (ai) + M2,Qε

]

for each ε ∈ (0,∞). Consequently, m(AQ,ε) ≤ 2M2,QnQε = MQε for all ε ∈
(0,∞). �

LEMMA 6.1. Let Assumptions 2.1 and 2.2 hold. Then there exists an event
N0 ∈ F such that P(N0) = 0 and

lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑

i=n

αiξi

∥∥∥∥∥ ≤ ηt,(6.6)

lim
n→∞

∣∣f (θn+1) − f (θn)
∣∣ = 0(6.7)

on {supn≥0 ‖θn‖ < ∞}\N0 for all t ∈ (0,∞). Moreover, given a compact set Q ⊂
R

dθ , there exists a real number C1,Q ∈ [1,∞) [independent of η and depending
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only on f (·)] such that

lim sup
n→∞

max
n≤k≤a(n,t)

∣∣f (θk) − f (θn)
∣∣ ≤ C1,Qt (φ + η),(6.8)

lim sup
n→∞

∣∣φn(t)
∣∣ ≤ C1,Qt2(φ + η)2(6.9)

on �Q \ N0 for all t ∈ (0,∞).

PROOF. Owing to Assumption 2.2, there exists N0 ∈ F such that the following
holds: P(N0) = 0 and (2.4) is satisfied on {supn≥0 ‖θn‖ < ∞} \ N0 for all t ∈
(0,∞). Moreover, we have∥∥∥∥∥

k∑
i=n

αiξi

∥∥∥∥∥ ≤
∥∥∥∥∥

k∑
i=n

αiζi

∥∥∥∥∥ +
k∑

i=n

αi‖ηi‖ ≤ max
n≤j<a(n,t)

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥ + t max
j≥n

‖ηj‖

for 0 ≤ n ≤ k < a(n, t), t ∈ (0,∞). Consequently,

lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑

i=n

αiξi

∥∥∥∥∥ ≤ lim sup
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑

i=n

αiζi

∥∥∥∥∥ + t lim
n→∞ max

k≥n
‖ηk‖

= ηt

on {supn≥0 ‖θn‖ < ∞} \ N0 for t ∈ (0,∞).
Let Q ⊂ R

dθ be any compact set, while C̃Q ∈ [1,∞) stands for a Lipschitz
constant of f (·), ∇f (·) on Q. Moreover, let C1,Q = 2C̃Q, while ω is an arbitrary
sample from �Q \ N0. In order to prove the lemma, it is sufficient to show that
(6.7)–(6.9) hold for ω and any t ∈ (0,∞). Notice that all formulas which follow
in the proof correspond to ω.

Let ε ∈ (0,∞) be any real number. Then there exists n0 ≥ 0 (depending on ω,
ε) such that θn ∈ Q, ‖∇f (θn)‖ ≤ φ + ε for n ≥ n0 (notice that these relations hold
for all but finitely many n). Therefore,

‖θk − θn‖ ≤
k−1∑
i=n

αi

∥∥∇f (θi)
∥∥ +

∥∥∥∥∥
k−1∑
i=n

αiξi

∥∥∥∥∥ ≤ t (φ + ε) + max
n≤j<a(n,t)

∥∥∥∥∥
j∑

i=n

αiξi

∥∥∥∥∥
for n0 ≤ n ≤ k ≤ a(n, t), t ∈ (0,∞). Combining this with (6.6), we get

lim sup
n→∞

max
n≤k≤a(n,t)

‖θk − θn‖ ≤ t (φ + η + ε)

for t ∈ (0,∞). Then the limit process ε → 0 yields

lim sup
n→∞

max
n≤k≤a(n,t)

‖θk − θn‖ ≤ t (φ + η)

for t ∈ (0,∞) [notice that ε ∈ (0,∞) is any real number]. As∣∣f (θk) − f (θn)
∣∣ ≤ C̃Q‖θk − θn‖
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for k ≥ n ≥ n0 (notice that θn ∈ Q for n ≥ n0), we have

lim sup
n→∞

max
n≤k≤a(n,t)

∣∣f (θk) − f (θn)
∣∣ ≤ C̃Qt (φ + η) ≤ C1,Qt (φ + η)

for t ∈ (0,∞). Since∣∣f (θn+1) − f (θn)
∣∣ ≤ max

n≤k≤a(n,t)

∣∣f (θk) − f (θn)
∣∣

for t ∈ (0,∞) and sufficiently large n [notice that a(n, t) ≥ n + 1 for sufficiently
large n], we conclude

lim sup
n→∞

∣∣f (θn+1) − f (θn)
∣∣ ≤ C̃Qt (φ + η)

for t ∈ (0,∞). Then the limit process t → 0 implies (6.7). Moreover, we have

∣∣φ1,n(t)
∣∣ ≤ C̃Q

∥∥∇f (θn)
∥∥ a(n,t)−1∑

i=n

αi‖θi − θn‖

≤ C̃Qt
∥∥∇f (θn)

∥∥ max
n≤k≤a(n,t)

‖θk − θn‖,
∣∣φ2,n(t)

∣∣ ≤ C̃Q‖θa(n,t) − θn‖2 ≤ C̃Q max
n≤k≤a(n,t)

‖θk − θn‖2

for n ≥ n0, t ∈ (0,∞). Therefore,

lim sup
n→∞

∣∣φ1,n(t)
∣∣ ≤ C̃Qt2φ(φ + η), lim sup

n→∞
∣∣φ2,n(t)

∣∣ ≤ C̃Qt2(φ + η)2

for t ∈ (0,∞). Hence,

lim sup
n→∞

∣∣φn(t)
∣∣ ≤ 2C̃Qt2(φ + η)2 = C1,Qt2(φ + η)2

for t ∈ (0,∞). �

LEMMA 6.2. Let Assumptions 2.1, 2.2 and 6.1 hold. Then, given a compact
set Q ⊂ R

dθ , there exists a real number C2,Q ∈ [1,∞) [independent of η and
depending only on f (·)] such that

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≤ C2,Qηs(6.10)

on �Q \ N0 (s is specified in Assumption 6.1).

PROOF. Let Q ⊂R
dθ be any compact set, while C̃Q stands for an upper bound

of ‖∇f (·)‖ on Q. Moreover, let C2,Q = 4MQ. In order to avoid considering sepa-
rately the cases η = 0 and η > 0, we show

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≤ C2,Q(ε + η)s(6.11)
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on �Q \ N0 for all ε ∈ (0,∞). Then (6.10) follows directly from (6.11) by letting
ε → 0.

Inequality (6.11) is proved by contradiction: Suppose that there exist a sample
ω ∈ �Q \N0 and a real number ε ∈ (0,∞) such that (6.11) does not hold for them.
Notice that all formulas which follow in the proof correspond to ω.

Let γ = 2(ε + η), δ = MQγ s , while

μ = δ/
(
C1,Q(C̃Q + η)

)
, ν = γ 2/

(
4C1,Q(C̃Q + η)2)

, τ = min{μ,ν/2}.
Since {θn}n≥0 is bounded and (6.11) is not satisfied, there exist real numbers a, b ∈
R (depending on ω,ε) such that b − a > 2δ and such that inequalities f (θn) < a,
f (θk) > b hold for infinitely many n, k ≥ 0 [notice that C2,Q(ε + η)s ≥ 2δ]. As
m(AQ,γ ) ≤ MQγ s = δ, there exists a real number c such that c /∈ AQ,γ and a <

c < b − δ [otherwise, (a, b − δ) ⊂ AQ,ε , which is impossible as (b − δ) − a > δ].
Let n0 = 0, while

lk = min
{
n ≥ nk−1 : f (θn) ≤ c

}
,

nk = min
{
n ≥ lk : f (θn) ≥ b

}
,

mk = max
{
n ≤ nk : f (θn) ≤ c

}
for k ≥ 1. It can easily be deduced that sequences {lk}k≥1, {mk}k≥1, {nk}k≥1 are
well defined and satisfy lk < mk < nk < lk+1 and

(6.12)
f (θmk

) ≤ c < f (θmk+1),

f (θnk
) − f (θmk

) ≥ b − c, min
mk<n≤nk

f (θn) > c

for k ≥ 1. Moreover, Lemma 6.1 implies

lim
k→∞

∣∣f (θmk+1) − f (θmk
)
∣∣ = 0,(6.13)

lim sup
k→∞

max
mk≤j≤a(mk,τ )

∣∣f (θj ) − f (θmk
)
∣∣ ≤ C1,Qτ(C̃Q + η) ≤ δ < b − c(6.14)

[to get (6.14), notice that θn ∈ Q for all but finitely many n and that φ ≤ C̃Q].
Owing to (6.14) and the second inequality in (6.12), there exists k0 ≥ 1 such that
a(mk, τ ) ≤ nk for k ≥ k0.3 Then the last inequality in (6.12) implies f (θa(mk,τ )) ≥
c for k ≥ k0, while limk→∞ f (θmk

) = c follows from (6.13) and the first inequality
in (6.12). Since ‖∇f (θ)‖ > γ for any θ ∈ Q satisfying f (θ) = c (due to the way c

3If a(mk, τ ) > nk for infinitely many k, then (6.14) yields

lim inf
k→∞

(
f (θnk ) − f (θmk )

) ≤ δ < b − c.

However, this contradicts the second inequality in (6.12).
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is selected), we have lim infk→∞ ‖∇f (θmk
)‖ ≥ γ . Consequently, Lemma 6.1 and

(6.2) yield

lim inf
k→∞

(∥∥∇f (θmk
)
∥∥ a(mk,τ )−1∑

i=mk

αi −
∥∥∥∥∥
a(mk,τ )−1∑

i=mk

αiξi

∥∥∥∥∥
)

≥ τ(γ − η) ≥ τγ /2 > 0

(notice that η < γ/2). Therefore,

lim inf
k→∞

∥∥∇f (θmk
)
∥∥(∥∥∇f (θmk

)
∥∥ a(mk,τ )−1∑

i=mk

αi −
∥∥∥∥∥
a(mk,τ )−1∑

i=mk

αiξi

∥∥∥∥∥
)

≥ τγ 2/2.

Combining this with Lemma 6.1 and (6.1), we get

lim sup
k→∞

(
f (θa(mk,τ )) − f (θmk

)
)

≤ − lim inf
k→∞

∥∥∇f (θmk
)
∥∥(∥∥∇f (θmk

)
∥∥ a(mk,τ )−1∑

i=mk

αi −
∥∥∥∥∥
a(mk,τ )−1∑

i=mk

αiξi

∥∥∥∥∥
)

+ lim sup
k→∞

∣∣φmk
(τ )

∣∣
≤ −τγ 2/2 + C1,Qτ 2(φ + η)2 < 0

[notice that φ ≤ C̃Q, C1,Qτ 2(C̃Q + η) ≤ γ 2/4]. However, this is not possible, as
f (θa(mk,τ )) ≥ c ≥ f (θmk

) for each k ≥ k0. Hence, (6.11) is true. �

LEMMA 6.3. Let Assumptions 2.1 and 2.2 hold. Then, given a compact set
Q ⊂ R

dθ , there exists a real number C3,Q ∈ (0,1) [independent of η and depend-
ing only on f (·)] such that

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≥ C3,Qφ2(6.15)

on (�Q \ N0) ∩ {φ > 2η}.

PROOF. Let Q ⊂ R
dθ be any compact set, while C3,Q = 1/(64C1,Q) and τ =

1/(16C1,Q). Moreover, let ω be an arbitrary sample from (�Q \ N0) ∩ {φ > 2η}.
In order to prove the lemma’s assertion, it is sufficient to show that (6.15) holds
for ω. Notice that all formulas which follow in the proof correspond to ω.

Let n0 = 0 and

nk = min
{
n > nk−1 : ∥∥∇f (θn)

∥∥ ≥ φ − 1/k
}

for k ≥ 1. Obviously, sequence {nk}k≥0 is well defined and satisfies

lim
k→∞

∥∥∇f (θnk
)
∥∥ = φ.
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Then Lemma 6.1 and (6.2) yield

lim inf
k→∞

∥∥∇f (θnk
)
∥∥(∥∥∇f (θnk

)
∥∥ a(nk,τ )−1∑

i=nk

αi −
∥∥∥∥∥
a(nk,τ )−1∑

i=nk

αiξi

∥∥∥∥∥
)

≥ τφ(φ − η) ≥ τφ2/2 > 0.

Combining this with Lemma 6.1 and (6.1), we get

lim sup
k→∞

(
f (θa(nk,τ )) − f (θnk

)
)

≤ − lim inf
k→∞

∥∥∇f (θnk
)
∥∥(∥∥∇f (θnk

)
∥∥ a(nk,τ )−1∑

i=nk

αi −
∥∥∥∥∥
a(nk,τ )−1∑

i=nk

αiξi

∥∥∥∥∥
)

+ lim sup
k→∞

∣∣φnk
(τ )

∣∣
≤ −τφ2/2 + C1,Qτ 2(φ + η)2 ≤ −C3,Qφ2

(notice that η < φ). Consequently,

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≥ − lim sup

k→∞
(
f (θa(nk,τ )) − f (θnk

)
) ≥ C3,Qφ2.

Hence, (6.15) is true. �

PROPOSITION 6.3. Suppose that Assumptions 2.1, 2.2 and 6.1 hold. Let
Q ⊂ R

dθ be any compact set. Then there exists a real number KQ ∈ [1,∞) [inde-
pendent of η and depending only on f (·)] such that

(6.16)
lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ KQηs/2,

lim sup
n→∞

f (θn) − lim inf
n→∞ f (θn) ≤ KQηs

on �Q \ N0.

PROOF. Let Q ⊂ R
dθ be any compact set, while C̃Q ∈ [1,∞) stands for an

upper bound of ‖∇f (·)‖ on Q. Moreover, let KQ = max{2, C̃Q,C2,Q}. Obviously,
it is sufficient to show φ ≤ KQηs/2 on �Q \ N0 [notice that the second inequality
in (6.16) is a direct consequence of Lemma 6.2].

Owing to Lemmas 6.2, 6.3, we have C3,Qφ2 ≤ C2,Qηs on (�Q \ N0) ∩ {φ >

2η}. Therefore, φ ≤ (C2,Q/C3,Q)1/2ηs/2 ≤ KQηs/2 on (�Q \ N0) ∩ {φ > 2η}.
Moreover, φ ≤ 2η ≤ KQηs/2 on (�Q \N0)∩{φ ≤ 2η,η ≤ 1} (notice that s/2 < 1),
while φ ≤ C̃Q ≤ KQηs/2 on (�Q \ N0) ∩ {φ ≤ 2η,η > 1}. Thus, φ ≤ KQηs/2

indeed holds on �Q \ N0. �

PROOF OF PARTS (ii), (iii) OF THEOREM 2.1. Part (ii) of the theorem di-
rectly follows from Propositions 6.1, 6.3, while Part (iii) is a direct consequence
of Propositions 6.2, 6.3. �



ASYMPTOTIC BIAS OF STOCHASTIC GRADIENT SEARCH 3277

7. Proof of Theorem 3.1. The following notation is used in this section. For
θ ∈R

dθ , z ∈ R
dz , Eθ,z(·) denotes the conditional expectation given θ0 = θ , Z0 = z.

For n ≥ 1, ζn, ξn are the random variables defined by

ζn = F(θn,Zn+1) − ∇f (θn), ξn = ζn + ηn,(7.1)

while ζ1,n, ζ2,n, ζ3,n are random variables defined as

ζ1,n = F̃ (θn,Zn+1) − (F̃ )(θn,Zn),

ζ2,n = (F̃ )(θn,Zn) − (F̃ )(θn−1,Zn),

ζ3,n = −(F̃ )(θn,Zn+1).

Then it is straightforward to verify that algorithm (3.1) admits the form (2.1).
Moreover, using Assumption 3.2, it is easy to show

(7.2)

k∑
i=n

αiζi =
k∑

i=n

αiζ1,i +
k∑

i=n

αiζ2,i +
k∑

i=n

(αi − αi+1)ζ3,i

+ αk+1ζ3,k − αnζ3,n−1

for 1 ≤ n ≤ k.

PROOF OF THEOREM 3.1. Let Q ⊂ R
dθ be any compact set and �̃Q be the

event defined by �̃Q = ⋂∞
n=0{θn ∈ Q}. Then, owing to Assumptions 3.1 and 3.3,

we have

Eθ,z

( ∞∑
n=0

(
α2

n + α2
n+1

)
ϕ2

Q(Zn+1)I{τQ>n}
)

< ∞,(7.3)

Eθ,z

( ∞∑
n=0

|αn − αn+1|ϕ2
Q(Zn+1)I{τQ>n}

)
< ∞(7.4)

for all θ ∈ R
dθ , z ∈ R

dz .
Let Fn = σ {θ0,Z0, . . . , θn,Zn} for n ≥ 0. Since {τQ > n} ∈ Fn for n ≥ 0, As-

sumption 3.2 implies

Eθ,z(ζ1,nI{τQ>n}|Fn) = (
Eθ,z

(
F̃ (θn,Zn+1)|Fn

) − (F̃ )(θn,Zn)
)
I{τQ>n}

= 0

almost surely for each θ ∈ R
dθ , z ∈R

dz , n ≥ 0. Assumption 3.3 also yields

‖ζ1,n‖I{τQ>n} ≤ ϕQ(Zn)I{τQ>n−1} + ϕQ(Zn+1)I{τQ>n}
for n ≥ 0. Combining this with (7.3), we get

Eθ,z

( ∞∑
n=0

α2
n‖ζ1,n‖2I{τQ>n}

)
≤ 2Eθ,z

( ∞∑
n=0

(
α2

n + α2
n+1

)
ϕ2

Q(Zn+1)I{τQ>n}
)

< ∞
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for all θ ∈ R
dθ , z ∈ R

dz . Then, using the Doob theorem, we conclude that∑∞
n=0 αnζ1,nI{τQ>n} converges almost surely. As �̃Q ⊆ {τQ > n} for n ≥ 0,∑∞
n=0 αnζ1,n converges almost surely on �̃Q.4

Due to Assumption 3.3, we have

‖ζ2,n‖I�̃Q
≤ ϕQ(Zn)‖θn − θn−1‖I�̃Q

≤ αn−1ϕQ(Zn)
(∥∥F(θn−1,Zn)

∥∥ + ‖ηn−1‖)
I�̃Q

≤ αn−1ϕQ(Zn)
(
ϕQ(Zn) + ‖ηn−1‖)

I�̃Q

≤ 2αn−1
(
ϕ2

Q(Zn) + ‖ηn−1‖2)
I�̃Q

for n ≥ 1 [notice that ϕQ(z) ≥ 1 for any z ∈ R
dz ]. Thus,

j∑
n=1

αn‖ζ2,n‖I�̃Q
≤ 2

∞∑
n=0

αnαn+1
(
ϕ2

Q(Zn+1) + ‖ηn+1‖2)
I�̃Q

≤
∞∑

n=0

(
α2

n + α2
n+1

)
ϕ2

Q(Zn+1)I{τQ>n}

+ sup
n≥0

‖ηn‖2I�̃Q

∞∑
n=0

(
α2

n + α2
n+1

)

(notice that 2αnαn+1 ≤ α2
n + α2

n+1). Then Assumption 3.4 and (7.3) imply that∑∞
n=1 αnζ2,n converges almost surely on �̃Q.
Owing to Assumption 3.3, we have

‖ζ3,n‖I�̃Q
≤ ϕQ(Zn+1)I�̃Q

≤ ϕ2
Q(Zn+1)I{τQ>n}

for n ≥ 0. Hence,
∞∑

n=0

α2
n+1‖ζ3,n‖2I�̃Q

≤
∞∑

n=0

α2
n+1ϕ

2
Q(Zn+1)I{τQ>n},

∞∑
n=0

|αn − αn+1|‖ζ3,n‖I�̃Q
≤

∞∑
n=0

|αn − αn+1|ϕ2
Q(Zn+1)I{τQ>n}.

Combining this with (7.3), (7.4), we conclude limn→∞ αn+1ζ3,n = 0 almost surely
on �̃Q. We also deduce that

∑∞
n=0(αn − αn+1)ζ3,n converges almost surely on

�̃Q. Since
∑∞

n=0 αnζ1,n,
∑∞

n=1 αnζ2,n converge almost surely on �̃Q, (7.2) implies
that

∑∞
n=0 αnζn also converges almost surely on �̃Q. As Q is any compact set in

R
dθ ,

∑∞
n=0 αnζn converges almost surely on {supn≥0 ‖θn‖ < ∞}. Consequently,

4Notice that
∑∞

n=0 αnζ1,nI{τQ>n} = ∑∞
n=0 αnζ1,n on �̃Q.
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Assumption 3.4 yields that {ξn}n≥0 defined in (7.1) satisfies Assumption 2.2. Then
the theorem’s assertion directly follows from Theorem 2.1. �

8. Proof of Theorem 4.1. In this section, we use the following notation. φ(v),
sθ (v) are the functions defined by

φ(v) = φ(x, y), sθ (v) = sθ (x, y)

for θ ∈ R
dθ , v = (x, y) ∈X ×Y . For θ ∈ R

dθ , {V θ
n }n≥0, {Wθ

n }n≥0 and {Zθ
n}n≥0 are

stochastic processes defined by

V θ
n = (

Xθ
n,Y θ

n

)
, Wθ

n+1 = λWθ
n + sθ

(
V θ

n

)
, Zθ

n = (
V θ

n ,Wθ
n

)
for n ≥ 0, where Wθ

0 ∈ R
dθ is a (deterministic) vector (notice that {V θ

n }n≥0,
{Zθ

n}n≥0 are Markov chains). Moreover, for θ ∈ R
dθ , rθ (·|·) and νθ (·) are the tran-

sition kernel and invariant probability of {V θ
n }n≥0,5 while θ(·, ·) is the transition

kernel of {Zθ
n}n≥0.6 For θ ∈ R

dθ , n ≥ 0, rn
θ (·|·) is the nth transition probability of

{V θ
n }n≥0, while

r̃n
θ

(
v′|v) = rn

θ

(
v′|v) − νθ

(
v′)

for θ ∈ R
dθ , v, v′ ∈ X × Y , n ≥ 0. Additionally, the functions η(·), F(·, ·) are

defined by

η(θ) =
∞∑

n=0

∑
v,v′∈X×Y

λnφ
(
v′)r̃n

θ

(
v′|v)

sθ (v)νθ (v) − ∇f (θ),

F (θ, z) = φ(v)w − η(θ)

for θ ∈ Rdθ , z = (v,w) ∈ (X × Y) × R
dθ .7 {Zn}n≥0, {ηn}n≥ are the stochastic

processes defined as

Zn = (Xn,Yn,Wn), ηn = η(θn)

for n ≥ 0. Then it is straightforward to show that the algorithm (4.3) is of the same
form as the recursion studied in Section 3 [i.e., {θn}n≥0, {ηn}n≥0, F(·, ·), θ(·, ·)
defined in Section 4 and here admit (3.1), (3.2)].

We will use the following additional notation. Nv is the integer defined by Nv =
NxNy , while e ∈ R

Nv is the vector whose all components are one. For v ∈ X ×
Y , e(v) ∈ R

Nv is the vector representation of Iv(·), while φ ∈ R
Nv is the vector

5Under Assumption 4.1, νθ (·) exists and is unique (the details are provided in Lemma 8.1). The
transition rθ (·|·) can be defined by rθ (v′|v) = qθ (y′|x′)p(x′|x, y) for v = (x, y) ∈ X × Y , v′ =
(x′, y′) ∈X ×Y .

6θ(·, ·) can be defined by θ(z, {v′} × B) = IB(λw + sθ (v′))rθ (v′|v) for z = (v,w) ∈ (X ×
Y) ×R

dθ and a Borel-measurable set B ⊆ R
dθ .

7Under Assumptions 4.1, 4.2, f (·) is differentiable (the details are provided in Lemma 8.2).



3280 V. B. TADIĆ AND A. DOUCET

representation of φ(·).8 For θ ∈ R
dθ , Rθ ∈R

Nv×Nv and νθ ∈ R
Nv are the transition

matrix and the invariant probability vector of {V θ
n }n≥0,9 while R̃θ = Rθ −eνT

θ . For
θ ∈ R

dθ , 1 ≤ j ≤ dθ , sθ,j (·) is the j th component of sθ (·), while Sθ,j ∈ R
Nv×Nv is

the diagonal matrix representation of sθ,j (·).10

LEMMA 8.1. Suppose that Assumptions 4.1 and 4.2 hold. Let Q ⊂ R
dθ be any

compact set. Then the following are true:

(i) {V θ
n }n≥0 is geometrically ergodic for each θ ∈ R

dθ . Moreover, there exist
real numbers εQ ∈ (0,1), C1,Q ∈ [1,∞) (independent of λ) such ‖R̃n

θ ‖ ≤ C1,Qεn
Q

for all θ ∈ Q, n ≥ 0.
(ii) There exists a real number C2,Q ∈ [1,∞) (independent of λ) such that

max
{‖νθ ′ − νθ ′′‖,∥∥Rn

θ ′ − Rn
θ ′′

∥∥} ≤ C2,Q

∥∥θ ′ − θ ′′∥∥,(8.1) ∥∥R̃n
θ ′ − R̃n

θ ′′
∥∥ ≤ C2,Qεn

Q

∥∥θ ′ − θ ′′∥∥(8.2)

for all θ ′, θ ′′ ∈ Q, n ≥ 0.
(iii) νθ is differentiable on R

dθ . Moreover, ∇θνθ is locally Lipschitz continuous
on R

dθ .
(iv) If Assumption 4.3.a is satisfied, νθ is p times differentiable on R

dθ .
(v) If Assumption 4.3.b is satisfied, νθ is real-analytic on R

dθ .

PROOF. (i) For θ ∈ R
dθ , n ≥ 0, let pn

θ (·|·) and μθ(·) be the nth transition
probability and the invariant probability of {Xθ

n}n≥0. Moreover, for θ ∈ R
dθ , v =

(x, y) ∈X ×Y , let ν̃θ (v) = qθ (y|x)μθ(x). Then it is straightforward to verify

rn+1
θ

(
v′|v) − ν̃θ

(
v′) = ∑

x′′∈X
qθ

(
y′|x′)(pn

θ

(
x′|x′′) − μθ

(
x′))p(

x′′|x, y
)

for θ ∈ R
dθ , v = (x, y) ∈ X ×Y , v′ = (x′, y′) ∈ X ×Y , n ≥ 0. Therefore,∣∣rn+1

θ

(
v′|v) − ν̃θ

(
v′)∣∣ ≤ ∑

x′′∈X
qθ

(
y′|x′)∣∣pn

θ

(
x′|x′′) − μθ

(
x′)∣∣p(

x′′|x, y
)

≤ Nx max
x′′∈X

∣∣pn
θ

(
x′|x′′) − μθ

(
x′)∣∣

for all θ ∈ R
dθ , v = (x, y) ∈ X × Y , v′ = (x′, y′) ∈ X × Y , n ≥ 0. Combining

this with Assumption 4.1, we conclude that {V θ
n }n≥0 is geometrically ergodic for

each θ ∈ R
dθ . We also conclude that ν̃θ (·) is the invariant probability of {V θ

n }n≥0

8For v = (x, y) ∈ X × Y , element i of e(v) is one if i = (x − 1)Ny + y and zero otherwise. For
the same v, φ(v) is element (x − 1)Ny + y of φ.

9For v = (x, y) ∈X ×Y , v′ = (x′, y′) ∈X ×Y , rθ (v′|v) is entry ((x −1)Ny +y, (x′ −1)Ny +y′)
of Rθ , while νθ (v) is element (x − 1)Ny + y of νθ .

10For v = (x, y) ∈X ×Y , sθ,j (v) is entry ((x−1)Ny +y, (x−1)Ny +y) of Sθ,j . The off-diagonal
elements of Sθ,j are zero.
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for each θ ∈ R
dθ , that is, νθ (v) = ν̃θ (v) = qθ (y|x)μθ(x) for θ ∈ R

dθ , v = (x, y) ∈
X ×Y .

For θ ∈ R
dθ , let ρθ = minv∈V νθ (x)/3. Then we have 0 < ρθ ≤ 1/(3Nv),

ρθ ≤ νθ (v)/3 for all θ ∈ R
dθ , v ∈ V . Moreover, for any θ ∈ R

dθ , there exists an
integer nθ ≥ 0 such that |rn

θ (v′|v)−νθ (v
′)| ≤ ρθ for each v, v′ ∈ V , n ≥ nθ . Hence,

rn
θ (v′|v) ≥ νθ (v

′) − ρθ ≥ 2ρθ for all θ ∈ R
dθ , v, v′ ∈ V , n ≥ nθ . Additionally, As-

sumption 4.2 implies that for each v, v′ ∈ V , n ≥ 0, rn
θ (v′|v) is locally Lipschitz

continuous in θ on R
dθ .11 Consequently, for any θ ∈ R

dθ , there exists a real num-
ber δθ ∈ (0,1) such that |rnθ

ϑ (v′|v) − r
nθ

θ (v′|v)| ≤ ρθ for all ϑ ∈ R
dθ , v, v′ ∈ V

satisfying ‖ϑ − θ‖ ≤ δθ . Thus, r
nθ

ϑ (v′|v) ≥ r
nθ

θ (v′|v) − ρθ ≥ ρθ for each ϑ ∈ R
dθ ,

v, v′ ∈ V satisfying ‖ϑ − θ‖ ≤ δθ . Since

rn
ϑ

(
v′|v) = ∑

v′′∈V
r
nθ

ϑ

(
v′|v′′)rn−nθ

ϑ

(
v′′|v) ≥ ρθ

∑
v′′∈V

r
n−nθ

ϑ

(
v′′|v) = ρθ

for any ϑ ∈ R
dθ , v, v′ ∈ V , n ≥ nθ satisfying ‖ϑ − θ‖ ≤ δθ , we conclude

rn
ϑ(v′|v) ≥ ρθ for the same ϑ , v, v′, n.

Let Bθ = {ϑ ∈ R
dθ : ‖ϑ − θ‖ < δθ } for θ ∈ R

dθ . As {Bθ }θ∈Q is an open
covering of Q, there exists a finite set Q̃ ⊆ Q such that

⋃
θ∈Q̃

Bθ ⊃ Q. Let

ñQ = max
θ∈Q̃

nθ , ρ̃Q = min
θ∈Q̃

ρθ , ε̃Q = (1 − ρ̃Q)1/ñQ . Since each element of
Q is also an element of one of {Bθ }θ∈Q̃

, we have rn
θ (v′|v) ≥ ρ̃Q for all θ ∈ Q,

v, v′ ∈ V , n ≥ ñQ.12 Then standard results of Markov chain theory (see, e.g., [26],
Theorem 16.0.2) imply∣∣rn

θ

(
v′|v) − νθ

(
v′)∣∣ ≤ (1 − ρ̃Q)n/ñQ ≤ ε̃n

Q

for all θ ∈ Q, v, v′ ∈ V , n ≥ 0.
Let εQ = ε̃

1/2
Q , C1,Q = Nv . Then we have∥∥R̃n

θ

∥∥ ≤ Nv max
v,v′∈X×Y

∣∣r̃n
θ

(
v′|v)∣∣≤ Nvε̃

n
Q = C1,Qε2n

Q(8.3)

for all θ ∈ Q, n ≥ 0.
(ii) Let g be the Nv th standard unit vector in R

Nv (i.e., the first Nv − 1 elements
of g are zero, while the last element of g is one) and, for A ∈ R

Nv×Nv , let G(A)

be the Nv × Nv matrix obtained when the last row of I − AT is replaced by eT

(here, I is the Nv × Nv unit matrix). Additionally, let QNv×Nv

0 = {A ∈ R
Nv×Nv :

det(G(A)) 
= 0} and, for A ∈ QNv×Nv

0 , let h(A) = (G(A))−1g. Then it is easy

to conclude that QNv×Nv

0 is an open set [notice that det(G(A)) is a polynomial
function of the entries of A]. It is also easy to deduce that h(·) is well defined and

11Notice that, due to Assumption 4.2, qθ (y|x) is locally Lipschitz continuous in θ for each x ∈ X ,
y ∈ Y and that rn

θ (·|·) is a polynomial function of p(·|·, ·), qθ (·|·).
12If θ ∈ Bϑ and ϑ ∈ Q̃, then nϑ ≤ ñQ and rn

θ (v′|v) ≥ ρϑ ≥ ρ̃Q for n ≥ nϑ .
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real-analytic on QNv×Nv

0 [notice that due to the Cramer’s rule, all elements of h(A)

are rational functions of the entries of A].
Let PNv×Nv

0 be the set of Nv × Nv geometrically ergodic stochastic matri-

ces. Then each P ∈ PNv×Nv

0 has a unique invariant probability vector. Moreover,

the invariant probability vector of P ∈ PNv×Nv

0 is the unique solution to the lin-
ear system of equations G(P )x = g, where x ∈ R

Nv is the unknown. Hence,
det(G(P )) 
= 0 for each P ∈PNv×Nv

0 so PNv×Nv

0 ⊂ QNv×Nv

0 .

Owing to (i), Rθ ∈ PNv×Nv

0 for each θ ∈ R
dθ . Thus, νθ = h(Rθ) for all θ ∈ R

dθ .
Moreover, due to Assumption 4.2, Rθ is locally Lipschitz continuous on R

dθ .13

Since h(·) is real-analytic on QNv×Nv

0 and PNv×Nv

0 ⊂ QNv×Nv

0 , νθ is locally Lips-
chitz continuous on R

dθ .
Let C̃1,Q ∈ [1,∞) be a Lipschitz constant of Rθ , νθ on Q, while C̃2,Q ∈

[1,∞) is an upper bound of the sequence {nεn
Q}n≥1. Moreover, let C2,Q =

3ε−1
Q C2

1,QC̃1,QC̃2,Q. It is straightforward to verify

R̃n+1
θ ′ − R̃n+1

θ ′′ =
n∑

i=0

R̃i
θ ′

(
Rθ ′ − Rθ ′′ − e(νθ ′ − νθ ′′)T

)
R̃n−i

θ ′′

for θ ′, θ ′′ ∈ R
dθ , n ≥ 0. Combining this with (8.3), we get

∥∥R̃n+1
θ ′ − R̃n+1

θ ′′
∥∥ ≤

n∑
i=0

∥∥R̃i
θ ′

∥∥∥∥R̃n−i
θ ′′

∥∥(‖Rθ ′ − Rθ ′′‖ + ‖νθ ′ − νθ ′′‖)

≤ 2C2
1,QC̃1,Q(n + 1)ε2n

Q

∥∥θ ′ − θ ′′∥∥
≤ C2,Qεn

Q

∥∥θ ′ − θ ′′∥∥
for each θ ′, θ ′′ ∈ Q, n ≥ 0. Therefore,∥∥Rn

θ ′ − Rn
θ ′′

∥∥ ≤ ∥∥R̃n
θ ′ − R̃n

θ ′′
∥∥ + ‖νθ ′ − νθ ′′‖

≤ C̃1,Q

(
2C2

1,QC̃2,Qnεn−1
Q + 1

)∥∥θ ′ − θ ′′∥∥
≤ C2,Q

∥∥θ ′ − θ ′′∥∥
for all θ ′, θ ′′ ∈ Q, n ≥ 0 (notice that R̃k

θ = Rk
θ − eνT

θ ).
(iii) Due to (i), Rθ ∈ PNv×Nv

0 for each θ ∈ R
dθ . Hence, νθ = h(Rθ) for all

θ ∈ R
dθ . Moreover, owing to Assumption 4.2, Rθ is differentiable on R

dθ and its
first-order derivatives are locally Lipschitz continuous on the same space.14 As
h(·) is real-analytic on QNv×Nv

0 and PNv×Nv

0 ⊂ QNv×Nv

0 , νθ is differentiable on

13Notice that rθ (v′|v) = qθ (y′|x′)p(x′|x, y) for v = (x, y), v′ = (x′, y′) and that qθ (y|x) is locally
Lipschitz continuous in θ .

14Notice that ∇θ rθ (v′|v) = sθ (x′, y′)qθ (y′|x′)p(x′|x, y) for v = (x, y), v′ = (x′, y′).
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R
dθ . The same arguments also imply that ∇θ νθ is locally Lipschitz continuous

on R
dθ .

(iv), (v) If Assumption 4.3.a is satisfied, then Rθ is p times differentiable on
R

dθ , and consequently, νθ is p times differentiable on R
dθ , too.15 Similarly, if

Assumption 4.3.b is satisfied, then Rθ is real-analytic on R
dθ , and therefore, νθ is

also real-analytic on R
dθ . �

LEMMA 8.2. Suppose that Assumptions 4.1 and 4.2 hold. Let Q ⊂R
dθ be any

compact set. Then the following are true:

(i) f (·) is differentiable and ∇f (·) is locally Lipschitz continuous.
(ii) There exists a real number C3,Q ∈ [1,∞) (independent of λ) such that

‖η(θ)‖ ≤ C3,Q(1 − λ) for all θ ∈ Q.
(iii) If Assumption 4.3.a is satisfied, f (·) is p times differentiable.
(iv) If Assumption 4.3.b is satisfied, f (·) is real-analytic.

PROOF. (i), (iii), (iv) Owing to Lemma 8.1, we have

f (θ) = lim
n→∞Eθ

(
φ

(
V θ

n

)) = ∑
v∈X×Y

φ(v)νθ (v) = φT νθ(8.4)

for all θ ∈ R
dθ . Then these parts of the lemma directly follow from Lemma 8.1:

(ii) For each 1 ≤ j ≤ dθ , let C̃Q ∈ [1,∞) be an upper bound of ‖Sθ,j‖ on Q.
For θ ∈ R

dθ , v ∈X ×Y , n ≥ 0, let us also define

fn(θ, v) = ∑
v′∈X×Y

φ
(
v′)rn

θ

(
v′|v)

,(8.5)

h(θ) =
∞∑

n=0

∑
v,v′∈X×Y

φ
(
v′)r̃n

θ

(
v′|v)

sθ (v)νθ (v).(8.6)

Owing to Lemma 8.1, fn(θ, v) converges to f (θ) as n → ∞ uniformly in (θ, v)

on Q × (X × Y). Due to the same lemma, h(·) is well defined on Q [notice that
when θ ∈ Q, each term in the sums in (8.5), (8.6) tends to zero at the rate εn

Q].
Moreover, it is straightforward to show

(8.7)

∇θfn(θ, v0) = ∇θ

( ∑
v1,...,vn∈X×Y

φ(vn)

(
n∏

i=1

rθ (vi |vi−1)

))

= ∑
v1,...,vn∈X×Y

φ(vn)

(
n∑

i=1

∇θ rθ (vi |vi−1)

rθ (vi |vi−1)

)(
n∏

i=1

rθ (vi |vi−1)

)

=
n∑

i=1

∑
v′,v′′∈X×Y

φ
(
v′′)rn−i

θ

(
v′′|v′)sθ (

v′)ri
θ

(
v′|v0

)

15Notice that Rθ ∈ PNv×Nv
0 ⊂ QNv×Nv

0 , νθ = h(Rθ ) for all θ ∈ R
dθ . Notice also that h(·) is real-

analytic on QNv×Nv
0 .
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for all θ ∈ R
dθ , v0 ∈ X ×Y , n ≥ 1. Therefore,

∂
j
θ fn(θ, v) =

n∑
i=1

eT (v)Ri
θSθ,jR

n−i
θ φ =

n−1∑
i=0

eT (v)Rn−i
θ Sθ,jR

i
θφ(8.8)

for θ ∈ R
dθ , v ∈X ×Y , 1 ≤ j ≤ dθ , n ≥ 1, where ∂

j
θ fn(θ, v) is the j th component

of ∇θfn(θ, v). We also have

n−1∑
i=0

eT (v)Rn−i
θ Sθ,jR

i
θ e = 0(8.9)

for θ ∈ R
dθ , v ∈X ×Y , 1 ≤ j ≤ dθ , n ≥ 1.16 Hence,

n−1∑
i=0

eT (v)Rn−i
θ Sθ,j eν

T
θ φ = νT

θ φ

n−1∑
i=0

eT (v)Rn−i
θ Sθ,jR

i
θ e = 0

for θ ∈ R
dθ , v ∈X ×Y , 1 ≤ j ≤ dθ , n ≥ 1 (notice that Ri

θe = e). Therefore,

∂
j
θ fn(θ, v) =

n−1∑
i=0

eT (v)Rn−i
θ Sθ,j R̃

i
θφ

for θ ∈ R
dθ , v ∈X ×Y , 1 ≤ j ≤ dθ , n ≥ 1. Additionally, we have

hj (θ) =
∞∑

n=0

νT
θ Sθ,j R̃

n
θ φ =

n−1∑
i=0

eT (v)eνT
θ Sθ,j R̃

i
θφ +

∞∑
i=n

νT
θ Sθ,j R̃

i
θφ

for θ ∈ R
dθ , v ∈ X × Y , 1 ≤ j ≤ dθ , n ≥ 1 [notice that eT (v)e = 1], where hj (θ)

is the j th component of h(θ). Thus,

∂
j
θ fn(θ, v) − hj (θ) =

n−1∑
i=0

eT (v)R̃n−i
θ Sθ,j R̃

i
θφ −

∞∑
i=n

νT
θ Sθ,j R̃

i
θφ

for θ ∈ R
dθ , v ∈X ×Y , 1 ≤ j ≤ dθ , n ≥ 1. Then Lemma 8.1 implies

∣∣∂j
θ fn(θ, v) − hj (θ)

∣∣ ≤ ‖φ‖∥∥e(v)
∥∥‖Sθ,j‖

n−1∑
i=0

∥∥R̃i
θ

∥∥∥∥R̃n−i
θ

∥∥

+ ‖φ‖‖νθ‖‖Sθ,j‖
∞∑

i=n

∥∥R̃i
θ

∥∥

≤ C̃QC2
1,Q‖φ‖nεn

Q + C̃QC1,Q‖φ‖εn
Q

1 − εQ

16If φ = e, then fn(θ, v) is identically one, while ∇θ fn(θ, v) is identically zero. Hence, (8.8) re-
duces to (8.9) when φ = e.
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for all θ ∈ Q, v ∈ X ×Y , 1 ≤ j ≤ dθ , n ≥ 1. Hence, ∇θfn(θ, v) converges to h(θ)

as n → ∞ uniformly in (θ, v) on Q × (X × Y). Therefore, ∇f (θ) = h(θ) for all
θ ∈R

dθ (notice that Q is any compact set). Consequently,

ηj (θ) =
∞∑

n=0

λnνT
θ Sθ,j R̃

n
θ φ − hj (θ) = −

∞∑
n=0

(
1 − λn)

νT
θ Sθ,j R̃

n
θ φ

for θ ∈ R
dθ , 1 ≤ j ≤ dθ , where ηj (θ) is the j th component of η(θ). Combining

this with Lemma 8.1, we get

∣∣ηj (θ)
∣∣ ≤ ‖φ‖‖νθ‖‖Sθ,j‖

∞∑
n=0

(
1 − λn)∥∥R̃n

θ

∥∥

≤ C̃QC1,Q‖φ‖
∞∑

n=0

(
1 − λn)

εn
Q

≤ C̃QC1,Q‖φ‖(1 − λ)

(1 − εQ)2

for all θ ∈ Q, 1 ≤ j ≤ dθ . Then we conclude that there exists a real number C3,Q ∈
[1,∞) with the properties specified in (ii). �

LEMMA 8.3. Suppose that Assumptions 4.1 and 4.2 hold. Let Q ⊂R
dθ be any

compact set. Then the following are true:

(i) There exist real numbers δQ ∈ (0,1), C4,Q ∈ [1,∞) (possibly depending
on λ) such that∥∥(

nF
)
(θ, z) − ∇f (θ)

∥∥ ≤ C4,Qnδn
Q

(
1 + ‖w‖)

,∥∥((
nF

)(
θ ′, z

) − ∇f
(
θ ′)) − ((

nF
)(

θ ′′, z
) − ∇f

(
θ ′′))∥∥

≤ C4,Qnδn
Q

∥∥θ ′ − θ ′′∥∥(
1 + ‖w‖)

,

for all θ, θ ′, θ ′′ ∈ Q, z = (x, y,w) ∈ X ×Y ×R
dθ , n ≥ 0.

(ii) There exits a real number C5,Q ∈ [1,∞) (possibly depending on λ) such
that

‖Wn+1‖I{τQ>n} ≤ C5,Q

(
1 + ‖W0‖)

for all n ≥ 0 (τQ is specified in Assumption 3.3).

PROOF. (i) For each 1 ≤ j ≤ dθ , let C̃1,Q ∈ [1,∞) be an upper bound of
‖Sθ,j‖ on Q and a Lipschitz constant of Sθ,j on the same set. Moreover, let C̃2,Q =
3C̃1,QC1,QC2,QNv , C̃3,Q = 2C̃2,Q(1 − εQ)−1, while δQ = max{λ, εQ}.
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Owing to Lemma 8.1, we have∥∥R̃k
θ Sθ,jR

l
θ

∥∥ ≤ ∥∥R̃k
θ

∥∥‖Sθ,j‖
∥∥Rl

θ

∥∥ ≤ C̃2,Qεk
Q,(8.10) ∥∥νT

θ Sθ,jR
l
θ

∥∥ ≤ ∥∥νT
θ

∥∥‖Sθ,j‖
∥∥Rl

θ

∥∥ ≤ C̃2,Q(8.11)

for all θ ∈ Q, 1 ≤ j ≤ dθ , k, l ≥ 1. Due to the same lemma, we also have

(8.12)

∥∥R̃k
θ ′Sθ ′,jR

l
θ ′ − R̃k

θ ′′Sθ ′′,jR
l
θ ′′

∥∥ ≤ ∥∥R̃k
θ ′ − R̃k

θ ′′
∥∥‖Sθ ′,j‖

∥∥Rl
θ ′

∥∥
+ ∥∥R̃k

θ ′′
∥∥‖Sθ ′,j − Sθ ′′,j‖

∥∥Rl
θ ′

∥∥
+ ∥∥R̃k

θ ′′
∥∥‖Sθ ′′,j‖

∥∥Rl
θ ′ − Rl

θ ′′
∥∥

≤ C̃2,Qεk
Q

∥∥θ ′ − θ ′′∥∥
for all θ ′, θ ′′ ∈ Q, 1 ≤ j ≤ dθ , k, l ≥ 1. In addition to this, Lemma 8.1 implies

(8.13)

∥∥νT
θ ′Sθ ′,jR

l
θ ′ − νT

θ ′′Sθ ′′,jR
l
θ ′′

∥∥ ≤ ∥∥νT
θ ′ − νT

θ ′′
∥∥‖Sθ ′,j‖

∥∥Rl
θ ′

∥∥
+ ∥∥νT

θ ′′
∥∥‖Sθ ′,j − Sθ ′′,j‖

∥∥Rl
θ ′

∥∥
+ ∥∥νT

θ ′′
∥∥‖Sθ ′′,j‖

∥∥Rl
θ ′ − Rl

θ ′′
∥∥

≤ C̃2,Q

∥∥θ ′ − θ ′′∥∥
for each θ ′, θ ′′ ∈ Q, 1 ≤ j ≤ dθ , l ≥ 1. Moreover, it is straightforward to show(

nF
)
(θ, z) = −η(θ) + Eθ

(
φ

(
V θ

n

)
Wθ

n |V θ
0 = v,Wθ

0 = w
)

= −η(θ) + Eθ

(
φ

(
V θ

n

)(
λnw +

n−1∑
i=0

λisθ
(
V θ

n−i

))∣∣∣V θ
0 = v

)

= −η(θ) +
n−1∑
i=0

∑
v′,v′′∈X×Y

λiφ
(
v′′)ri

θ

(
v′′|v′)sθ (

v′)rn−i
θ

(
v′|v)

+ λnw
∑

v′∈X×Y
φ

(
v′)rn

θ

(
v′|v)

for θ ∈ R
dθ , z = (v,w) ∈ (X ×Y) ×R

dθ , n ≥ 1. Therefore,

(
nFj

)
(θ, z) = −ηj (θ) +

n−1∑
i=0

λieT (v)Rn−i
θ Sθ,jR

i
θφ + λneT

j weT (v)Rn
θ φ

for θ ∈ R
dθ , z = (v,w) ∈ (X ×Y)×R

dθ , 1 ≤ j ≤ dθ , n ≥ 1. Here, Fj (θ, z), ηj (θ)

are the j th components of F(θ, z), η(θ), while ej is the j th standard unit vector
in R

dθ . Moreover, we have

∂jf (θ) = −ηj (θ) +
∞∑

n=0

λnνT
θ Sθ,j R̃

n
θ φ
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for θ ∈ R
dθ , 1 ≤ j ≤ dθ , where ∂jf (θ) is the j th component of ∇f (θ). Since

eT (v)e = 1, R̃n
θ = Rn

θ − eνT
θ and

νT
θ Sθ,j e = ∑

v∈X×Y
νθ (v)sθ,j (v) = ∑

x∈X

(∑
y∈Y

∂
j
θ qθ (y|x)

)
μθ(x) = 0

for θ ∈ R
dθ , v ∈ X ×Y , 1 ≤ j ≤ dθ , n ≥ 0,17 we get

∂jf (θ) = −ηj (θ) +
n−1∑
i=0

λiνT
θ Sθ,jR

i
θφ +

n−1∑
i=0

λiνT
θ Sθ,j eν

T
θ φ +

∞∑
i=n

λiνT
θ Sθ,j R̃

i
θφ

= −ηj (θ) +
n−1∑
i=0

λieT (v)eνT
θ Sθ,jR

i
θφ +

∞∑
i=n

λiνT
θ Sθ,j R̃

i
θφ

for the same θ , v, j , n. Consequently,

(
nFj

)
(θ, z) − ∂jf (θ) =

n−1∑
i=0

λieT (v)R̃n−iSθ,jR
i
θφ −

∞∑
i=n

λiνT
θ Sθ,j R̃

i
θφ

+ λneT
j weT (v)Rn

θ φ

for θ ∈ R
dθ , z = (v,w) ∈ (X × Y) × R

dθ , 1 ≤ j ≤ dθ , n ≥ 1. Then (8.10), (8.11)
imply

(8.14)

∣∣(nFj

)
(θ, z) − ∂jf (θ)

∣∣
≤ ‖φ‖∥∥e(v)

∥∥ n−1∑
i=0

λi
∥∥R̃n−i

θ Sθ,jR
i
θ

∥∥

+ ‖φ‖
∞∑

i=n

λi
∥∥νT

θ Sθ,j R̃
i
θ

∥∥ + λn‖φ‖∥∥e(v)
∥∥∥∥Rn

θ

∥∥‖w‖

≤ C̃2,Q

(
n∑

i=1

λiεn−i
Q +

∞∑
i=n

λiεi
Q + λn‖w‖

)

≤ C3,Qnδn
Q

(
1 + ‖w‖)

17Notice that
∑

y∈Y ∂
j
θ qθ (y|x) = ∂

j
θ (

∑
y∈Y qθ (y|x)) = 0. Notice also that νθ (v) = qθ (y|x)μθ (x)

for v = (x, y) ∈ X × Y , where μθ (x) is the invariant probability of {Xθ
n}n≥0 [see the proof of Part

(i) of Lemma 8.1].
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for all θ ∈ Q, z = (v,w) ∈ (X × Y) × R
dθ , 1 ≤ j ≤ dθ , n ≥ 1. Similarly, (8.12),

(8.13) yield

(8.15)

∣∣((nFj

)(
θ ′, z

) − ∂jf
(
θ ′)) − ((

nFj

)(
θ ′′, z

) − ∂jf
(
θ ′′))∣∣

≤ ‖φ‖∥∥e(v)
∥∥ n−1∑

i=0

λi
∥∥R̃n−i

θ ′ Sθ ′,jR
i
θ ′ − R̃n−i

θ ′′ Sθ ′′,jR
i
θ ′′

∥∥

+ ‖φ‖
∞∑

i=n

λi
∥∥νT

θ ′Sθ ′,j R̃
i
θ ′ − νT

θ ′′Sθ ′′,j R̃
i
θ ′′

∥∥
+ λn‖φ‖∥∥e(v)

∥∥‖w‖∥∥Rn
θ ′ − Rn

θ ′′
∥∥

≤ C̃2,Q

∥∥θ ′ − θ ′′∥∥(
n∑

i=1

λiεn−i
Q +

∞∑
i=n

λiεi
Q + λn‖w‖

)

≤ C3,Qnδn
Q

∥∥θ ′ − θ ′′∥∥(
1 + ‖w‖)

for all θ ′, θ ′′ ∈ Q, z = (v,w) ∈ (X × Y) × R
dθ , 1 ≤ j ≤ dθ , n ≥ 1. Using (8.14),

(8.15), we conclude that there exist real numbers δQ, C4,Q with properties speci-
fied in (i).

(ii) Let C5,Q = C̃1,Q(1 − λ)−1 [C̃1,Q is specified in the proof of (i)]. Then, due
to Assumption 4.2, we have

‖Wn+1‖I{τQ>n} =
∥∥∥∥∥λn+1W0 +

n∑
i=0

λn−isθi
(Xi+1, Yi+1)

∥∥∥∥∥I{τQ>n}

≤ λn+1‖W0‖ + C̃1,Q

n∑
i=0

λn−i

≤ C5,Q

(
1 + ‖W0‖)

for n ≥ 0. �

PROOF OF THEOREM 4.1. For θ ∈ R
dθ , z = (v,w) ∈ (X ×Y) ×R

dθ , let

F̃ (θ, z) =
∞∑

n=0

((
nF

)
(θ, z) − ∇f (θ)

)
, ϕ(z) = 1 + ‖w‖.

Then, using Lemma 8.3, we conclude that for each θ ∈ R
dθ , z ∈ X × Y × R

dθ ,
F̃ (θ, z) is well defined and satisfies (F̃ )(θ, z) = ∑∞

n=1((
nF)(θ, z) − ∇f (θ)).

Thus, Assumption 3.2 holds. Relying on Lemma 8.3, we also deduce that for any
compact set Q ⊂ R

dθ , there exists a real number C̃Q ∈ [1,∞) (possibly depending
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on λ) such that

max
{∥∥F(θ, z)

∥∥,∥∥F̃ (θ, z)
∥∥,∥∥(F̃ )(θ, z)

∥∥} ≤ C̃Qϕ(z),∥∥(F̃ )
(
θ ′, z

) − (F̃ )
(
θ ′′, z

)∥∥ ≤ C̃Qϕ(z)
∥∥θ ′ − θ ′′∥∥,

E
(
ϕ2(Zn+1)I{τQ>n}|θ0 = θ,Z0 = z

) ≤ C̃Qϕ2(z)

for all θ, θ ′, θ ′′ ∈ Q, z ∈ X × Y × R
dθ . Hence, Assumptions 3.3 is satisfied, too.

Moreover, Lemma 8.2 yields

η = lim sup
n→∞

‖ηn‖ ≤ C3,Q(1 − λ)

on �Q (notice that C3,Q does not depend on λ). Then the theorem’s assertion
directly follows from Theorem 3.1 and Parts (i), (iii), (iv) of Lemma 8.2. �

APPENDIX A

In this section, a global version of Theorem 2.1 is presented. This result is based
the following assumptions.

ASSUMPTION A.1. f (·) is uniformly lower bounded [i.e., infθ∈Rdθ f (θ) >

−∞], and ∇f (·) is (globally) Lipschitz continuous. Moreover, there exist real
numbers c ∈ (0,1), ρ ∈ [1,∞) such that ‖∇f (θ)‖ ≥ c for all θ ∈ R

dθ satisfying
‖θ‖ ≥ ρ.

ASSUMPTION A.2. {ξn}n≥0 admits the decomposition ξn = ζn + ηn for each
n ≥ 0, where {ζn}n≥ and {ηn}n≥0 are R

dθ -valued stochastic processes satisfying

lim
n→∞g(θn) max

n≤j<a(n,t)

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥ = 0, lim sup
n→∞

g(θn)‖ηn‖ < ∞(A.1)

almost surely for any t ∈ (0,∞). In addition, there exists a real number δ ∈ (0,1)

such that

lim
n→∞h(θn)‖ηn‖ < δ(A.2)

almost surely. Here, g,h :Rdθ → (0,∞) are the (scaling) functions defined by

g(θ) = (∥∥∇f (θ)
∥∥ + 1

)−1
, h(θ) =

{∥∥∇f (θ)
∥∥−1 if ‖θ‖ ≥ ρ,

0 otherwise

for θ ∈ R
dθ (ρ is specified in Assumption A.1).
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Assumption A.1 is a stability condition. In this or a similar form, it is involved
in practically any stability analysis of stochastic gradient search and stochas-
tic approximation (see, e.g., [7, 11, 14] and references cited therein). This as-
sumption is restrictive, as it requires ∇2f (·) to be uniformly bounded. Assump-
tion A.1 also requires ∇f (·) to grow at most linearly as θ → ∞. Using ran-
dom projections, these restrictive conditions can considerably be relaxed (see
[14, 33]).

Assumption A.2 is a noise condition and can be considered as a global ver-
sion of Assumption 2.2. Assumption A.2 requires the gradient of the objective
function f (·) (asymptotically) to cancel the effect of the gradient estimator’s error
{ξn}n≥0. Assumption A.2 is true whenever (2.4) holds almost surely. It is also sat-
isfied for stochastic gradient search with Markovian dynamics (see Theorem B.1,
Appendix B). Assumption A.2 and the results based on it (Theorem A.1, below)
are motivated by the scaled ODE approach to the stability analysis of stochastic
approximation [12].18

Our results on the stability and asymptotic bias of algorithm (2.1) are provided
in the next theorem.

THEOREM A.1. Suppose that Assumptions 2.1, A.1 and A.2 hold. Then the
following are true:

(i) There exists a compact (deterministic) set Q ⊂ R
dθ such that P(�Q) = 1

[�Q is specified in (2.6)].
(ii) There exists a (deterministic) nondecreasing function ψ : [0,∞) → [0,∞)

[independent of η and depending only on f (·)] such that limt→0 ψ(t) = ψ(0) = 0
and

lim sup
n→∞

d(θn,R) ≤ ψ(η)

almost surely.
(iii) If f (·) satisfies Assumption 2.3.b, there exists a real number K ∈ (0,∞)

[independent of η and depending only on f (·)] such that

lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ Kηq/2, lim sup

n→∞
f (θn) − lim inf

n→∞ f (θn) ≤ Kηq

almost surely (q is specified in the statement of Theorem 2.1).

18The main difference between [12] and the results presented here is the choice of the scaling
functions. The scaling adopted in [12] is (asymptotically) proportional to ‖θ‖. In this paper, the
scaling is (asymptotically) proportional to ‖∇f (θ)‖.
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(iv) If f (·) satisfies Assumption 2.3.c, there exist real numbers r ∈ (0,1), L ∈
(0,∞) [independent of η and depending only on f (·)] such that

lim sup
n→∞

∥∥∇f (θn)
∥∥ ≤ Lη1/2,

lim sup
n→∞

d
(
f (θn), f (S)

) ≤ Lη,

lim sup
n→∞

d(θn,S) ≤ Lηr

almost surely.

PROOF. Owing to Assumption A.1, there exists a real number C̃1 ∈ [1,∞)

such that the following are true: (i) f (θ) > −C̃1 for all θ ∈ R
dθ , and (ii) f (θ) ≤ C̃1

for any θ ∈ R
dθ satisfying ‖θ‖ ≤ ρ + 1. Moreover, due to Assumption A.2, there

also exists an event N0 ∈ F with the following properties: (i) P(N0) = 0, and
(ii) (A.1), (A.2) hold on Nc

0 for all t ∈ (0,∞).
Let ε = (1 − δ)/6, T = 2C̃1ε

−1c−2 and let φ : [0,∞) → [0,∞) be the function
defined by

φ(z) = sup
{∥∥∇f (θ)

∥∥ : θ ∈R
dθ ,‖θ‖ ≤ z

}
for z ∈ [0,∞). As ∇f (·) is locally Lipschitz continuous, φ(·) is locally Lipschitz
continuous, too. φ(·) is also nonnegative and satisfies ‖∇f (θ)‖ ≤ φ(‖θ‖) for all
θ ∈R

dθ .
For z ∈ [0,∞), let λ(·; z) be the solution to the ODE dz/dt = 2φ(z) satisfying

λ(0; z) = z. As 2φ(·) is nonnegative and locally Lipschitz continuous, λ(·; ·) is
well defined and locally Lipschitz continuous (in both arguments) on [0,∞) ×
[0,∞). We also have

λ(t; z) = z + 2
∫ t

0
φ

(
λ(s; z))ds(A.3)

for all t, z ∈ [0,∞). Then there exists ρ1 ∈ [1,∞) such that ρ1 ≥ ρ + 1 and such
that |λ(t; z)| ≤ ρ1 for all t ∈ [0, T ], z ∈ [0, ρ + 1].

Let ρ2 = ρ1 + 1, Q = {θ ∈ R
dθ : ‖θ‖ ≤ ρ2}, while � is the event defined by

� = lim sup
n→∞

{‖θn‖ < ρ
} =

∞⋂
m=0

∞⋃
n=m

{‖θn‖ < ρ
}
.

Let also C̃2 ∈ [1,∞) stand for a (global) Lipschitz constant of ∇f (·) and for an
upper bound of ‖∇f (·)‖ on Q. Finally, let C̃3 = 2C̃2 exp(2C̃2), C̃4 = 12C̃1C̃2C̃3,
while τ = 4−1C̃−1

4 εc2.
In order to prove the theorem’s assertion, it is sufficient to show Nc

0 ⊆ � (i.e.,
to establish that on Nc

0 , ‖θn‖ ≤ ρ2 for all, but finitely many n).19 To prove this,

19Assumption 2.2 is a consequence of Assumption A.2 and, therefore, Parts (ii)–(iv) directly follow
from Part (i) and Theorem 2.1.
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we use contradiction. We assume that ‖θn‖ > ρ2 for infinitely many n and some
ω ∈ Nc

0 . Notice that all formulas which follow in the proof correspond to ω.
Owing to (A.1), (A.2), there exists an integer k1 ≥ 0 (depending on ω) such that

g(θn) max
n≤j<a(n,T )

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥ ≤ τ 2, h(θn)‖ηn‖ ≤ δ(A.4)

for n ≥ k1. Due to Assumption 2.1 and (A.1), we also have

lim
n→∞g(θn)‖αnζn‖ = lim

n→∞g(θn)‖αnηn‖ = 0.(A.5)

Since

g(θn)‖θn+1 − θn‖ ≤ αn + g(θn)‖αnζn‖ + g(θn)‖αnηn‖
for n ≥ 0, Assumption 2.1 and (A.5) imply limn→∞ g(θn)‖θn+1 − θn‖ = 0. Then
(6.2) implies that there exists an integer k2 ≥ 0 (depending on ω) such that

a(n,τ )−1∑
i=n

αi ≥ (1 − ε)τ, g(θn)‖θn+1 − θn‖ ≤ τ(A.6)

for n ≥ k2.
Let k0 = max{k1, k2}. Moreover, let l0,m0, n0 be the integers defined as follows.

If ω ∈ � (i.e., if ‖θn‖ < ρ for infinitely many n), let

l0 = min
{
n > k0 : ‖θn−1‖ < ρ

}
,(A.7)

m0 = min
{
n > l0 : ‖θn‖ > ρ2

}
,(A.8)

n0 = max
{
n ≤ m0 : ‖θn−1‖ < ρ

}
.(A.9)

Otherwise, if ω ∈ �c (i.e., if ‖θn‖ < ρ for finitely many n), let

l0 = max
{
n > 0 : ‖θn−1‖ < ρ

}
, m0 = ∞, n0 = max{k0, l0}.

Then we have k0 < n0 ≤ m0 and ‖θn‖ ≥ ρ for n0 ≤ n < m0.
Let φn(τ),φ1,n(τ ), φ2,n(τ ) have the same meaning as in Section 6. Now, the

asymptotic properties of φn(τ) are analyzed. As ‖θn‖ ≥ ρ for n0 ≤ n < m0, (A.4)
implies

(A.10)

∥∥∥∥∥
j∑

i=n

αiξi

∥∥∥∥∥ ≤
∥∥∥∥∥

j∑
i=n

αiζi

∥∥∥∥∥ +
j∑

i=n

αi‖ηi‖ ≤ τ 2g−1(θn) + δ

j∑
i=n

αi

∥∥∇f (θi)
∥∥

for n0 ≤ n ≤ j < min{m0, a(n,T )} [notice that ‖ηi‖ ≤ δ‖∇f (θi)‖ when ‖θi‖ ≥
ρ]. Therefore,∥∥∇f (θj )

∥∥ ≤ ∥∥∇f (θn)
∥∥ + ∥∥∇f (θj ) − ∇f (θn)

∥∥
≤ ∥∥∇f (θn)

∥∥ + C̃2‖θj − θn‖



ASYMPTOTIC BIAS OF STOCHASTIC GRADIENT SEARCH 3293

≤ ∥∥∇f (θn)
∥∥ + C̃2

j−1∑
i=n

αi

∥∥∇f (θi)
∥∥ + C̃2

∥∥∥∥∥
j−1∑
i=n

αiξi

∥∥∥∥∥
≤ ∥∥∇f (θn)

∥∥ + C̃2τ
2g−1(θn) + 2C̃2

j−1∑
i=n

αi

∥∥∇f (θi)
∥∥

for n0 ≤ n < j ≤ min{m0 − 1, a(n, τ )}.20 Combining this with the Bellman–
Gronwall inequality (see, e.g., [11], Appendix B), we deduce

∥∥∇f (θj )
∥∥ ≤ (∥∥∇f (θn)

∥∥ + C̃2τ
2g−1(θn)

)
exp

(
2C̃2

j−1∑
i=n

αi

)

≤ (∥∥∇f (θn)
∥∥ + C̃2τ

2g−1(θn)
)
(1 + C̃3τ)

≤ ∥∥∇f (θn)
∥∥ + (

C̃3τ + C̃2τ
2 + C̃2C̃3τ

3)
g−1(θn)

≤ ∥∥∇f (θn)
∥∥ + C̃4τg−1(θn)

for n0 ≤ n ≤ j ≤ min{m0 − 1, a(n, τ )}.21 Then (A.10) implies

(A.11)

∥∥∥∥∥
j∑

i=n

αiξi

∥∥∥∥∥ ≤ τ 2g−1(θn) + δ
(∥∥∇f (θn)

∥∥ + C̃4τg−1(θn)
) j∑
i=n

αi

≤ δτ
∥∥∇f (θn)

∥∥ + 2C̃4τ
2g−1(θn)

for n0 ≤ n ≤ j < min{m0, a(n, τ )}. Consequently,

(A.12)

‖θj − θn‖ ≤
j−1∑
i=n

αi

∥∥∇f (θi)
∥∥ +

∥∥∥∥∥
j−1∑
i=n

αiξi

∥∥∥∥∥
≤ (∥∥∇f (θn)

∥∥ + C̃4τg−1(θn)
)(j−1∑

i=n

αi + δτ

)
+ 2C̃4τ

2g−1(θn)

≤ 3τg−1(θn)

20Notice that τ , T are defined as τ = 4−1C̃−1
4 εc2, T = 2C̃1ε−1c−2. Notice also τ < 1 < T since

C̃1, C̃4 ∈ [1,∞), ε, c ∈ (0,1).
21Notice that

∑j−1
i=n αi ≤ τ < 1 when n ≤ j ≤ a(n, τ ). Notice also g−1(θn) > ‖∇f (θn)‖ and

exp(2C̃2τ ) ≤ 2C̃2τ exp(2C̃2) = C̃3τ .
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for n0 ≤ n ≤ j ≤ min{m0 − 1, a(n, τ )} (notice that δ < 1, C̃4τ ≤ 1/4). Therefore,

∣∣φ1,n(τ )
∣∣ ≤ C̃2

∥∥∇f (θn)
∥∥ a(n,τ )−1∑

i=n

αi‖θi − θn‖

≤ 3C̃2τg−1(θn)
∥∥∇f (θn)

∥∥ a(n,τ )−1∑
i=n

αi ≤ 3C̃2τ
2g−2(θn)

for n ≥ n0 satisfying a(n, τ ) < m0. We also have∣∣φ2,n(τ )
∣∣ ≤ C̃2‖θa(n,τ ) − θn‖2 ≤ 9C̃2τ

2g−2(θn)

for n ≥ n0 satisfying a(n, τ ) < m0. Thus,∣∣φn(τ)
∣∣ ≤ C̃4τ

2g−2(θn)(A.13)

when n ≥ n0, a(n, τ ) < m0. Additionally, as a result of (A.6), (A.11), we get

∥∥∇f (θn)
∥∥ a(n,τ )−1∑

i=n

αi −
∥∥∥∥∥
a(n,τ )−1∑

i=n

αiξi

∥∥∥∥∥ ≥ (1 − δ − ε)τ
∥∥∇f (θn)

∥∥
− 2C̃4τ

2g−1(θn)

= 5ετ
∥∥∇f (θn)

∥∥ − 2C̃4τ
2g−1(θn)

≥ 3ετ
∥∥∇f (θn)

∥∥
when n ≥ n0, a(n, τ ) < m0.22 Then (6.1), (A.13) imply

(A.14)
f (θa(n,τ )) − f (θn) ≤ −3ετ

∥∥∇f (θn)
∥∥2 + C̃4τ

2g−2(θn)

≤ −ετ
∥∥∇f (θn)

∥∥2 ≤ −ετc2

for n ≥ n0 satisfying a(n, τ ) < m0.23

Let {nk}k≥0 be the sequence recursively defined by nk+1 = a(nk, τ ) for k ≥ 0.
Now, we show by contradiction ω ∈ � (i.e., ‖θn‖ < ρ for infinitely many n). We
assume the opposite. Then m0 = ∞ and ‖θn‖ ≥ ρ for n ≥ n0, while (A.14) implies
f (θnk+1) − f (θnk

) ≤ −ετc2 for k ≥ 0. Hence, limk→∞ f (θnk
) = −∞. However,

this is impossible due to Assumption A.1. Thus, ω ∈ � (i.e., ‖θn‖ < ρ for infinitely
many n). Therefore, m0, n0 are defined through (A.7), and thus, ‖θn0−1‖ < ρ,
‖θm0‖ > ρ2. Combining this with (A.6), we conclude

‖θn0 − θn0−1‖ ≤ τg−1(θn0−1) ≤ τ(C̃2 + 1) ≤ 1/2

22Notice that 1 − δ = 6ε, ε ≥ εc ≥ 2C̃4τ . Notice also that 2ετ‖∇f (θn)‖ ≥ ετ‖∇f (θn)‖ + ετc ≥
2C̃4τ2g−1(θn) for n0 ≤ n < m0.

23Notice that 2ε‖∇f (θn)‖2 ≥ ε‖∇f (θn)‖2 + εc2 ≥ C̃4τg−2(θn) for n0 ≤ n < m0.
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[notice that ‖∇f (θn0−1)‖ ≤ C̃2, C̃2τ ≤ 1/4]. Consequently,

‖θn0‖ ≤ ‖θn0−1‖ + ‖θn0 − θn0−1‖ ≤ ρ + 1/2 < ρ2.(A.15)

Hence, n0 < m0, f (θn0) ≤ C̃1.
Let i0, j0 be the integers defined by j0 = max{j ≥ 0 : nj < m0}, i0 = nj0 . Then

we have n0 ≤ i0 = nj0 < nj0+1 = m0 ≤ a(i0, τ ). As a result of this and (A.12), we
get

‖θm0 − θi0‖ ≤ 3τg−1(θi0) ≤ 3τ(C̃2 + 1) ≤ 1/2

[notice that ‖∇f (θi0)‖ ≤ C̃2, C̃2τ ≤ 1/12]. Consequently,

‖θi0‖ ≥ ‖θm0‖ − ‖θm0 − θi0‖ ≥ ρ2 − 1/2 > ρ1.(A.16)

Let {γn}n≥0, θ0(·) have the same meaning as in Section 5. Now, we show by
contradiction that γi0 − γn0 ≥ T . We assume the opposite. Then (A.10), (A.15)
imply

(A.17)

∥∥θ0(t)
∥∥ = ‖θj‖ ≤ ‖θn0‖ +

j−1∑
i=n0

αi

∥∥∇f (θi)
∥∥ +

∥∥∥∥∥
j−1∑
i=n0

αiξi

∥∥∥∥∥
≤ ‖θn0‖ + τ 2g−1(θn0) + 2

j−1∑
i=n0

αi

∥∥∇f (θi)
∥∥

≤ ρ + 1 + 2
j−1∑
i=n0

αiφ
(‖θi‖)

≤ ρ + 1 + 2
∫ t

γn0

φ
(∥∥θ0(s)

∥∥)
ds

for t ∈ [γj , γj+1), n0 ≤ j ≤ i0.24 Applying the comparison principle (see [19],
Section 3.4) to (A.3), (A.17), we conclude ‖θ0(t)‖ ≤ λ(t − γn0;ρ + 1) ≤ ρ1 for
all t ∈ [γn0, γi0]. Thus, ‖θi0‖ = ‖θ0(γi0)‖ ≤ ρ1. However, this is impossible, due to
(A.16). Hence, γi0 − γn0 ≥ T . Consequently,

T ≤ γi0 − γn0 =
j0−1∑
j=0

(γnj+1 − γnj
) ≤ j0τ(A.18)

(notice that nj0 = i0, γnj+1 − γnj
= ∑nj+1−1

i=nj
αi ≤ τ ).

24As j ≤ i0 < m0, we have γj − γn0 ≤ γi0 − γn0 ≤ T and j ≤ min{m0 − 1, a(n0, T )}. We also

have τ2g−1(θn0) ≤ τ2(C̃2 + 1) ≤ 1/2.
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Owing to (A.14), we have f (θnj+1)−f (θnj
) ≤ −ετc2 for 0 ≤ j ≤ j0. Combin-

ing this with (A.18), we get

f (θi0) = f (θnj0
) ≤ f (θn0) − j0ετc2 ≤ C̃1 − εc2T ≤ −C̃1.

However, this is impossible, since f (θ) > −C̃1 for all θ ∈ R
dθ . Hence, ‖θn‖ > ρ2

for finitely many n. �

APPENDIX B

In this section, a global version of Theorem 3.1 is presented. This result is based
the following assumptions.

ASSUMPTION B.1. There exists a Borel-measurable function ϕ : Rdz →
[1,∞) such that

max
{∥∥F(θ, z)

∥∥,∥∥F̃ (θ, z)
∥∥,∥∥(F̃ )(θ, z)

∥∥} ≤ ϕ(z)
(∥∥∇f (θ)

∥∥ + 1
)
,∥∥(F̃ )

(
θ ′, z

) − (F̃ )
(
θ ′′, z

)∥∥ ≤ ϕ(z)
∥∥θ ′ − θ ′′∥∥

for all θ, θ ′, θ ′′ ∈ R
dθ , z ∈R

dz . In addition, one has

sup
n≥0

E
(
ϕ2(Zn)|θ0 = θ,Z0 = z

)
< ∞

for all θ ∈ R
dθ , z ∈ R

dz .

ASSUMPTION B.2. ηn = η(θn) for n ≥ 0, where η : Rdθ → R
dθ is a continu-

ous function. Moreover, there exists a real number δ ∈ (0,1) such that ‖η(θ)‖ ≤
δ‖∇f (θ)‖ for all θ ∈ R

dθ satisfying ‖θ‖ ≥ ρ (ρ is specified in Assumption A.1).

Assumption B.1 is a global version of Assumption 3.3. In a similar form, it is
involved in the stability analysis of stochastic approximation carried out in [7],
Section II.1.9. Assumption B.2 is related to the bias of the gradient estimator. It
requires the bias {ηn}n≥0 to be a deterministic function of the algorithm iterates
{θn}n≥0. As demonstrated in Section 4 and [33], this is often satisfied in practice.
Assumption B.2 can be considered as one of the weakest conditions under which
the stability of the perturbed ODE dθ/dt = −(∇f (θ) + η(θ)) can be shown.

Our results on the stability and asymptotic bias of algorithm (3.1) are provided
in the next theorem.

THEOREM B.1. Suppose that Assumptions 3.1, 3.2, A.1, B.1 and B.2 hold.
Let f (·) be the function specified in Assumption 3.2. Then the following are true:

(i) If f (·) satisfies Assumption 2.3.a, Part (i) of Theorem A.1 holds.
(ii) If f (·) satisfies Assumption 2.3.b, Part (ii) of Theorem A.1 holds.

(iii) If f (·) satisfies Assumption 2.3.c, Part (iii) of Theorem A.1 holds.
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PROOF. Let g(·), h(·) be the functions defined in Assumption A.2. Then, due
to Assumption B.2, g(θ)η(θ) is uniformly bounded in θ ∈R

dθ , while h(θ)η(θ) ≤ δ

for all θ ∈ R
dθ satisfying ‖θ‖ ≥ ρ. Let C ∈ [1,∞) stand for a (global) Lip-

schitz constant of ∇f (·) and for an (global) upper bound of g(·)η(·). Define
τ = 1/(18C2) and let {ζn}n≥0, {ζ1,n}n≥0, {ζ2,n}n≥0, {ζ3,n}n≥0 have the same mean-
ing as in the proof of Theorem 3.1, while τn is the stopping time defined by

τn = min
({

j ≥ n : g(θn)g
−1(θj ) > 3

} ∪ {∞})

for n ≥ 0. Finally, for θ ∈ R
dθ , z ∈ R

dz , let Eθ,z(·) denote the conditional mean
given θ0 = θ , Z0 = z.

As a direct consequence of Assumptions 3.1, B.1, we get

Eθ,z

( ∞∑
n=0

α2
nϕ

2(Zn+1)

)
< ∞

for all θ ∈ R
dθ , z ∈ R

dz . We also have

g(θn)‖ζn‖ ≤ ϕ(Zn+1) + 1 ≤ 2ϕ(Zn+1)

for n ≥ 0. Consequently,

lim
n→∞αnϕ(Zn+1) = lim

n→∞αng(θn)‖ζn‖ = 0(B.1)

almost surely.
Let {mk}k≥0 be the sequence recursively defined by m0 = 0 and mk+1 =

a(mk, τ ) for k ≥ 0. Moreover, let Fn = σ {θ0,Z0, . . . , θn,Zn} for n ≥ 0. Due to
Assumption 3.2, we have

Eθ,z

(
g(θn)ζ1,j I{τn>j}|Fj

)
= g(θn)

(
Eθ,z

(
F̃ (θj ,Zj+1)|Fj

) − (F̃ )(θj ,Zj )
)
I{τn>j} = 0

almost surely for each θ ∈ R
dθ , z ∈ R

dz , 0 ≤ n ≤ j (notice that {τn > j} is measur-
able with respect to Fj ). Moreover, Assumption B.1 implies

g(θn)‖ζ1,j‖I{τn>j} ≤ g(θn)g
−1(θj )

(
ϕ(Zj ) + ϕ(Zj+1)

)
I{τn>j}

≤ 3
(
ϕ(Zj ) + ϕ(Zj+1)

)
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for 0 ≤ n ≤ j . Then, as a result of Doob inequality, we get

Eθ,z

(
max

n<j<a(n,τ)

∥∥∥∥∥
j∑

i=n+1

αig(θn)ζ1,i

∥∥∥∥∥
2

I{τn>j}
)

≤ Eθ,z

(
max

n<j<a(n,τ)

∥∥∥∥∥
j∑

i=n+1

αig(θn)ζ1,iI{τn>i}
∥∥∥∥∥

2)

≤ 4Eθ,z

(
a(n,τ )−1∑
i=n+1

α2
i g

2(θn)‖ζ1,i‖2I{τn>i}
)

≤ 72Eθ,z

(
a(n,τ )∑
i=n+1

α2
i

(
ϕ2(Zi) + ϕ2(Zi+1)

))

for all θ ∈ R
dθ , z ∈ R

dz , n ≥ 0. Combining this with Assumptions 3.1, B.1, we
deduce

Eθ,z

( ∞∑
k=0

g2(θmk
) max

mk<j<mk+1

∥∥∥∥∥
j∑

i=mk

αiζ1,i

∥∥∥∥∥
2

I{τmk
>j}

)

≤ 72Eθ,z

( ∞∑
n=0

(
α2

i + α2
i+1

)
ϕ2(Zi+1)

)
< ∞

for each θ ∈R
dθ , z ∈ R

dz , n ≥ 0. Therefore,

lim
k→∞g(θmk

) max
mk<j<mk+1

∥∥∥∥∥
j∑

i=mk

αiζ1,i

∥∥∥∥∥I{τmk
>j} = 0(B.2)

almost surely.
Since αnαn+1 = O(α2

n), αn − αn+1 = O(α2
n) for n → ∞ (see the proof of The-

orem 3.1), Assumptions 3.1, B.1 yield

Eθ,z

( ∞∑
n=0

αnαn+1ϕ
2(Zn+1)

)
< ∞,

Eθ,z

( ∞∑
n=0

|αn − αn+1|ϕ2(Zn+1)

)
< ∞

for all θ ∈ R
dθ , z ∈ R

dz . Additionally, due to Assumptions B.1, B.2, we have

g(θn)‖ζ2,j‖I{τn>j} ≤ g(θn)ϕ(Zj )‖θj − θj−1‖I{τn>j−1}
≤ αj−1g(θn)ϕ(Zj )

(∥∥F(θj−1,Zj )
∥∥ + ‖ηj−1‖)

I{τn>j}

≤ αj−1g(θn)g
−1(θj−1)ϕ(Zj )

(
ϕ(Zj ) + C

)
I{τn>j}

≤ 6Cαj−1ϕ
2(Zj )
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for 0 ≤ n < j [notice that ϕ(z) ≥ 1 for any z ∈ R
dz ]. We also have

g(θn)‖ζ3,j‖I{τn>j} ≤ g(θn)g
−1(θj )ϕ(Zj+1)I{τn>j} ≤ 3ϕ(Zj+1) ≤ 3ϕ2(Zj+1)

for 0 ≤ n ≤ j . Hence,

g(θn)

∥∥∥∥∥
j∑

i=n+1

αiζ2,i

∥∥∥∥∥I{τn>j} ≤
j∑

i=n+1

αig(θn)‖ζ2,i‖I{τn>i}

≤ 6C

j∑
i=n

αiαi+1ϕ
2(Zi+1),

g(θn)

∥∥∥∥∥
j∑

i=n+1

(αi − αi+1)ζ3,i

∥∥∥∥∥I{τn>j} ≤
j∑

i=n+1

|αi − αi+1|g(θn)‖ζ3,i‖I{τn>i}

≤ 3
j∑

i=n+1

|αi − αi+1|ϕ2(Zi+1)

for 0 ≤ n < j . Consequently,

(B.3)

lim
n→∞g(θn)max

j>n

∥∥∥∥∥
j∑

i=n+1

αiζ2,i

∥∥∥∥∥I{τn>j}

= lim
n→∞g(θn)max

j>n

∥∥∥∥∥
j∑

i=n+1

(αi − αi+1)ζ3,i

∥∥∥∥∥I{τn>j} = 0

almost surely [notice that αj+1/αj = O(1) for j → ∞]. Moreover, (B.1) yields

lim
n→∞g(θn)max

j≥n
αj+1‖ζ3,j‖I{τn>j} = 0(B.4)

almost surely. Combining (B.1)–(B.4) with (7.2), we deduce

lim
k→∞g(θnk

) max
mk≤j<mk+1

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥I{τmk
>j} = 0(B.5)

almost surely.
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Owing to Assumptions A.1, B.2, we have

g−1(θj+1)I{τn>j} ≤ g−1(θn) + ∥∥∇f (θj+1) − ∇f (θn)
∥∥I{τn>j}

≤ g−1(θn) + C‖θj+1 − θn‖I{τn>j}

≤ g−1(θn) + C

j∑
i=n

αi

∥∥∇f (θi)
∥∥I{τn>j} + C

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥I{τn>j}

+ C

j∑
i=n

αi‖ηi‖I{τn>j}

≤ g−1(θn) + C

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥I{τn>j} + 2C2
j∑

i=n

αig
−1(θi)I{τn>j}

for 0 ≤ n ≤ j [notice that ‖η(θ)‖ ≤ Cg−1(θ) for each θ ∈ R
dθ ]. Combining this

with the Bellman–Gronwall inequality (see, e.g., [11], Appendix B), we conclude

g−1(θj+1)I{τn>j} ≤
(
g−1(θn) + C max

n≤j<a(n,τ )

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥I{τn>j}
)

· exp

(
2C2

j−1∑
i=n

αi

)

≤ 2g−1(θn)

(
1 + Cg(θn) max

n≤j<a(n,τ )

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥I{τn>j}
)

for 0 ≤ n ≤ j ≤ a(n, τ ).25 Then (B.5) yields

lim sup
k→∞

g(θmk
) max

mk≤j<mk+1
g−1(θj+1)I{τmk

>j} ≤ 2(B.6)

almost surely.
Let N0 be the event where (B.5) or (B.6) does not hold. Then, in order to prove

the theorem’s assertion, it is sufficient to show that (A.1), (A.2) are satisfied on
Nc

0 for any t ∈ (0,∞). Let ω be any sample in Nc
0 , while t ∈ (0,∞) is any real

number. Notice that all formula which follow in the proof correspond to ω.
Due to Assumption B.2, we have

lim sup
n→∞

g(θn)‖ηn‖ ≤ C < ∞, lim sup
n→∞

h(θn)‖ηn‖ ≤ δ < 1.

25Notice that
∑j−1

i=n αi ≤ τ for n ≤ j ≤ a(n, τ ). Notice also that exp(2C2τ ) ≤ exp(1/2) ≤ 2.
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Moreover, Assumption 3.1 and (6.2), (B.6) imply that there exists an integer k0 ≥ 0
(depending on ω) such that

∑mk+1−1
i=mk

αi ≥ τ/2 and

g(θmk
)

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥I{τmk
>j} ≤ τ, g(θmk

)g−1(θj+1)I{τmk
>j} ≤ 3(B.7)

for k ≥ k0, mk ≤ j < mk+1. As τn > n for n ≥ 0, we conclude τmk
> mk+1 for

k ≥ k0.26 Consequently, I{τmk
>j} = 1 for k ≥ k0, mk ≤ j ≤ mk+1. Combining this

with (B.7), we get g(θmk
) ≤ 3g(θj+1) and

(B.8)

g−1(θj+1) ≥ g−1(θmk
) − ∥∥∇f (θj+1) − ∇f (θn)

∥∥
≥ g−1(θmk

) − C‖θj+1 − θn‖

≥ g−1(θmk
) − C

j∑
i=mk

αi

∥∥∇f (θi)
∥∥

− C

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥ − C

j∑
i=mk

αi‖ηi‖

≥ g−1(θmk
) − 2C2

j∑
i=mk

αig
−1(θi) − C

∥∥∥∥∥
j∑

i=mk

αiζi

∥∥∥∥∥
≥ g−1(θmk

)
(
1 − 6C2τ − Cτ

)
≥ 3−1g−1(θmk

)

for k ≥ k0, mk ≤ j < mk+1.27 Hence, 3−1g(θmk
) ≤ g(θj ) ≤ 3g(θmk

) for k ≥ k0,
mk ≤ j ≤ mk+1.

Let n0 = mk0 , while k(n) = max{k ≥ 0 : mk ≤ n}, m(n) = mk(n) for n ≥ 0. Then
(B.8) implies g(θn) ≤ 3g(θm(n)), g(θmk

) ≤ 3g(θmk+1) for n ≥ n0, k ≥ k0 [notice
that k(n) ≥ k0, mk(n) ≤ n < mk(n)+1 when n ≥ n0]. Hence, g(θn) ≤ Cn,kg(θmk

)

for n ≥ n0, k ≥ m(n), where Cn,k = 3k−k(n)+1.28 Since

2−1(
k(j) − k(n)

)
τ ≤

k(j)∑
k=k(n)+1

mk+1−1∑
i=mk

αi ≤
j∑

i=n

αi ≤ t

26If τmk ≤ mk+1, then τmk = j and g(θmk )g
−1(θj )I{τmk

>j−1} = g(θmk )g
−1(θj ) > 3 for some j

satisfying mk < j ≤ mk+1.
27Notice that g−1(θi ) ≤ 3g−1(θmk ),

∑mk+1−1
mk

αi ≤ τ when k ≥ k0, mk ≤ i < mk+1. Notice also

that 6C2τ = 1/3, Cτ ≤ 1/3.
28Notice that g(θn)g−1(θm(n)) ≤ 3, g(θm(n))g

−1(θmk ) ≤ 3k−k(n) when n ≥ n0, k ≥ m(n). Notice

also g(θn) = (g(θn)g−1(θm(n)))(g(θm(n))g
−1(θmk ))g(θmk ).
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for n0 ≤ n ≤ j ≤ a(n, τ ), we conclude k(j) − k(n) ≤ 2t/τ for the same n, j .
Consequently,

g(θn)

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥ = g(θn)

∥∥∥∥∥
k(j)∑

k=k(n)

mk+1−1∑
i=mk

αiζi −
n−1∑

i=m(n)

αiζi +
j∑

i=m(j)

αiζi

∥∥∥∥∥
≤

k(j)−1∑
k=k(n)

Cn,kg(θmk
)

∥∥∥∥∥
mk+1−1∑
i=mk

αiζi

∥∥∥∥∥
+ Cn,k(n)g(θm(n))

∥∥∥∥∥
n−1∑

i=m(n)

αiζi

∥∥∥∥∥
+ Cn,k(j)g(θm(j))

∥∥∥∥∥
j∑

i=m(j)

αiζi

∥∥∥∥∥
≤ C(t) max

mk≤l<mk+1
k(n)≤k

g(θmk
)

∥∥∥∥∥
l∑

i=mk

αiζi

∥∥∥∥∥
for n0 ≤ n ≤ j ≤ a(n, t),29 where C(t) = (2t/τ + 3)32t/τ+3. Since τmk

> mk+1
for k ≥ k0 (i.e., I{τmk

>j} = 1 for k ≥ k0, mk ≤ j ≤ mk+1), (B.5) implies

lim
n→∞g(θn) max

n≤j<a(n,t)

∥∥∥∥∥
j∑

i=n

αiζi

∥∥∥∥∥ = 0

[notice that limn→∞ k(n) = ∞]. Hence, (A.1), (A.2) hold. �
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