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Summary

The pseudo-marginal algorithm is a variant of the Metropolis–Hastings algorithm which
samples asymptotically from a probability distribution when it is only possible to estimate unbi-
asedly an unnormalized version of its density. Practically, one has to trade off the computational
resources used to obtain this estimator against the asymptotic variances of the ergodic averages
obtained by the pseudo-marginal algorithm. Recent works on optimizing this trade-off rely on
some strong assumptions, which can cast doubts over their practical relevance. In particular, they
all assume that the distribution of the difference between the log-density, and its estimate is inde-
pendent of the parameter value at which it is evaluated. Under regularity conditions we show that
as the number of data points tends to infinity, a space-rescaled version of the pseudo-marginal
chain converges weakly to another pseudo-marginal chain for which this assumption indeed
holds. A study of this limiting chain allows us to provide parameter dimension-dependent guide-
lines on how to optimally scale a normal random walk proposal, and the number of Monte Carlo
samples for the pseudo-marginal method in the large-sample regime. These findings complement
and validate currently available results.

Some key words: Asymptotic posterior normality; Intractable likelihood; Large-sample theory; Metropolis–Hastings
algorithm; Random measure; Weak convergence.

1. Introduction

The pseudo-marginal algorithm is a variant of the popular Metropolis–Hastings algorithm in
which an unnormalized version of the target density is replaced with a nonnegative unbiased
estimate. The algorithm first appeared in the physics literature (Lin et al., 2000) and has become
popular in Bayesian statistics, as many intractable likelihood functions can be estimated unbias-
edly using importance sampling or particle filters (Beaumont, 2003; Andrieu & Roberts, 2009;
Andrieu et al., 2010).

Replacing the true likelihood in the Metropolis–Hastings algorithm with an estimate results in
a trade-off: the asymptotic variance of an ergodic average of a pseudo-marginal chain typically
decreases as the number of Monte Carlo samples, N , used to obtain the likelihood estimator
increases, as established by Andrieu & Vihola (2016) for importance sampling estimators; how-
ever, this comes at the cost of a higher computational burden. An important task in practice is
therefore to choose N such that the computational resources required to obtain a given asymptotic
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2 S. M. Schmon et al.

variance are minimized. This problem has already been investigated by Pitt et al. (2012), Doucet
et al. (2015) and Sherlock et al. (2015), who obtained guidelines under various assumptions either
on the proposal (Pitt et al., 2012; Doucet et al., 2015) or on the proposal and target distribution
(Sherlock et al., 2015).

Additionally, all these contributions make the assumption that the noise in the loglikelihood
estimator, i.e., the difference between the estimator and the true loglikelihood, is Gaussian with
variance inversely proportional to N , its mean and variance being independent of the parameter
value at which it is evaluated. A similar assumption has also been used by Nemeth et al. (2016) for
the analysis of a related algorithm. This assumption can cast doubts over the practical relevance of
the guidelines provided in these works. The normal-noise assumption was motivated in Pitt et al.
(2012), Doucet et al. (2015) and Sherlock et al. (2015) by the fact that the error in the loglikelihood
estimator for state-space models computed using a particle filter is asymptotically normal with
variance proportional to γ as T → ∞ with N = T/γ (Bérard et al., 2014). In addition, the
constant-variance assumption over the parameter space was motivated in Pitt et al. (2012) and
Doucet et al. (2015) by the fact that the posterior typically concentrates as T increases. However,
no formal argument justifying why the pseudo-marginal chain would behave as a Markov chain
for which these assumptions hold has been provided.

In this article we carry out a novel weak convergence analysis of the pseudo-marginal algorithm
in a Bayesian setting, which not only justifies these assumptions, but also allows us to obtain more
precise guidelines on how to optimally tune the algorithm as a function of the parameter dimension
d. Weak convergence techniques have become very popular in the Markov chain Monte Carlo
literature since their introduction in the seminal paper of Roberts et al. (1997). With the exception
of Deligiannidis et al. (2018), all these analyses have been performed in the asymptotic regime,
where the parameter dimension d tends to infinity. Results of this type typically require strong
structural assumptions on the target distribution, such as having d independent and identically
distributed components as in Sherlock et al. (2015). We analyse here the pseudo-marginal scheme
in the large-sample asymptotic regime where the number of data points T goes to infinity while d
is fixed. Under weak regularity conditions, we show that a space-rescaled version of the pseudo-
marginal chain converges to a pseudo-marginal chain targeting a normal distribution for which
the noise in the loglikelihood estimator is indeed also normal with constant mean and variance.
We provide numerical results on optimally scaling normal random walk proposals and the noise
variance to optimize the performance of the limiting Markov chain as a function of d. These
guidelines complement and validate the results obtained in Doucet et al. (2015) and Sherlock
et al. (2015). All proofs can be found in the Supplementary Material.

2. The pseudo-marginal algorithm

2.1. Background

Consider a Bayesian model on the Borel space {�, B(�)} where � ⊆ R
d . The parameter

θ ∈ � follows a prior distribution p(dθ), and θ �→ p(y | θ) is the likelihood function, where
y = (y1, . . . , yT ) denotes the vector of observations. When the likelihood arises from a complex
latent variable model, an analytic expression for p(y | θ) may not be available. Hence, the
standard Metropolis–Hastings algorithm cannot be used to sample the posterior distribution
p(dθ | y) ∝ p(dθ) p(y | θ), as the likelihood ratio p(y | θ ′)/p(y | θ) appearing in the Metropolis–
Hastings acceptance probability, when at parameter θ and proposing θ ′, cannot be computed.
Assume that we have access to an unbiased positive estimator p̂(y | θ , U ) of the intractable
likelihood p(y | θ), where U ∼ mθ represents the auxiliary variables on {U , B(U)} used to
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Large-sample asymptotics of the pseudo-marginal method 3

compute this estimator.We introduce the following probability measure on {�×U , B(�)×B(U)}:

π(dθ , du) = p(dθ | y)
p̂(y | θ , u)

p(y | θ)
mθ (du),

which satisfies π(dθ) = p(dθ | y). The pseudo-marginal algorithm is a Metropolis–Hastings
scheme targeting π(dθ , du), and hence marginally p(dθ | y), using a proposal distribution
Q(θ , u; dθ ′, du′) = q(θ , dθ ′) mθ ′(du′). This yields the acceptance probability

α(θ , u; θ ′, u′) = min
{

1, r(θ , θ ′) p̂(y | θ ′, u′)/p(y | θ ′)
p̂(y | θ , u)/p(y | θ)

}
, r(θ , θ ′) = π(dθ ′)

π(dθ)

q(θ ′, dθ)

q(θ , dθ ′)
.

As in previous works (Andrieu & Roberts, 2009; Pitt et al., 2012; Andrieu & Vihola, 2015;
Doucet et al., 2015; Sherlock et al., 2015), we analyse the pseudo-marginal algorithm using
additive noise in the loglikelihood estimator, writing Z(θ) = log p̂(y | θ , U ) − log p(y | θ). This
parameterization allows us to write the target distribution as a measure on {�×R, B(�)×B(R)}
with

π(dθ , dz) = p(dθ | y) exp(z) g(dz | θ),

where Z(θ) ∼ g(· | θ) when U ∼ mθ , and the associated pseudo-marginal kernel is

P(θ , z; dθ ′, dz′) = q(θ , dθ ′) g(dz′ | θ ′) α
(
θ , z; θ ′, z′) + ρ(θ , z) δ(θ , z)(dθ ′, dz′),

with acceptance probability

α
(
θ , z; θ ′, z′) = min

{
1, r(θ , θ ′) exp(z′ − z)

}
and corresponding rejection probability ρ(θ , z).

2.2. Literature review

In this subsection we review recent research motivating the present work. To this end, we
need to introduce some additional notation. Let μ be a probability measure on {Rn, B(Rn)}
and 	 : R

n × B(Rn) → [0, 1] a Markov transition kernel. For any measurable function f and
measurable set A, we write μ(f ) = ∫

f (x)μ(dx), μ(A) = μ{IA(·)} and 	f (x) = ∫
	(x, dy)f (y).

We consider the Hilbert space L2(μ)with inner product 〈f , g〉μ = ∫
f (x)g(x)μ(dx). For a function

f ∈ L2(μ), the asymptotic variance of averages of a stationary Markov chain (Xk)k�0 of a
μ-invariant transition kernel 	 is defined as

var(f , 	) = lim
M→∞

1

M
E

⎡
⎣{

M∑
k=1

f (Xk) − μ(f )

}2⎤⎦,

or var(f , 	) = var{f (X0)} iat(f , 	) when the integrated autocorrelation time
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4 S. M. Schmon et al.

iat(f , 	) = 1 + 2
∞∑

k=1

cov{f (X0), f (Xk)}
var{f (X0)}

is finite. We denote by ϕ(x; m, �) the normal density of argument x, mean m and covariance �.
To obtain guidelines for balancing the computational cost and accuracy of the likelihood

estimator, Pitt et al. (2012), Doucet et al. (2015) and Sherlock et al. (2015) made the simplifying
assumption that g(dz | θ) = ϕ(dz; −σ 2/2, σ 2) with σ 2 ∝ 1/N and focused on functions
f ∈ L2(π) such that f (θ , z) = f (θ , z′) for any z and z′. Under these assumptions, it was first
proposed by Pitt et al. (2012) to minimize

ct(f , Pσ ) = iat(f , Pσ )

σ 2 (1)

with respect to σ , where

Pσ (θ , z; dθ ′, dz′) = q(θ , dθ ′) ϕ(dz; −σ 2/2, σ 2) α
(
θ , z; θ ′, z′) + ρσ (θ , z) δ(θ , z)(dθ ′, dz′), (2)

with ρσ (θ , z) being the corresponding rejection probability. Criterion (1) arises from the fact that
the computational time required to evaluate the likelihood is typically proportional to N . Under
the additional assumption that q(θ , dθ ′) = π(dθ ′), the minimizer of ct(f , Pσ ) is σ = 0.92 (Pitt
et al., 2012). For general proposal distributions, Doucet et al. (2015) minimize upper bounds
on ct(f , Pσ ). This results in guidelines saying that one should indeed select σ around 1.0 when
the Metropolis–Hastings algorithm using the exact likelihood would provide an estimator having
a small integrated autocorrelation time, and around 1.7 when this autocorrelation time is very
large (Doucet et al., 2015). In practical scenarios, the integrated autocorrelation time of the
Metropolis–Hastings algorithm using the exact likelihood is unknown, and the results in Doucet
et al. (2015) suggest selecting σ around 1.2 as a robust default choice. A slightly different
approach was taken by Sherlock et al. (2015). In addition to similar noise assumptions, they
assumed that the posterior factorizes into d independent and identically distributed components
and that one uses an isotropic normal random walk proposal of jump size proportional to . In
this context, one maximizes with respect to (σ , ) the expected squared jump distance associated
with the pseudo-marginal sequence of the first parameter component (ϑ1, k)k�0 divided by the
noise variance as d → ∞. In this asymptotic regime, a time-rescaled version of (ϑ1, k)k�0
converges weakly to a diffusion process and the adequately rescaled expected squared jump
distance converges to the squared diffusion coefficient of this process. Maximizing this squared
jump distance is asymptotically equivalent to minimizing ct(f , Pσ ) irrespective of f (see Roberts
& Rosenthal, 2014), and its maximizing arguments are σ = 1.8 and  = 2.56 (Sherlock et al.,
2015, Corollary 1). In practice, the standard deviation of the loglikelihood estimator varies over
the parameter space and one selects N such that this standard deviation is approximately equal to
the desired σ for a parameter value around the mode of the posterior obtained from a preliminary
run.

The strong assumptions made in those papers can bring into question the merits of the guidelines
they provide. Our novel weak convergence analysis of the pseudo-marginal algorithm justifies the
main common assumption in the large-sample regime, as T → ∞. This convergence occurs under
fairly weak regularity conditions on the posterior distribution. The resulting limiting algorithms
can be optimized to give guidelines for random walk proposals without relying on any upper
bound as in Doucet et al. (2015).
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Large-sample asymptotics of the pseudo-marginal method 5

3. Large-sample asymptotics of the pseudo-marginal algorithm

3.1. Notation and assumptions

Our analysis of the pseudo-marginal algorithm relies on the assumption that the posterior
concentrates, which is most commonly formulated in terms of convergence in probability with
respect to the data distribution, denoted by P

Y . For our result to hold under this weak assumption,
we take into account the randomness induced by the data, resulting in a random Markov chain
and requiring us to deal with weak convergence of random probability measures. To make this
more precise, we introduce the following notation.

The observations (Yt)t�1 are regarded as random variables defined on a probability space
{YN, B(Y)N, PY }, where B(Y)N denotes the Borel σ -algebra and we write � = YN for brevity.
For T � 1 we can define the random variables Y1:T = (Y1, . . . , YT ) as the coordinate projections
to YT . Then, for ω = (yt)t�1 ∈ �, πω

T (dθ) = p(dθ | y1:T ) denotes a regular version of the target
posterior distribution and, for any θ ∈ �, gω

T (dz | θ) denotes the conditional distribution of the
error in the loglikelihood estimator given observations y1:T . The measures πω

T and gω
T can be

interpreted as random measures. Relevant results for random measures are discussed briefly in
§ 4 and in more detail in the Supplementary Material. In the following we will use a superscript
ω to highlight that a certain quantity depends on the data. All probability densities considered
hereafter are with respect to Lebesgue measure, and we use the same symbols for distributions
and densities; for example, μ(dθ) = μ(θ) dθ .

In this context, the target distribution of the pseudo-marginal algorithm is

πω
T (dθ , dz) = πω

T (dθ) exp(z) gω
T (dz | θ),

and its transition kernel is

Pω
T (θ , z; dθ ′, dz′) = qT (θ , dθ ′) gω

T (dz′ | θ ′) αω
T

(
θ , z; θ ′, z′) + ρω

T (θ , z) δ(θ , z)(dθ ′, dz′),

where

αω
T

(
θ , z; θ ′, z′) = min

{
1,

πω
T (dθ ′)

πω
T (dθ)

qT (θ ′, dθ)

qT (θ , dθ ′)
exp(z′ − z)

}

and ρω
T (θ , z) is the corresponding rejection probability.

Our first assumption is that the posterior distributions concentrate towards a Gaussian at rate
1/

√
T . We denote by YT the σ -algebra spanned by Y1:T .

Assumption 1. The posterior distributions {πω
T (dθ)}T�1 admit Lebesgue densities, and there

exist a d × d positive-definite matrix �, a parameter value θ̄ ∈ � and a sequence (θ̂ω
T )T�1 of

YT -adapted random variables such that as T → ∞,∫ ∣∣∣πω
T (θ) − ϕ

(
θ ; θ̂ω

T , �/T
)∣∣∣ dθ → 0, θ̂ω

T → θ̄ , (3)

both limits being in P
Y -probability.

Assumption 1 is satisfied if a Bernstein–von Mises theorem holds; see van der Vaart (2000,
Theorem 10.1) and Kleijn & Van der Vaart (2012). Our second assumption is that we use random
walk proposal distributions with appropriately scaled increments.
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6 S. M. Schmon et al.

Assumption 2. The proposal distributions {qT (θ , dθ ′)}T�1 admit densities of the form

qT (θ , θ ′) = √
Tν

{√
T (θ ′ − θ)

}
,

where ν is a continuous density on R
d .

Finally, we assume that the error in the loglikelihood estimator satisfies a central limit theorem
conditional on YT and that this convergence holds uniformly in a neighbourhood of θ̄ .

Assumption 3. There exists an ε-ball B(θ̄) around θ̄ such that the distributions of the error in
the loglikelihood estimator {gω

T (dz | θ)}T�1 satisfy, as T → ∞,

sup
θ∈B(θ̄)

dbl

[
gω

T ( · | θ), ϕ{ · ; −σ 2(θ)/2, σ 2(θ)}] → 0

in P
Y -probability, where dbl(· , ·) denotes the bounded Lipschitz metric and the function σ : � →

[0, ∞) is continuous at θ̄ with 0 < σ(θ̄) < ∞. An analogous result holds for ḡω
T (dz | θ) =

exp(z)gω
T (dz | θ), the distribution of this error at equilibrium; that is, as T → ∞,

sup
θ∈B(θ̄)

dbl

[
ḡω

T ( · | θ), ϕ{· ; σ 2(θ)/2, σ 2(θ)}] → 0

in P
Y -probability.

We will refer to convergence in probability with respect to the bounded Lipschitz metric as weak
convergence in probability. In § 5 we provide sufficient conditions under which Assumption 3 is
satisfied for random effects models, where the likelihood estimator is a product of T independent
importance sampling estimators. This differs from scenarios in which the likelihood estimator
is given by one single importance sampling estimator, as in Sherlock et al. (2017). Empirical
evidence in Pitt et al. (2012) and Doucet et al. (2015) also suggests that Assumption 3 might
hold for a large class of state-space models when the likelihood is estimated using particle filters.
Under strong assumptions, a standard central limit theorem has been established by Bérard et al.
(2014) for gω

T ( · | θ). However, it would be technically very challenging to provide weak sufficient
conditions under which Assumption 3 holds in this context.

3.2. Weak convergence in the large-sample regime

Denote by (ϑω
T , k , Zω

T , k)k�0 the stationary Markov chain defined by the pseudo-marginal
kernel, (ϑω

T , 0, Zω
T , 0) ∼ πω

T and (ϑω
T , k , Zω

T , k) ∼ Pω
T (ϑω

T , k−1, Zω
T , k−1; ·) for k � 1. Let

χω
T = (ϑ̃ω

T , k , Zω
T , k)k�0 where ϑ̃ω

T , k = √
T (ϑω

T , k −θ̂ω
T ) is the Markov chain arising from rescaling

the parameter component of the pseudo-marginal chain. Its transition kernel is thus

P̃ω
T (θ̃ , z; dθ̃ ′, dz′) = q̃T (θ̃ , dθ̃ ′) g̃ω

T (dz′|θ̃ ′) α̃ω
T

(
θ̃ , z; θ̃ ′, z′) + ρ̃ω

T (θ̃ , z) δ(θ̃ ,z)(dθ̃ ′, dz′), (4)

where

α̃ω
T (θ̃ , z; θ̃ ′, z′) = min

{
1,

π̃ω
T (dθ̃ ′)

π̃ω
T (dθ̃ )

q̃T (θ̃ ′, dθ̃ )

q̃T (θ̃ , dθ̃ ′)
exp(z′ − z)

}
,
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Large-sample asymptotics of the pseudo-marginal method 7

ρ̃ω
T (θ , z) is the corresponding rejection probability, π̃ω

T (θ̃) = πω
T (θ̂ω

T + θ̃/
√

T )/
√

T , q̃T (θ̃ , θ̃ ′) =
qT (θ̂ω

T + θ̃/
√

T , θ̂ω
T + θ̃ ′/√T )/

√
T and g̃ω

T (z | θ̃ ) = gω
T (z | θ̂ω

T + θ̃/
√

T ). Under Assumption 2
we have q̃T (θ̃ , θ̃ ′) = ν(θ̃ ′ − θ̃ ) = q̃(θ̃ , θ̃ ′). We now state the main result of this paper.

Theorem 1. Under Assumptions 1–3, as T → ∞ the sequence (χω
T )T�1 of stationary Markov

chains converges weakly in P
Y -probability to the law of a stationary Markov chain with initial

distribution

π̃(dθ̃ , dz) = ϕ(dθ̃ ; 0, �) ϕ(dz; σ 2/2, σ 2) (5)

and transition kernel

P̃(θ̃ , z; dθ̃ ′, dz′) = q̃(θ̃ , dθ̃ ′) ϕ(dz′; −σ 2/2, σ 2) α̃(θ̃ , z; θ̃ ′, z′) + ρ̃(θ̃ , z) δ(θ̃ ,z)(dθ̃ ′, dz′), (6)

where σ = σ(θ̄),

α̃(θ̃ , z; θ̃ ′, z′) = min

{
1,

ϕ(θ̃ ′; 0, �)

ϕ(θ̃ ; 0, �)

q̃(θ̃ ′, θ̃ )

q̃(θ̃ , θ̃ ′)
exp(z′ − z)

}

and ρ̃(θ , z) is the corresponding rejection probability.

Under this asymptotic regime, the limiting transition kernel P̃ in (6) is also a pseudo-marginal
kernel for which the noise distribution is ϕ(dz; −σ 2/2, σ 2) as assumed in previous analyses (Pitt
et al., 2012; Doucet et al., 2015; Sherlock et al., 2015). As Theorem 1 is a weak convergence
result, it does not imply that the integrated autocorrelation time of the pseudo-marginal kernel
P̃ω

T converges to that of P̃. However, it suggests that for large T , some characteristics of P̃ω
T

can indeed be captured by those of the kernel (2), which can be obtained from P̃ by using the
change of variables θ = θ̂ω

T + θ̃/
√

T and substituting the true target for its normal approximation
ϕ(θ ; θ̂ω

T , �/T ), hence removing a level of approximation.

4. Outline of the proof of the main result

4.1. Random Markov chains

The proof of Theorem 1 follows from a slightly more general result on weak convergence of
random Markov chains on Polish spaces, given in Theorem 2 below. We first introduce some
notation and recall some definitions concerning random probability measures needed to define
random Markov chains; see the Supplementary Material or Crauel (2003) for more details.

Let (�, F , P) be a probability space and S a Polish space endowed with its Borel σ -algebra
B(S). We equip the product space � × S with the product σ -algebra F ⊗ B(S). We denote by
P(S) the space of Borel probability measures which is itself endowed with the Borel σ -algebra
B{P(S)} generated by the weak topology. Finally, Cb(S) denotes the set of continuous bounded
functions and bl(S) the set of bounded Lipschitz functions.

Definition 1. A random probability measure is a map μ : � × B(S) → [0, 1], (ω, B) �→
μ(ω, B) = μω(B), such that for every B ∈ B(S) the map ω �→ μ(ω, B) is measurable while
μω ∈ P(S) P-almost surely.
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8 S. M. Schmon et al.

For all bounded and measurable functions g : � × S → R, ω �→ ∫
S g(ω, x)μω(dx) is

measurable (Crauel, 2003, Proposition 3.3) and hence the map ω �→ μω(f ) is a random
variable for bounded measurable functions f : S → R. Consequently, μω : � → P(S) is
a Borel-measurable map. Conversely, it can be shown that any random element of
{P(S), B{P(S)}} fulfils the conditions set out in Definition 1; see Crauel (2003, Remark 3.20(i)) or
Kallenberg (2006, Lemma 1.37).

Definition 2. A random Markov kernel is a map K : � × S × B(S) → [0, 1], (ω, x, B) �→
K(ω, x, B) = Kω(x, B), such that

(i) (ω, x) �→ Kω(x, B) is F ⊗ B(S)-measurable for every B ∈ B(S), and
(ii) Kω(x, ·) ∈ P(S) P-almost surely for every x ∈ S.

Lemma 1. Given a random probability measure μω and random Markov kernel Kω, there
exists an almost surely unique random probability measure μN,ω on SN such that

μN,ω(A1 × · · · × Ak × Ek+1) =
∫

A1

μω(dx1)

∫
A2

Kω(x1, dx2) · · ·
∫

Ak

Kω(xk−1, dxk)

for any Ai ∈ B(S) (i = 1, . . . , k), k ∈ N and Ek+1 = ×∞
i=k+1S.

4.2. Convergence of random Markov chains

For a sequence of random probability measures (μω
n )n�1 converging in a suitable sense to

a probability measure μ, and a sequence of random Markov kernels (Kω
n )n�1 converging in a

suitable sense to a Markov kernel K , we show that the distributions of the associated Markov
chains (μ

N,ω
n )n�1 defined in Lemma 1 converge weakly in probability to the distribution μN of

the homogeneous Markov chain of the initial distribution μ and Markov kernel K .

Theorem 2. Suppose that the following assumptions hold:
(i) the random probability measures (μω

n )n�1 converge weakly in probability to a
probability measure μ as n → ∞;

(ii) the random Markov transition kernels (Kω
n )n�1 satisfy∫ ∣∣Kω

n f (x) − Kf (x)
∣∣ μω

n (dx) → 0

in probability as n → ∞ for all f ∈ bl(S), where K is a Markov transition kernel;
(iii) the transition kernel K is such that x �→ Kf (x) is continuous for any f ∈ Cb(S).

Then, as n → ∞, the measures (μ
N,ω
n )n�1 on SN converge weakly in probability to the measure

μN induced by the Markov chain with initial distribution μ and transition kernel K.

4.3. Application to the pseudo-marginal algorithm

Theorem 1 follows from Theorem 2 upon verifying that, under Assumptions 1–3, all the
conditions set out in Theorem 2 are fulfilled. First, as we increase the number of data points,
the stationary distribution of the Markov chain will converge weakly to the limiting stationary
distribution of Theorem 2.

Proposition 1. Under Assumptions 1 and 3,

π̃ω
T (dθ̃ , dz) → π̃(dθ̃ , dz)
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Large-sample asymptotics of the pseudo-marginal method 9

weakly in P
Y -probability as T → ∞, where π̃ω

T (dθ̃ , dz) = π̃ω
T (dθ̃ ) exp(z) g̃ω

T (dz | θ̃ ) with
π̃ω

T (dθ̃ ) and g̃ω
T (dz) as defined in § 3.2 and π̃(dθ̃ , dz) as defined in (5).

This result holds because the marginal πω
T (dθ) concentrates around the limiting parameter

value θ̄ while the noise converges uniformly to a normal distribution in a neighbourhood around
θ̄ . The next proposition ensures the stability of the transition and can be proved using similar
arguments.

Proposition 2. Under Assumptions 1–3, as T → ∞ we have that for any f ∈ bl(Rd+1),∫ ∣∣P̃ω
T f (θ , z) − P̃f (θ , z)

∣∣ π̃ω
T (dθ , dz) → 0

in P
Y -probability, where the transition kernels P̃ω

T and P̃ are defined in (4) and (6).

A further requirement to ensure the stability of the transition is that the application of the
transition operator should conserve continuity.

Proposition 3. Under Assumption 2, the map (θ , z) �→ P̃f (θ , z) is continuous for every
f ∈ Cb(R

d+1).

Theorem 1 now follows from a direct application of Theorem 2, as the assumptions (i), (ii)
and (iii) hold by Propositions 1, 2 and 3, respectively.

5. Random effects models

5.1. Statistical model and likelihood estimator

We establish sufficient conditions under which weak convergence of the pseudo-marginal
algorithm holds for an important class of latent variable models. Consider the model

Xt ∼ f (· | θ), Yt | Xt ∼ g(· | Xt , θ),

where (Xt)t�1 are independent R
k -valued latent variables, f (x | θ) is a density with respect to

Lebesgue measure, and (Yt)t�1 are Y-valued observations distributed according to a conditional
density g(y | x, θ) with respect to a dominating measure, Y being a topological space. For
observations Y1:T = y1:T , the likelihood is

p(y1:T | θ) =
T∏

t=1

p(yt | θ) =
T∏

t=1

∫
g(yt | xt , θ)f (xt | θ) dxt .

In many scenarios, this likelihood is not available analytically. In order to perform Bayesian infer-
ence about the parameter θ , we can use the pseudo-marginal algorithm as it is possible to obtain
an unbiased nonnegative estimator of p(y1:T | θ) using importance sampling. Indeed, we can
consider p̂(y1:T | θ , U ) = ∏T

t=1 p̂(yt | θ , Ut) where U = (U1, . . . , UT ), Ut = (Ut,1, . . . , Ut,N ),
each Ut, i is R

k -valued, N denotes the number of Monte Carlo samples, and p̂(yt | θ , Ut) is
important sampling estimator of p(yt | θ) of the form

p̂(yt | θ , Ut) = 1

N

N∑
i=1

w(yt , Ut, i, θ), w(yt , Ut, i, θ) = g(yt | Ut, i, θ)f (Ut, i | θ)

h(Ut, i | yt , θ)
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10 S. M. Schmon et al.

with Ut, i ∼ h(· | yt , θ), where h(· | yt , θ) is a probability density on R
k with respect to

Lebesgue measure. In this case, the joint density mT ,θ (u) of all the auxiliary variates used to
obtain the likelihood estimator is given by the product over t = 1, . . . , T and i = 1, . . . , N of
h(ut, i | yt , θ). We will assume in what follows that the true observations are independent and iden-
tically distributed samples taken from a probability measure μ, so that the joint data distribution
is the product measure P

Y (dω) = ∏∞
t=1 μ(dyt).

5.2. Verifying the assumptions

The Bernstein–von Mises theorem holds under weak regularity conditions; see van der Vaart
(2000, Theorem 10.1) and the Supplementary Material for the case of generalized linear mixed
models presented in § 5.3. This ensures that Assumption 1 is satisfied while Assumption 2 is easy
to fulfil, selecting for example a multivariate normal proposal with covariance scaling as 1/T .
Assumption 3 is more complicated as it requires the establishment of uniform conditional central
limit theorems for p̂(Y 1:T | θ , U ) in scenarios where U ∼ mT ,θ arises from the proposal, so that
Z ∼ gω

T (· | θ), or at stationarity where U ∼ πω
T (· | θ) with

πω
T (u | θ) = p̂(y1:T | θ , u)

p(y1:T | θ)
mT ,θ (u),

implying that Z ∼ ḡω
T (· | θ). We let σ 2(y, θ) = var{w̄(y, U1,1, θ)}, σ 2(θ) = E{σ 2(Y1, θ)}, with

U1,1 ∼ h(· | y, θ), Y1 ∼ μ and

w̄(Yt , Ut,i, θ) = w(Yt , Ut,i, θ)

p(Yt | θ)
. (7)

We can show that under the following condition, Assumption 3 holds.

Assumption 4. There exist a closed ε-ball B(θ̄) around θ̄ and a function g such that the
normalized weight w̄(y, U1,1, θ) defined in (7) satisfies

sup
θ∈B(θ̄)

E{w̄(y, U1,1, θ)2+�} � g(y)

for some � > 0, where U1,1 ∼ h( · | y, θ) and μ(g) < ∞. Additionally, θ �→ σ 2(y, θ) is
continuous in θ on B(θ̄) for all y ∈ Y.

Theorem 3. Under Assumption 4, Assumption 3 is satisfied.

Theorem 3 strengthens earlier results of Deligiannidis et al. (2018, Theorem 1) which give
standard central limit theorems for the error in the loglikelihood estimator.

5.3. Generalized linear mixed models

A common example of random effects models is the class of generalized linear mixed models
(McCulloch & Neuhaus, 2005), where the observation density is a member of the exponential
family and the latent variable follows a centred Gaussian distribution. The densities with respect
to some dominating measure can be expressed as

g(y | x, θ) =
J∏

j=1

m(yj) exp
[
ηj(x)T (yj) − A{ηj(x)}

]
, f (x | θ) = ϕ(x; 0, τ 2),
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Large-sample asymptotics of the pseudo-marginal method 11

where ηj(x) = cT
j β + x, with c being a vector of covariates and β the corresponding parameter

vector, A(η) denotes the log-partition function, and m(y) is a base measure. In the Supplementary
Material we show that for many such models the assumptions of Theorem 1 can be verified
when using appropriately chosen importance sampling proposals. In particular, we show that
Assumption 4 holds and consequently Assumption 3 holds by Theorem 3.

6. Efficient implementation of the pseudo-marginal random walk algorithm

6.1. Optimal tuning

We optimize the performance of the limiting pseudo-marginal chain identified in Theorem 1 as
a proxy for the optimization of the original pseudo-marginal chain. We assume that the limiting
covariance matrix � in (3) is the identity matrix Id , with d denoting the parameter dimension.
For general covariance matrices, we can use a Cholesky decomposition and a change of variables
as in Sherlock et al. (2015) and Nemeth et al. (2016). We denote by P̃,σ the transition kernel (6)
using the proposal density

q(θ , θ ′) = ϕ(θ ′; θ , 2Id/d).

As in Pitt et al. (2012) and Doucet et al. (2015), we propose to minimize ct(f , P̃,σ ), as defined
in (1), with respect to the noise standard deviation σ and, in contrast to those works, also with
respect to the scale parameter . We restrict attention here to the case where f (θ , z) = θ1, the first
component of θ , and write ct(f , P̃,σ ) = ct(, σ) in this case. As this criterion is not available
in closed form, we simulate the limiting Markov chain initialized in its stationary regime with
different noise levels σ and scales  on a fine grid to obtain empirical estimates of ct(, σ)

computed using the overlapping batch mean estimator. This simulation is straightforward as the
target and noise distributions in the limiting case are both Gaussian. We then find the approximate
minimizer (̂opt, σ̂opt) of ct(, σ) over the grid. This set-up is used for parameter dimension d
ranging from 1 to 50. The results are summarized in Table 1.

Table 1 also lists the computing times at these values and the average acceptance probabil-
ity of the proposal under P̃,σ at stationarity by using five million iterates of the chain. The
results are consistent with those in Doucet et al. (2015) and Sherlock et al. (2015). For low
dimensions, 1 � d � 5, the ideal Metropolis–Hastings algorithm mixes well and σ̂opt is around
1.1–1.3, as suggested by Doucet et al. (2015), and increases slowly as d increases to the values
(∞, σ∞) = (2.56, 1.81) obtained by the diffusion limit (Sherlock et al., 2015). For example,
for d = 50 we obtain (̂opt, σ̂opt) = (2.41, 1.74), and the resulting optimal computing time
ct(̂opt, σ̂opt) is close to ct(∞, σ∞). For lower dimensions, however, the performance in terms
of computing time can be improved by reducing σ and  relative to σ∞ and ∞; see Table 2. We
also observe empirically that the cost function  �→ ct(, σ) is fairly flat, as noticed by Sherlock
et al. (2015) in the limiting case.

6.2. Implementation

We now show how to exploit the results of the previous subsection in practice to design an
efficient implementation of the pseudo-marginal algorithm. Using a preliminary run, we compute
estimates θ̂ and �̂ of the posterior mean and posterior covariance matrix. For the parameter
dimension d, we choose  according to Table 1 and use a Gaussian random walk proposal with
covariance matrix ̂2

opt�̂/d. Finally, we select the number N of Monte Carlo samples such that

the sample standard deviation of the loglikelihood estimate at θ̂ matches the optimal value σ̂opt
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12 S. M. Schmon et al.

Table 1. Optimal values for the scaling  and the noise σ , along with the associated
computing time and average acceptance probability; reported values are the mean

and standard deviation (in parentheses) of the minimizers over 10 runs

Dimension d ̂opt σ̂opt ct(̂opt, σ̂opt) pracc(̂opt, σ̂opt)

d = 1 2.05 (0.25) 1.16 (0.07) 8.47 25.73%
d = 2 1.97 (0.14) 1.21 (0.06) 12.71 22.92%
d = 3 2.11 (0.07) 1.24 (0.05) 16.79 19.97%
d = 5 2.17 (0.12) 1.30 (0.05) 23.18 17.35%
d = 10 2.20 (0.08) 1.44 (0.05) 37.93 14.27%
d = 15 2.33 (0.08) 1.50 (0.00) 53.43 12.07%
d = 20 2.34 (0.10) 1.54 (0.05) 65.62 11.44%
d = 30 2.36 (0.11) 1.61 (0.03) 90.46 10.41%
d = 50 2.41 (0.10) 1.74 (0.05) 136.38 8.66%

Table 2. Comparison of the computing times for different noise levels; σ̂opt
denotes the minimizer of the estimated integrated autocorrelation time,

as shown in Table 1
Dimension d ct(∞, σ̂opt) ct(∞, σ = 1.2) ct(∞, σ∞)

d = 1 9.04 (0.25) 9.05 (0.21) 17.10 (1.34)
d = 2 13.48 (0.32) 13.37 (0.28) 22.45 (0.81)
d = 3 17.63 (0.28) 17.43 (0.26) 26.71 (0.64)
d = 5 24.38 (0.44) 24.72 (0.31) 34.14 (0.88)
d = 10 40.17 (0.71) 41.60 (0.24) 47.08 (1.03)
d = 15 53.69 (0.72) 58.01 (0.50) 59.08 (0.79)
d = 20 67.15 (0.53) 74.34 (0.36) 71.41 (1.48)
d = 30 91.36 (0.95) 106.08 (0.34) 93.73 (1.08)
d = 50 136.49 (1.18) 167.83 (0.75) 135.92 (1.27)

listed in Table 1. This approach is similar to the one taken in Sherlock et al. (2015), except for
the dimension dependence of the recommended parameters (̂opt, σ̂opt).

7. Simulation study: random effects model

In this section we illustrate how the guidelines derived from the limiting pseudo-marginal chain
compare to a practical implementation of the pseudo-marginal algorithm. We consider a logistic
mixed effects model applied to a real dataset. Mixed models are popular in econometrics, survey
analysis and medical statistics, among other fields, and are often used to describe heterogeneity
between groups. Here we consider a subset of a cohort study of Indonesian preschool children.
This dataset was previously analysed by Zeger & Karim (1991) using Bayesian mixed models. It
contains 1200 observations of 275 children. We model the probability of a respiratory infection
based on the following covariates: age, sex, height, an indicator for vitamin deficiency, an indicator
for subnormal height and two seasonal components. Including the intercept, there are eight
covariates. Cluster effects due to repeated measurements from the same children are modelled
with individual random intercepts. In this case the linear predictor of a regression model based
on covariates ct, j (t = 1, . . . , T ; j = 1, . . . J ) reads ηt, j = cT

t, jβ + Xt , where Xt ∼ N (0, τ)

denotes the random intercept for child t = 1, . . . , T and β the regression parameters. For every
child we have an observation vector yt = (yt, 1, . . . , yt, J ) ∈ {0, 1}J . The unknown parameter is
θ = (β, τ) ∈ R

d , where d = 9. The observations are assumed to be conditionally independent
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Large-sample asymptotics of the pseudo-marginal method 13

Table 3. Results of the simulation study for N particles: standard deviation σ̂ of the
loglikelihood estimator at the mean, average integrated autocorrelation time ˆiat, and aver-
age acceptance probability p̂racc for the pseudo-marginal kernel and the limiting kernel

P̃,σ̂ for  = 2.2

N σ̂ ˆiat p̂racc ˆiat(P̃=2.2,σ=σ̂ ) p̂racc(P̃=2.2,σ=σ̂ )

12 2.00 140.22 8.93% 162.57 7.67%
15 1.76 112.06 10.70% 121.70 9.93%
18 1.63 98.69 12.30% 94.14 11.73%
21 1.46 72.42 13.93% 72.31 14.00%
24 1.34 66.29 15.10% 64.45 15.55%
27 1.29 61.95 16.08% 58.08 16.39%
30 1.22 58.70 16.85% 54.12 17.52%
33 1.16 52.39 17.77% 50.26 18.16%

given the random effects and are modelled by

g(yt | xt , θ) =
J∏

j=1

exp(yt,jηt,j)

1 + exp(ηt,j)
, f (xt | θ) = ϕ(xt ; 0, τ) (t = 1, . . . , T ).

Inference in mixed effects models often aims to find the population effects, so one is interested in
integrating out the random effects. Since the marginal likelihood contains intractable integrals,
this model lends itself to the pseudo-marginal approach. We obtain an unbiased estimator of the
marginal likelihood by estimating the integrals using an importance sampling estimator

h(u | yt , θ) = ϕ(u; x̂t , τ 2
q ), x̂t = arg max

xt

g(yt | xt , θ)f (xt | θ)

with proposal variance τq > 0. More details on importance sampling for mixed effects models
are provided in the Supplementary Material, where we also show that Assumption 4 is satisfied
in the present example. For the covariate parameters we assume a diffuse Gaussian prior, and the
variance of the random effects is assigned an inverse gamma prior. We run a pseudo-marginal
algorithm with a Gaussian random walk proposal for 500 000 iterations. The covariance of the
proposal is set equal to the posterior covariance of the parameters estimated in a preliminary
run and scaled by 2/d = (2.2)2/9. We compare the average integrated autocorrelation time
and the acceptance rate with that of the limiting chain using the same  = 2.2 and σ = σ̂ , the
average being defined as ˆiat(Pω

T ) = ∑d
i=1 iat(fi, Pω

T ) where fi(θ , z) = θi is the ith parameter
component. Here, σ̂ is the standard deviation of the loglikelihood estimator obtained using 10 000
samples of the marginal likelihood evaluated at an estimate θ̂ of the posterior mean. The results
are summarized in Table 3. For a given number of particles N , we report the associated estimate
of the noise in the loglikelihood estimator, the average integrated autocorrelation time, and the
average acceptance rate.

The average integrated autocorrelation time and the acceptance rate are very close to those
of the limiting algorithm. This is visualized in Fig. 1, where these quantities are plotted against
the number of particles N . The computing time of the pseudo-marginal algorithm targeting the
posterior, ĉt(Pω

T ) = ˆiat(Pω
T )/σ̂ 2, and the computing time of the limiting algorithm, ĉt(P̃,σ ),

are both optimized for σ̂ = 1.46, as expected from Table 1. In this example, the limiting kernel
captures very well the behaviour of the pseudo-marginal algorithm for large datasets, and Table 1
thus provides useful guidelines on how to tune this scheme.
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Fig. 1. (a) Average acceptance rate and (b) average integrated autocorrelation time for the pseudo-marginal algo-
rithm (black dashed line) and the limiting transition kernel P̃,σ̂ for  = 2.2 (grey solid line) as functions of N , the

number of particles.
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model.

References

Andrieu, C., Doucet, A. & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods (with Discussion).
J. R. Statist. Soc. B 72, 269–342.

Andrieu, C. & Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann.
Statist. 37, 697–725.

Andrieu, C. & Vihola, M. (2015). Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms.
Ann. Appl. Prob. 25, 1030–77.

Andrieu, C. & Vihola, M. (2016). Establishing some order amongst exact approximations of MCMCs. Ann. Appl.
Prob. 26, 2661–96.

Beaumont, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics
164, 1139–60.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asaa044/5869975 by C

airns Library, U
niversity of O

xford user on 04 Septem
ber 2020



Large-sample asymptotics of the pseudo-marginal method 15

Bérard, J., Del Moral, P. & Doucet, A. (2014). A lognormal central limit theorem for particle approximations of
normalizing constants. Electron. J. Prob. 19, 1–28.

Crauel, H. (2003). Random Probability Measures on Polish Spaces. Boca Raton, Florida: CRC Press.
Deligiannidis, G., Doucet, A. & Pitt, M. K. (2018). The correlated pseudomarginal method. J. R. Statist. Soc. B 80,

839–70.
Doucet, A., Pitt, M. K., Deligiannidis, G. & Kohn, R. (2015). Efficient implementation of Markov chain Monte

Carlo when using an unbiased likelihood estimator. Biometrika 102, 295–313.
Kallenberg, O. (2006). Foundations of Modern Probability. New York: Springer.
Kleijn, B. J. K. & Van der Vaart, A. W. (2012). The Bernstein-von-Mises theorem under misspecification. Electron.

J. Statist. 6, 354–81.
Lin, L., Liu, K. & Sloan, J. (2000). A noisy Monte Carlo algorithm. Phys. Rev. D 61, 074505.
McCulloch, C. E. & Neuhaus, J. M. (2005). Generalized linear mixed models. In Encyclopedia of Biostatistics,

vol. 4. Chichester: John Wiley & Sons.
Nemeth, C., Sherlock, C. & Fearnhead, P. (2016). Particle Metropolis-adjusted Langevin algorithms. Biometrika

103, 701–17.
Pitt, M. K., dos Santos Silva, R., Giordani, P. & Kohn, R. (2012). On some properties of Markov chain Monte

Carlo simulation methods based on the particle filter. J. Economet. 171, 134–51.
Roberts, G., Gelman, A. & Gilks, W. (1997). Weak convergence and optimal scaling of random walk Metropolis

algorithms. Ann. Appl. Prob. 7, 110–20.
Roberts, G. O. & Rosenthal, J. S. (2014). Minimising MCMC variance via diffusion limits, with an application to

simulated tempering. Ann. Appl. Prob. 24, 131–49.
Sherlock, C., Thiery, A. H. & Lee, A. (2017). Pseudo-marginal Metropolis–Hastings sampling using averages of

unbiased estimators. Biometrika 104, 727–34.
Sherlock, C., Thiery, A. H., Roberts, G. O. & Rosenthal, J. S. (2015). On the efficiency of pseudo-marginal random

walk Metropolis algorithms. Ann. Statist. 43, 238–75.
van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge: Cambridge University Press.
Zeger, S. L. & Karim, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. J.

Am. Statist. Assoc. 86, 79–86.

[Received on 10 July 2018. Editorial decision on 29 January 2020]

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asaa044/5869975 by C

airns Library, U
niversity of O

xford user on 04 Septem
ber 2020



Biometrika (2017), 103, 1, pp. 1–48
Advance Access publication on 31 July 2016Printed in Great Britain

Supplementary Material to ‘Large Sample Asymptotics of
the Pseudo-Marginal Method’

BY S. M. SCHMON, G. DELIGIANNIDIS, A. DOUCET
Department of Statistics, University of Oxford

24-29 St Giles’, Oxford OX1 3LB 5

schmon@stats.ox.ac.uk deligiannidis@stats.ox.ac.uk doucet@stats.ox.ac.uk

AND M. K. PITT
Department of Mathematics, King’s College London

Strand, London WC2R 2LS
michael.pitt@kcl.ac.uk 10

SUMMARY

This supplementary material contains the proofs to all theorems and propositions, some background
material and additional simulation studies. Section S1 includes a brief survey of weak convergence results
for random probability measures on Polish spaces which play an important role in this article. We have not
been able to find some of the precise statements we require in the literature so we present their proofs here 15

without any claim of originality. Sections S2 and S3 provide the proofs for sections 4 and 5, respectively.
Finally, section S4 includes some additional numerical examples: a toy example and a Lotka-Volterra
model where the likelihood is estimated using a particle filter as opposed to importance sampling.

S1. RANDOM MEASURES AND WEAK CONVERGENCE ON POLISH SPACES

S1·1. Weak Convergence 20

Let S be a Polish space, endowed with the Borel σ -algebra B (S). We denote d the metric inducing
the topology on S and P(S) the space of Borel probability measures on S. In the following, we will only
consider (random) probability measures in P(S) unless stated otherwise.

DEFINITION 1 (Weak convergence). A sequence of probability measures (µn)n>1 converges weakly to
a probability measure µ, denoted µn  µ, if for all f ∈ Cb(S) 25

µn( f )→ µ( f ) as n→∞, (1.1)

where Cb(S) is the set of bounded continuous real-valued functions of domain S.

The set of test functions generating this topology can be restricted to bounded continuous functions
f : S→ [0, 1] or bounded Lipschitz functions, see for example Crauel (2003, Lemma A.1 and Theorem
A.2). The topology of weak convergence can be metrized using the bounded Lipschitz metric which is
given for µ, ν ∈ P(S) by 30

dBL(µ, ν) = sup {|µ( f )− ν ( f )| ; f ∈ BL(S), ‖ f ‖BL ≤ 1} , (1.2)

see for example Dudley (2002, Proposition 11.3.2). Here, the set BL(S) denotes the set of bounded Lips-
chitz functions and we follow Pollard (2002) by defining the norm

‖ f ‖BL = max {‖ f ‖L, 2‖ f ‖∞} , (1.3)

C© 2017 Biometrika Trust
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where

‖ f ‖L = sup
x,y:x 6=y

| f (x)− f (y)|
d(x, y)

and ‖ f ‖∞ = sup
x
| f (x)|. (1.4)35

This definition gives us the inequality

| f (x)− f (y)| ≤ ‖ f ‖BL [min {1, d(x, y)}] (1.5)

for every x, y.

S1·2. Weak Convergence of Random Measures

We recall here some facts about random probability measures. Let (�,F ,P) denote a probability space.
We equip the product space �× S with the product σ -algebra, F ⊗ B(S).40

DEFINITION 2 (Random probability measure). A random probability measure is a map µ : �×
B (S)→ [0, 1] such that for every B ∈ B (S) the map ω 7→ µ(ω, B) = µω(B) is measurable while
µ(ω, ·) ∈ P(S) for almost every ω ∈ �.

For all bounded and measurable functions g : �× S→ R, the assignment ω 7→
∫

S g(ω, x)µω(dx) is
measurable (see, for example, Crauel, 2003, Proposition 3.3) and thus, for random measures, the map45

ω 7→ µω( f ) is a random variable. As a consequence we have that µω : �→ P(S) is a Borel measurable
map. Conversely, it can be shown that any random element of [P(S),B{P(S)}] fulfils the condition set
out in Definition 1, see (Crauel, 2003, Remark 3.20 (i)) or (Kallenberg, 2006, Lemma 1.37) for details.

DEFINITION 3 (Weak convergence of random measures). A sequence of random probability measures
(µωn )n>1 converges weakly almost surely to a probability measure µ, denoted µωn  a.s. µ, if50

P
(
ω ∈ � : µωn  µ

)
= 1. (1.6)

Further, we say that (µωn )n>1 converges weakly in probability, denoted µωn  P µ, if every subsequence
contains a further subsequence which converges weakly almost surely.

One can easily verify that the above definition of almost sure weak convergence, respectively weak
convergence in probability, is equivalent to ρ(µωn , µ)→ 0 almost surely, respectively in probability, for
some metric ρ on P(S) metrizing weak convergence, e.g., the bounded Lipschitz metric (1.2), see for55

example Theorem 1.

Remark 1 (Measurability of probability metric). As already mentioned above, for any random mea-
sure the map ω 7→ µω is measurable with respect to the Borel σ -algebra B {P(S)}. Moreover, any metric
ρ inducing the weak topology on P(S) is trivially continuous in its first argument and hence the map
µω 7→ ρ(µω, ν) for some fixed measure ν is measurable with respect to the Borel σ -algebra B(R). This60

implies (Borel) measurability of the map ω 7→ ρ(µω, ν) for a non-random measure ν.

In light of the definition of weak convergence (1.1) it is natural to ask whether almost sure weak con-
vergence holds if

µωn ( f )
a.s.
−→ µ( f ) for all f ∈ Cb(S), (1.7)

and similarly whether weak convergence in probability holds if

µωn ( f )
P
−→ µ( f ) for all f ∈ Cb(S). (1.8)

In many practical applications, it appears easier to check (1.7) rather than (1.6), similarly checking (1.8)65

appears easier than having to check that every subsequence of (µωn )n>1 contains a subsequence which
converges weakly almost surely. Relating those statements is inconvenienced by the fact that weak con-
vergence is usually checked using an uncountable convergence determining class of functions, e.g., the
space of bounded continuous functions. However, we show here that these equivalences hold true for
Polish spaces; see Theorem 1 below.70
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Almost sure weak convergence can be shown using the existence of a countable convergence deter-
mining subclass C ⊂ BL(S) ⊂ Cb(S). Considering subsequences and using a diagonal argument we can
show the equivalence of the statement also holds if almost sure convergence is replaced by convergence
in probability. For the purposes of this paper we confine our attention to weak convergence in probability.
To prove the statements above we first need an auxiliary result, which also appeared in Sweeting (1989, 75

Lemma 4).

PROPOSITION 1. Suppose A is a countable set and consider random variables Xn(a) : �→ R indexed
by a ∈ A and n ∈ N. Moreover, assume that for every a ∈ A the sequence {Xn(a)}n>1 converges to X (a)
in probability, i.e.,

Xn(a)
P
→ X (a) ∀a ∈ A.

Then there exists a subsequence N ′ ⊂ N such that along N ′ 80

P {ω : Xn(a)→ X (a) ∀a ∈ A} = 1.

Proof. Choose a1 ∈ A. Since we have Xn(a1)
P
→ X (a1) we can extract a subsequence n1,1, n1,2, . . .

such that {
Xn1,1(a1), Xn1,2(a1), Xn1,3(a1), . . .

}
converges almost surely. Pick now a2 ∈ A, we can now extract a further subsequence{

Xn2,1(a2), Xn2,2(a2), Xn2,3(a2), . . .
}

along which we have almost sure convergence. We can iterate this procedure to get another subsequence{
Xn3,1(a3), Xn3,2(a3), Xn3,3(a3), . . .

}
.

Along the subsequence N ′ =
(
n1,1, n2,2, n3,3, ...

)
, we have almost sure convergence of Xn′(a)→ X (a) 85

for all a ∈ A. �

The existence of a countable convergence determining class for Polish spaces is guaranteed by the follow-
ing Proposition. The proof is adapted from Berti et al. (2006, Theorem 2.2).

PROPOSITION 2. Consider P(S) equipped with the Borel σ -algebra generated by the topology of weak
convergence. There exists a countable convergence determining subclass C ⊂ BL(S). 90

Proof. Take a countable set {s1, s2, . . .} dense in S and let H = [0, 1]N be the Hilbert cube. For x ∈ S,
define the map h : S→ H by

h(x) = {d(x, s1) ∧ 1, d(x, s2) ∧ 1, . . .} .

We can equip H with the topology of coordinate wise convergence. Writing u = (u1,u2, . . .) and v =
(v1,v2, . . .) for elements u, v ∈ H , this topology is induced by the metric

α(u, v) =
∞∑

i=1

|ui − vi |

2i .

The Hilbert cube H is compact by Tychonoff’s Theorem (see for example Dudley, 2002, Theorem 95

2.2.8.), h is a homeomorphism from S to h(S) (Borkar, 1991, Theorem A.1.1.) and its closure h(S) ⊂ H
is compact. For µ ∈ P(S) denote ν = µ ◦ h−1 the image measure on h(S).

Note that any Lipschitz continuous function on h(S) can be extended to h(S) without increasing its
norm (Dudley, 2002, Proposition 11.2.3.). By the Arzelà–Ascoli theorem, the sets Bn = [ f ∈ BL{h(S)} :
‖ f ‖BL ≤ n] are compact and thus separable under the ‖ · ‖∞-norm. Therefore BL{h(S)} =

⋃
∞

n=1 Bn is 100
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separable under the ‖ · ‖∞-norm and so is BL{h(S)}. Hence, we can pick a countable set D which is dense
in BL{h(S)}. Defining C = {g ◦ h : g ∈ D} we have C ⊂ BL(S) since for all x, y ∈ S and i ∈ N

|d(x, si ) ∧ 1− d(y, si ) ∧ 1| ≤ d(x, y)

and thus

|g ◦ h(x)− g ◦ h(y)| ≤ Lgα{h(x), h(y)} = Lg

∞∑
i=1

|d(x, si ) ∧ 1− d(y, si ) ∧ 1|
2i ≤ Lgd(x, y),

where Lg denotes the Lipschitz constant of the function g.
Now assume that µn( f )→ µ( f ) for all f ∈ C. Then by a change of variable105 ∫

S
f dµn =

∫
S

g ◦ h dµn =

∫
h(S)

g dνn →

∫
h(S)

g dν

for all g ∈ D. Since D is dense in BL{h(S)} with respect to the ‖ · ‖∞-norm we have convergence for all
bounded Lipschitz functions and thus νn  ν. By continuity of h−1 we also have convergence µn  µ.�

Equipped with these results we can now prove some equivalences which facilitate the verification of
weak convergence of random probability measures in the sense introduced above. We will prove the
following statements only for convergence in probability. The modifications for almost sure convergence110

are obvious.

THEOREM 1. Let
(
µωn
)

n>1 be a sequence of random probability measures andµ a probability measure.
Then the following statements are equivalent

(i) dBL(µ
ω
n , µ)

P
→ 0,

(ii) µωn  P µ115

(iii) µωn ( f )
P
−→ µ( f ) for all f ∈ Cb(S)

(iv) µωn ( f )
P
−→ µ( f ) for all f ∈ BL(S).

The same results hold if convergence in probability is replaced by almost sure convergence throughout.

Proof. The equivalence (i)⇔ (i i) is immediate since dBL metrizes weak convergence. The implica-
tions (i i)⇒ (i i i)⇒ (iv) are trivial. To show (iv)⇒ (i i), note that by Proposition 2 there exists a count-120

able convergence determining subclass C ⊂ BL(S). By virtue of Proposition 1 there exists a subsequence
(n1, n2, . . .) such that for all g ∈ C

µωnk
(g)

a.s.
−→ µ(g) as k →∞.

Now, given (nk)k∈N define

A(g) =
{
ω ∈ � : µωnk

(g) −→ µ(g) as k →∞
}
.

We have P{A(g)} = 1 for all g ∈ C and for
⋂

g∈C A(g) = A ∈ B(S) we find P(A) = 1. Since we can
apply this reasoning to any subsequence we always find a further subsequence such that (µωnk j

) converges125

almost surely. See also Sweeting (1989, Theorem 9) and Berti et al. (2006, Theorem 2.2). �

Remark 2. If the random measure is induced by a regular conditional distribution, i.e., let
(
µωn
)

n>1
denote a sequence of transition kernels such that

µωn (·) = P(Xn ∈ · | Fn)(ω) P− a.s.

for some filtration (Fn)n>1, we have∫
f (x)µωn (dx) = E { f (Xn) | Fn} (ω) P− a.s.
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and thus equivalently to µn  P µ then we can write 130

E { f (Xn) | Fn}
P
−→ E { f (X)} , (1.9)

where X ∼ µ. For brevity we will also use the notation Xn | Fn  P µ instead of (1.9).

S1·3. Product Spaces

We address here the setting where the spaces are of the form Sk
= S × S × · · · × S or SN

= S × S ×
. . .. We will equip these product spaces with the product topology and the respective Borel σ -algebra. The
following lemma is helpful to characterize weak convergence in probability in this context. 135

LEMMA 1. For fixed k, let (µωn )n>1 denote random measures on Sk and µ a non-random measure on
Sk . Then the following are equivalent

(i)

µωn  P µ,

(ii)

µωn ( f )
P
→ µ( f )

for all f ∈ Cb(Sk).
(iii) ∫

Sk

k∏
i=1

fi (xi )µ
ω
n (dx1 . . . dxk)

P
→

∫
Sk

k∏
i=1

fi (xi )µ(dx1 . . . dxk)

for all f1, . . . fk ∈ Cb(S).
(iv) ∫

Sk

k∏
i=1

fi (xi )µ
ω
n (dx1 . . . dxk)

P
→

∫
Sk

k∏
i=1

fi (xi )µ(dx1 . . . dxk)

for all f1, . . . f p ∈ BL(S). 140

Proof. The implications (i)⇒ (i i)⇒ (i i i)⇒ (iv) are trivial. Thus, we only need to show (iv)⇒ (i).
We now by Proposition 2 that there exists a countable convergence determining class C ⊂ BL(S), so we
can assume f1, f2, . . . ∈ C. Without loss of generality we can assume ‖ fi‖∞ ≤ 1 for all i and 1 ∈ C.
Then we have that for every i ∈ {1, . . . , k} the marginal of the i th coordinate, denoted µωn,i , converges to
µi weakly in probability, i.e. for all i and all fi ∈ C we have 145∫

S
fi (x)µωn,i (dxi )

P
→

∫
S

fi (x)µi (dxi ).

Now by Proposition 1 for every i ∈ {1, . . . , k} every subsequence N ⊂ N contains a further subsequence
N ′ ⊂ N such that we have convergence almost sure convergence for all g ∈ C, i.e. denoting

Ai :=
{
ω ∈ � :

∫
S

g(xi )µ
ω
n′,i (dxi ) −→

∫
S

g(xi )µi (dxi ) for all g ∈ C
}

we have P(Ai ) = 1. We can extract a further subsequence N ′′ ⊂ N ′ such that along N ′′ we have conver-
gence almost surely for all i and all g and thus for ω ∈ A := ∩k

i=1 Ai the sequence
{
µωn ; n ∈ N ′′

}
is tight,

since
{
µωn,i ; n ∈ N ′′

}
is tight for every i (see Ethier & Kurtz, 2005, Chapter 3 Proposition 2.4.). We can 150

conclude that for every such ω every subsequence of (µωn )n>1 has a further subsequence that converges.
It remains to show that the functions of the form

∏k
i=1 fi are measure determining. However, by Ethier &

Kurtz (2005, Chapter 2 Proposition 4.6.) if C is measure determining on S then so is the product for Sk .�
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If S = Rk for some k ∈ N we can check weak convergence in probability by considering moment
generating functions. The following result is shown by Sweeting (1989, Corollary 3); see also Castillo &155

Rousseau (2015, Lemma 1).

PROPOSITION 3. Let
(
µωn
)

n>1 be a sequence of random probability measures and assume there exists
u0 > 0 such that for all n ∈ N the moment generating functions

mn(u, ω) =
∫

exp
(

uTx
)
µωn (dx)

exist for |u| < u0 then µωn  P µ if and only if for every u ∈ Rk

mn(u, ·)
P
−→ m(u, ·) =

∫
exp

(
uTx

)
µω(dx).

Proof. This can be seen by considering the class of functions of the form fu(x) = exp(uTx) for160

u ∈ Q, |u| < u0 and showing that they form a countable convergence determining class, see Sweet-
ing (1989, Corollary 3). Consider the case k = 1 and a sequence of measures (µn)n>1 and µ such that

mn(u) =
∫

euxµn(dx)→ m(u) =
∫

euxµ(dx).

Denote a compact set K = [−c, c]. Then by the Markov inequality

µn
(
K {)
=

∫
|x |≥c

µn(dx) ≤
mn(u0)

eu0c

and mn(u0)→ m(u0). Hence, µn(K {) is bounded and we can find c such that supn µn(K {) < ε and
(µn)n>1 is tight. By continuity the fu are measure determining so we can conclude that the limit is165

unique. For k > 1 we can use the same argument to show that the marginals are tight, see the proof of
Lemma 1. �

Lemma 1 can be readily extended to countably infinite product spaces by considering convergence of
the finite dimensional distribution. Let us therefore denote µ ◦ π−1

k : SN
→ Sk

; k ∈ N the canonical pro-
jections. For non-random measures, it is well-known that convergence of the projections already implies170

convergence on the whole of SN (Billingsley, 1999, Example 2.6). Since there are countably many such
projections, we can apply the reasoning of Proposition 1 to conclude that for checking µωn  P µ on SN

we just need to show∫
Sk

k∏
i=1

fi (xi )µ
ω
n (dx1, . . . , dxk)

P
→

∫
Sk

k∏
i=1

fi (xi )µ(dx1, . . . , dxk)

for all f1, . . . fk ∈ BL(S) and k ∈ N. The following Lemma is essentially a version of Ethier & Kurtz
(2005, Chapter 3 Proposition 4.6 b) extended to random measures.175

LEMMA 2. Let
(
µωn
)

n>1 be a sequence of random probability measures and µ a non-random proba-

bility measure on SN. Then µωn  P µ is equivalent to∫
Sk

k∏
i=1

fi (xi )µ
ω
n (dx1, . . . , dxk)

P
→

∫
Sk

k∏
i=1

fi (xi )µ(dx1, . . . , dxk)

for all f1, . . . fk ∈ BL(S) and k ∈ N.

Proof. Suppose for any k that the above convergence holds for all test functions f1, . . . fk ∈ BL(S).
We have shown in Lemma 1 that this is equivalent of convergence of the canonical projections µωn ◦ π

−1
k180

on Sk (in probability) for any given k. Hence, using Proposition 1 for every subsequence N ⊂ N there is
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a subsequence N ′ ⊂ N such that along N ′

P
(
ω ∈ � : µωn ◦ π

−1
k  µ ◦ π−1

k as n→∞ for all k ∈ N
)
= 1.

An application of Ethier & Kurtz (2005, Chapter 3 Proposition 4.6 b) concludes the proof. �

S2. PROOFS OF SECTION 4

S2·1. Proofs for Section 4.1 185

LEMMA 1. Given a random probability measure µω and random Markov kernel Kω, there exists an
almost surely unique random probability measure µN,ω on SN such that

µN,ω(A1 × . . .× Ak × Ek+1) =

∫
A1

µω(dx1)

∫
A2

Kω(x1, dx2) . . .

∫
Ak

Kω(xk−1, dxk)

for any Ai ∈ B(S) (i = 1, . . . , k), k ∈ N and Ek+1 = ×∞i=k+1S.

Proof of Lemma 1. For P−almost all ω, the existence and uniqueness of the distribution µN,ω on
{SN,B(S)N} can be obtained using the Ionescu-Tulcea extension theorem; see, e.g., Kallenberg (2006, 190

Theorem 6.17) or Klenke (2013, Theorem 14.32). Measurability follows analogously by noting that ω 7→
µN(ω, A) is measurable for any A ∈ E = {A1 × . . .× Ak × Ek+1; Ai ∈ B(S), i = 1, . . . , k, k ∈ N} and
that E forms a π−system that generates B(S)N. By Crauel (2003, Remark 3.2) this is enough to obtain
measurability for every A ∈ B(S)N. �

THEOREM 2. If the following assumptions hold, 195

(T.1) the random probability measures
(
µωn
)

n>1 converge weakly in probability to a probability measure µ
as n→∞,

(T.2) the random Markov transition kernels
(
Kω

n
)

n>1 satisfy∫ ∣∣Kω
n f (x)− K f (x)

∣∣µωn (dx)→ 0

in probability as n→∞ for all f ∈ BL(S) where K is a Markov transition kernel ,
(T.3) the transition kernel K is such that x 7→ K f (x) is continuous for any f ∈ Cb(S), 200

then, as n→∞, the measures (µN,ω
n )n>1 on SN converge weakly in probability to the measure µN in-

duced by the Markov chain with initial distribution µ and transition kernel K .

Proof of Theorem 2. By Section S1·2 Lemma 2, we need to show that for any k ≥ 0 and any
f0, . . . , fk ∈ BL(S)

Eω
{

f0(Xωn,0) · · · fk(Xωn,k)
} P
−→ E { f0(X0) · · · fk(Xk)} (2.1)

where Eω, resp. E , denotes the expectation w.r.t. the law of Xω
n , respectively w.r.t. the law of X. We prove 205

this by induction. For k = 0, this follows directly from (T .1). Now assume that (2.1) is true for k ≥ 0, i.e.∣∣Eω { f0(Xωn,0) f1(Xωn,1) · · · fk(Xωn,k)
}
− E { f0(X0) f1(X1) · · · fk(Xk)}

∣∣ P
−→ 0.

By Lemma 1 this is equivalent to weak convergence in probability of the vector of the first k states, i.e.,
for all f ∈ Cb(Sk)

Eω
{

f (Xn
0 , . . . , Xn

k )
} P
−→ E { f (X0, . . . , Xk)} . (2.2)

For k + 1, we have∣∣Eω { f0(Xωn,0) · · · fk(Xωn,k) fk+1(Xωn,k+1)
}
− E { f0(X0) · · · f (Xk) fk+1(Xk+1)}

∣∣ 210
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=
∣∣Eω { f0(Xωn,0) · · · fk(Xωn,k)K

ω
n fk+1(Xωn,k)

}
− E { f0(X0) · · · f (Xk)K fk+1(Xk)}

∣∣
≤
∣∣Eω { f0(Xωn,0) · · · fk(Xωn,k)K

ω
n fk+1(Xωn,k)− f0(Xωn,0) · · · fk(Xωn,k)K fk+1(Xωn,k)

}∣∣
+
∣∣Eω { f0(Xωn,0) · · · fk(Xωn,k)K fk+1(Xωn,k)

}
− E { f0(X0) · · · fk(Xk)K fk+1(Xk)}

∣∣
≤ Eω

{∣∣Kω
n fk+1(Xωn,k)− K fk+1(Xωn,k)

∣∣} (2.3)

+
∣∣Eω { f0(Xωn,0) · · · fk(Xωn,k)K fk+1(Xωn,k)

}
− E { f0(X0) · · · fk(Xk)K fk+1(Xk)}

∣∣ . (2.4)215

The term (2.3) converges due to (2). For the term (2.4), the function K fk+1 is bounded and it is assumed
continuous so the function f0 · · · fk K fk+1 ∈ Cb(Sk). Hence this term vanishes by (2.2). �

S2·2. Some Auxiliary Results

LEMMA 2. Under Assumption 1, we have

ϕ(dθ; θ̂ωT , 6/T ) PY δθ̄ (dθ)

and220

πωT (dθ) PY δθ̄ (dθ).

Proof. Using the moment generating function of the normal distribution, we have as T →∞∫
euTθϕ(θ; θ̂ωT , 6/T )dθ = exp

(
uTθ̂ωT + uT6u/2T

) PY
−→ exp(uTθ̄ ) =

∫
exp(uTθ)δθ̄ (dθ),

where δθ̄ denotes the Dirac measure at θ̄ and thus ϕ(dθ; θ̂ωT , 6/T ) PY δθ̄ (dθ) by Proposition 3. This
implies that for f ∈ Cb(Rd)∣∣∣∣∫ f (θ)πωT (θ)dθ −

∫
f (θ)δθ̄ (dθ)

∣∣∣∣
≤

∣∣∣∣∫ f (θ)πωT (θ)dθ −
∫

f (θ)ϕ(θ; θ̂ωT , 6/T )dθ
∣∣∣∣+ ∣∣∣∣∫ f (θ)ϕ(θ; θ̂ωT , 6/T )dθ −

∫
f (θ)δθ̄ (dθ)

∣∣∣∣225

≤ ‖ f ‖∞

∫ ∣∣∣πωT (θ)− ϕ(θ; θ̂ωT , 6/T )
∣∣∣ dθ +

∣∣∣∣∫ f (θ)ϕ(θ; θ̂ωT , 6/T )dθ −
∫

f (θ)δθ̄ (dθ)
∣∣∣∣ ,

where the first term on the r.h.s. converges to zero in probability under Assumption 1 while the second
term converges to zero as ϕ(dθ; θ̂ωT , 6/T ) PY δθ̄ (dθ). Hence, it follows that πωT (dθ) PY δθ̄ (dθ). �

To analyse the asymptotic properties of the pseudo-marginal algorithm, we rescale the parameter compo-
nent. A simple change of variables and the fact that convergence in total variation in probability implies230

weak convergence in probability shows that the following result holds.

LEMMA 3. Under Assumption 1, we have∫ ∣∣∣π̃ωT (θ̃)− ϕ(θ̃; 0, 6)∣∣∣ dθ
PY
−→ 0, as T →∞,

and thus π̃ωT (dθ̃ ) PY ϕ(dθ̃; 0, 6).

LEMMA 4 (CONVERGENCE OF MARGINAL DISTRIBUTIONS). Under Assumptions 1 and 2, the
marginal distribution of the proposal at stationarity235

πωT qT (dϑ) =
∫
πωT (dθ)qT (θ, dϑ)

satisfies

πωT qT (dϑ) PY δθ̄ (dϑ).
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Proof. Let f ∈ BL(R), then we have∣∣∣∣∫ f (ϑ)πωT qT (dϑ)− f (θ̄)
∣∣∣∣ = ∣∣∣∣∫ f (θ + ξ/

√
T )
∫
πωT (dθ)ν(dξ)− f (θ̄)

∣∣∣∣
≤

∣∣∣∣∫∫ (
f (θ + ξ/

√
T )− f (θ)

)
ν(dξ)πωT (dθ)

∣∣∣∣+ ∣∣∣∣∫∫ f (θ)πωT (dθ)ν(dξ)− f (θ̄)
∣∣∣∣

≤

∫∫ ∣∣ f (θ + ξ/
√

T )− f (θ)
∣∣ ν(dξ)πωT (dθ)+ ∣∣∣∣∫ f (θ)πωT (dθ)− f (θ̄)

∣∣∣∣ . 240

The second term on the r.h.s. vanishes due to Lemma 2. For the first term we use the fact that f is bounded
Lipschitz, hence∫∫ ∣∣ f (θ + ξ/

√
T )− f (θ)

∣∣ ν(dξ)πωT (dθ) ≤ ‖ f ‖BL

∫∫
min

{
1,
‖ξ‖
√

T

}
ν(dξ)πωT (dθ)

= ‖ f ‖BL

∫∫
min

{
1,
‖ξ‖
√

T

}
ν(dξ)→ 0.

The proof of the following Lemmas are straightforward and thus omitted. 245

LEMMA 5. The map x 7→ min (1, aex ) with a > 0 is 1−Lipschitz, i.e., for all x, y ∈ R∣∣min
(
1, aex)

−min
(
1, aey)∣∣ ≤ |x − y|.

LEMMA 6. Under Assumption 3

(i) the function

θ 7→ dBL

[
ϕ
{
· ; σ 2(θ)/2, σ 2(θ)

)
}, ϕ

{
· ; σ 2(θ̄)/2, σ 2(θ̄)

}
| YT

]
is bounded for all θ and continuous at θ̄ ;

(ii) for all f ∈ BL(R) the functions 250

θ 7→

∣∣∣∣∫ f (z)ϕ
{

dz; σ 2(θ)/2, σ 2(θ)
}
−

∫
f (z)ϕ

{
dz; σ 2(θ̄)/2, σ 2(θ̄)

}∣∣∣∣
are bounded for all θ and continuous at θ̄ .

S2·3. Proof of Theorem 1
In order to prove Theorem 1, we need to prove Propositions 1, 2 and 3 of Section 4·3.

PROPOSITION 1. Under Assumptions 1 and 3, we have

π̃ωT (dθ̃ , dz)→ π̃(dθ̃ , dz),

weakly in PY -probability as T →∞ where π̃ωT (dθ̃ , dz) = π̃ωT (dθ̃ )exp (z) g̃ωT (dz | θ̃ ). 255

Proof of Proposition 1. As established in Lemma 1, it is enough to check convergence for products of
bounded Lipschitz functions. Now, without loss of generality, assume that ‖ f1‖∞,‖ f2‖∞ ≤ 1/2. Then we
have∣∣∣∣∫∫ f1(θ̃) f2(z)π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )−
∫∫

f1(θ̃) f2(z)ϕ(dθ̃; 0, 6)ϕ
{

dz; σ 2(θ̄)/2, σ 2(θ̄)
}∣∣∣∣

≤

∫∫
ez g̃ωT (z | θ̃ )dz

∣∣∣π̃ωT (θ̃)− ϕ(θ̃; 0, 6)∣∣∣ dθ̃ 260

+

∫
ϕ(θ̃; 0, 6)

∣∣∣∣∫ f2(z)ez g̃ωT (dz | θ̃ )−
∫

f2(z)ϕ
{

dz; σ 2(θ̄)/2, σ 2(θ̄)
}∣∣∣∣ dθ̃

≤

∫ ∣∣∣π̃ωT (dθ̃ )− ϕ(θ̃; 0, 6)∣∣∣ dθ̃ (2.5)
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+

∫
ϕ(θ; θ̂ωT , 6/T )

∣∣∣∣∫ f2(z)ezgωT (dz | θ)−
∫

f2(z)ϕ
{

dz; σ 2(θ)2, σ 2(θ)
}∣∣∣∣ dθ (2.6)

+

∫
ϕ(θ; θ̂ωT , 6/T )

∣∣∣∣∫ f2(z)ϕ
{

dz; σ 2(θ)/2, σ 2(θ)
}
−

∫
f2(z)ϕ

{
dz; σ 2(θ̄)/2, σ 2(θ̄)

}∣∣∣∣ dθ (2.7)

The term (2.5) converges to zero in PY -probability by Lemma 3. For (2.6), write B(θ̄) ⊂ 2 for the ε-ball265

on which the uniform CLT in Assumption 3 holds, that is

sup
θ∈B(θ̄)

hT (θ) = sup
θ∈B(θ̄)

∣∣∣∣∫ f2(z)ezgωT (dz | θ)dz −
∫

f2(z)ϕ
{

dz; σ 2(θ)/2, σ 2(θ)
}

dz
∣∣∣∣ PY
−→ 0.

We can bound (2.6) as follows∫
B(θ̄)

ϕ(θ; θ̂ωT , 6/T )
∣∣∣∣∫ f2(z)ezgωT (dz | θ)−

∫
f2(z)ϕ

{
dz; σ 2(θ)/2, σ 2(θ)

}∣∣∣∣ dθ

+

∫
B(θ̄){

ϕ(θ; θ̂ωT , 6/T )
∣∣∣∣∫ f2(z)ezgωT (dz | θ)−

∫
f2(z)ϕ

{
dz; σ 2(θ)/2, σ 2(θ)

}∣∣∣∣ dθ

≤ sup
θ∈B(θ̄)

hT (θ)+

∫
B(θ̄){

ϕ(θ; θ̂ωT , 6/T )dθ,270

since ‖ f2‖∞ ≤ 1/2. We have already mentioned that the first term vanishes in probability whereas for the
second term we have ∫

B(θ̄){
ϕ(θ; θ̂ωT , 6/T )dθ

PY
−→ δθ̄

{
B(θ̄){

}
= 0,

by Lemma 2. Thus (2.6) vanishes in PY -probability. Finally we consider (2.7). By Lemma 6

h(θ) =
∣∣∣∣∫ f2(z)ϕ

{
dz; σ 2(θ)/2, σ 2(θ)

}
−

∫
f2(z)ϕ

{
dz; σ 2(θ̄)/2, σ 2(θ̄)

}∣∣∣∣
is bounded and continuous at θ̄ . Since ϕ(dθ; θ̂ωT , 6/T ) converges weakly in probability to a point mass
in θ̄ (by Lemma 2) we can conclude that275 ∫

f (θ)ϕ(dθ; θ̂ωT , 6/T )
PY
→

∫
f (θ)δθ̄ (dθ)

for every bounded function f which is continuous at θ . In particular,∫
h(θ)ϕ(dθ; θ̂ωT , 6/T )

PY
→ 0.

PROPOSITION 2. Under Assumptions 1, 2 and 3, as T →∞ we have for any f ∈ BL(Rd+1)∫
|P̃ωT f (θ, z)− P̃ f (θ, z)|π̃ωT (dθ, dz)→ 0, in PY -probability.

Proof of Proposition 2. Let f ∈ BL(Rd+1). Denote

5ωT f (θ̃ , z) =
∫∫

f (θ̃ ′, z′)α̃ωT
{
(θ̃ , z), (θ̃ ′, z′)

}
q̃(θ̃ , dθ̃ ′)g̃ωT (dz′ | θ̃ ′)

and

5 f (θ̃ , z) =
∫∫

f (θ̃ ′, z′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
q̃(θ̃ , dθ̃ ′)g(dz′ | θ),
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where g( · | ϑ) = ϕ{ · ;−σ 2(ϑ)/2, σ 2(ϑ)}. Then we have 280

P̃ωT f (θ̃ , z) = 5ωT f (θ̃ , z)+ f (θ̃ , z)
{

1−5ωT 1(θ̃ , z)
}

and

P̃ f (θ̃ , z) = 5 f (θ̃ , z)+ f (θ̃ , z)
{

1−51(θ̃ , z)
}
. (2.8)

Because

Eω
{∣∣∣P̃ωT f (ϑ̃T

0 , Z T
0 )− P̃ f (ϑ̃T

0 , Z T
0 )
∣∣∣} 285

= Eω
[∣∣∣5ωT f (ϑ̃T

0 , Z T
0 )+ f (ϑ̃T

0 , Z T
0 )
{

1−5ωT 1(ϑ̃T
0 , Z T

0 )
}

−5 f (ϑ̃T
0 , Z T

0 )− f (ϑ̃T
0 , Z T

0 )
{

1−51(ϑ̃T
0 , Z T

0 )
} ∣∣∣]

≤ Eω
{∣∣∣5ωT f (ϑ̃T

0 , Z T
0 )−5 f (ϑ̃T

0 , Z T
0 )
∣∣∣}+ Eω

{∣∣∣5ωT 1(ϑ̃T
0 , Z T

0 )−51(ϑ̃T
0 , Z T

0 )
∣∣∣}

and 1 ∈ BL(Rd+1) it is sufficient to show that for any choice of f ∈ BL(Rd+1) we have

Eω
{∣∣∣5ωT f (θ̃ , z)−5 f (θ̃ , z)

∣∣∣} PY
→ 0. Thus 290

Eω
{∣∣∣5ωT f (θ̃ , z)−5 f (θ̃ , z)

∣∣∣}
=

∫∫
π̃ωT (dθ̃ , dz)

∣∣∣∣ ∫∫ q̃(θ̃ , dθ̃ ′)α̃ωT
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)

−

∫∫
q̃(θ̃ , dθ̃ ′)α̃{(θ̃ , z), (θ̃ ′, z′)} f (θ̃ ′, z′)g(dz′ | θ)

∣∣∣∣
=

∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ min
{
π̃ωT (θ̃)q̃(θ̃ , θ̃

′), π̃ωT (θ̃
′)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

−

∫∫
π̃ωT (θ̃)q̃(θ̃ , θ̃

′)α̃{(θ̃ , z), (θ̃ ′, z′)} f (θ̃ ′, z′)g(dz′ | θ)dθ̃ ′
∣∣∣∣dθ̃ 295

≤

∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ min
{
π̃ωT (θ̃)q̃(θ̃ , θ̃

′), π̃ωT (θ̃
′)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

−

∫∫
min

{
ϕ(θ̃; 0, 6)q̃(θ̃ , θ̃ ′), ϕ(θ̃ ′; 0, 6)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

∣∣∣∣dθ̃
+

∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ min
{
ϕ(θ̃; 0, 6)q̃(θ̃ , θ̃ ′), ϕ(θ̃ ′; 0, 6)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

−

∫∫
π̃ωT (θ̃)q̃(θ̃ , θ̃

′)α̃{(θ̃ , z), (θ̃ ′, z′)} f (θ̃ ′, z′)g(dz′ | θ)dθ̃ ′
∣∣∣∣dθ̃ . (2.9)

By taking ϕ(θ̃; 0, 6) out in last two lines of (2.9), this can be rewritten as 300∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ min
{
π̃ωT (θ̃)q̃(θ̃ , θ̃

′), π̃ωT (θ̃
′)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

−

∫∫
min

{
ϕ(θ̃; 0, 6)q̃(θ̃ , θ̃ ′), ϕ(θ̃ ′; 0, 6)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

∣∣∣∣dθ̃ (2.10)

+

∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ ϕ(θ̃; 0, 6)q̃(θ̃ , θ̃ ′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′
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−

∫∫
π̃ωT (θ̃)q̃(θ̃ , θ̃

′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g(dz′ | θ)dθ̃ ′

∣∣∣∣dθ̃ . (2.11)

For (2.10), we use the inequality |min(a, b)−min(c, d)| ≤ |a − c| + |b − d|:305 ∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ min
{
π̃ωT (θ̃)q̃(θ̃ , θ̃

′), π̃ωT (θ̃
′)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)

−min
{
ϕ(θ̃; 0, 6)q̃(θ̃ , θ̃ ′), ϕ(θ̃ ′; 0, 6)q̃(θ̃ ′, θ̃ )ez′−z

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

∣∣∣∣dθ̃
≤ ‖ f ‖∞

∫∫∫∫
ez g̃ωT (dz | θ̃ )q̃(θ̃ , dθ̃ ′)g̃ωT (dz′ | θ̃ ′)

∣∣∣π̃ωT (θ̃)− ϕ(θ̃; 0, 6)∣∣∣ dθ̃

+ ‖ f ‖∞

∫∫∫∫
g̃ωT (dz | θ̃ )ez′ g̃ωT (dz′ | θ̃ ′)q̃(θ̃ ′, θ̃ )

∣∣∣π̃ωT (θ̃ ′)− ϕ(θ̃ ′; 0, 6)∣∣∣ dθ̃ ′dθ̃

= 2‖ f ‖∞

∫ ∣∣∣π̃ωT (θ̃)− ϕ(θ̃; 0, 6)∣∣∣ dθ̃
PY
−→ 0,310

by Lemma 3. For the part (2.11) note that∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ ϕ(θ̃; 0, 6)q̃(θ̃ , dθ̃ ′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)

−

∫∫
π̃ωT (θ̃)q̃(θ̃ , dθ̃ ′)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g(dz′ | θ)

∣∣∣∣dθ̃
≤

∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ ϕ(θ̃; 0, 6)q̃(θ̃ , dθ̃ ′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)

−

∫∫
π̃ωT (θ̃)q̃(θ̃ , dθ̃ ′)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)

∣∣∣∣dθ̃ (2.12)315

+

∫∫
π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )
∣∣∣∣∫∫ q̃(θ̃ , dθ̃ ′)g̃ωT (dz′ | θ̃ ′)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)

−

∫∫
q̃(θ̃ , dθ̃ ′)g(dz′ | θ)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)

∣∣∣∣ . (2.13)

For the first part (2.12) we have∫∫
ez g̃ωT (dz | θ̃ )

∣∣∣∣ ∫∫ ϕ(θ̃; 0, 6)q̃(θ̃ , θ̃ ′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

−

∫∫
π̃ωT (θ̃)q̃(θ̃ , θ̃

′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)g̃ωT (dz′ | θ̃ ′)dθ̃ ′

∣∣∣∣dθ̃320

≤ ‖ f ‖∞

∫∫∫∫
ez g̃ωT (dz | θ̃ )q̃(θ̃ , dθ̃ ′)g̃ωT (dz′ | θ̃ ′)

∣∣∣ϕ(θ̃; 0, 6)− π̃ωT (θ̃)∣∣∣ dθ̃

= ‖ f ‖∞

∫ ∣∣∣ϕ(θ̃; 0, 6)− π̃ωT (θ̃)∣∣∣ dθ̃
PY
−→ 0,

again by Lemma 3. The second part (2.13)∫∫
π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )
∣∣∣∣∫∫ q̃(θ̃ , dθ̃ ′)g̃ωT (dz′ | θ̃ ′)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)

−

∫∫
q̃(θ̃ , dθ̃ ′)g(dz′ | θ)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)

∣∣∣∣325

≤

∫∫∫
π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )q̃(θ̃ , dθ̃ ′)
∣∣∣∣∫ g̃ωT (dz′ | θ̃ ′)α̃

{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)
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−

∫
α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
g(dz′ | θ̂ωT + θ̃

′/
√

T ) f (θ̃ ′, z′)
∣∣∣∣ (2.14)

+

∫∫∫
π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )q̃(θ̃ , dθ̃ ′)
∣∣∣∣∫ g(dz′ | θ̂ωT + θ̃

′/
√

T ) f (θ̃ ′, z′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)

−

∫
α̃{(θ̃ , z), (θ̃ ′, z′)}g(dz′ | θ̄ ) f (θ̃ ′, z′)

∣∣∣∣ (2.15)

We first consider (2.14) using θ = θ̂ωT + θ̃/
√

T , and similarly for θ ′, 330∫∫∫
π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )q̃(θ̃ , dθ̃ ′)
∣∣∣ ∫ min

{
1,
ϕ(θ̃ ′; 0, 6)

ϕ(θ̃; 0, 6)

q̃(θ̃ ′, θ̃ )

q̃(θ̃ , θ̃ ′)
ez′−z

}
g̃ωT (dz′ | θ̃ ′) f (θ̃ ′, z′)

−

∫
min

{
1,
ϕ(θ̃ ′; 0, 6)

ϕ(θ̃; 0, 6)

q̃(θ̃ ′, θ̃ )

q̃(θ̃ , θ̃ ′)
ez′−z

}
g(dz′ | θ̂ωT + θ̃

′/
√

T ) f (θ̃ ′, z′)
∣∣∣

=

∫∫∫
πωT (dθ)e

zgωT (dz | θ)qT (θ, dθ ′)
∣∣∣ ∫ min

{
1,
ϕ(θ ′; θ̂ωT , 6/T )

ϕ(θ; θ̂ωT , 6/T )

qT (θ
′, θ)

qT (θ, θ ′)
ez′−z

}
gωT (dz′ | θ ′) f

{√
T (θ ′ − θ̂ωT ), z′

}
−

∫
min

{
1,
ϕ(θ ′; θ̂ωT , 6/T )

ϕ(θ; θ̂ωT , 6/T )

qT (θ
′, θ)

qT (θ, θ ′)
ez′−z

}
g(dz′ | θ ′) f

{√
T (θ ′ − θ̂ωT ), z′

}∣∣∣
In the rest of the proof, without loss of generality, we will consider f such that ‖ f ‖L ≤ 1 335∣∣∣ f

{√
T (θ ′ − θ̂ωT ), x

}
− f

{√
T (θ ′ − θ̂ωT ), y

}∣∣∣
≤ d

[{√
T (θ ′ − θ̂ωT ), x

}
,
{√

T (θ ′ − θ̂ωT ), y
}]
= |x − y|

and thus x 7→ f
{√

T (θ ′ − θ̂ωT ), x
}

is Lipschitz with coefficient 1 uniformly in T . Moreover, due to
Lemma 5, the map

z′ 7→ min

{
1, e−z ϕ(θ

′
; θ̂ωT , 6/T )

ϕ(θ; θ̂ωT , 6/T )

qT (θ
′, θ)

qT (θ, θ ′)
ez′
}

is Lipschitz with Lipschitz constant 1 uniformly for all θ, θ ′, z and T . Thus, using the triangle inequality, 340

we can write∫∫∫
πωT (dθ)e

zgωT (dz | θ)qT (θ, dθ ′)
∣∣∣ ∫ min

{
1,
ϕ(θ ′; θ̂ωT , 6/T )

ϕ(θ; θ̂ωT , 6/T )
ez′−z

}
f
{√

T (θ ′ − θ̂ωT ), z′
}
gωT (z

′
| θ ′)

−min

{
1,
ϕ(θ ′; θ̂ωT , 6/T )

ϕ(θ; θ̂ωT , 6/T )
ez′−z

}
f
{√

T (θ ′ − θ̂ωT ), z′
}
g(z′ | θ ′)

∣∣∣dz′

≤ 2
∫∫

πωT (dθ)qT (θ, dθ ′) · sup
f ∈BL(R), ‖ f ‖BL≤1

∣∣∣ ∫ f (z′)gωT (dz′ | θ ′)−
∫

f (z′)g(dz′ | θ ′)
∣∣∣dθ

= 2
∫∫

πωT (dθ)qT (θ, dθ ′)dBL
{
gωT (·|θ

′), g(·|θ ′)
}

345

= 2
∫

B(θ̄)
πωT qT (dθ ′)dBL

{
gωT (·|θ

′), g(·|θ ′)
}
+ 2

∫
B(θ̄){

πωT qT (dθ ′)dBL
(
gωT (·|θ

′), g(·|θ ′)
)
,

where B(θ̄) is given in Assumption 3. Since the bounded Lipschitz norm metrizes weak convergence (for
non-random probability measures) we know that for θ ′ ∈ B(θ̄)

dBL
(
gωT (·|θ

′), g(·|θ ′)
)
= sup

f ∈BL(R), ‖ f ‖BL≤1

∣∣∣ ∫ f (z′)gωT (dz′ | θ ′)−
∫

f (z′)g(dz′ | θ ′)
∣∣∣
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vanishes in PY -probability by Assumption 3. From Lemma 4 we know that the marginal distribution
of the proposal at stationarity πωT qT (dθ ′) =

∫
πωT (dθ)q(θ, dθ ′) concentrates around the true parameter350

value. Since the bounded Lipschitz metric cannot exceed 1 we have∫
πωT qT (dθ ′)IB(θ̄){(θ

′)dBL
(
gωT (·|θ

′), g(·|θ ′)
)
≤ πωT qT

{
B(θ̄){

} PY
−→ δθ̄

{
B(θ̄){

}
= 0.

In addition from Assumption 3∣∣∣∣∫
B(θ̄)

πωT qT (dθ ′)dBL
{
gωT (·|θ

′), g(·|θ ′)
}∣∣∣∣ ≤ sup

θ∈B(θ̄)

∣∣dBL
{
gωT (·|θ), g(·|θ)

}∣∣ PY
−→ 0.

Finally, using a similar argument for (2.15) we have∫∫∫
π̃ωT (dθ̃ )e

z g̃ωT (dz | θ̃ )q̃(θ̃ , dθ̃ ′)
∣∣∣∣∫ g(z′ | θ̂ωT + θ̃

′/
√

T ) f (θ̃ ′, z′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
f (θ̃ ′, z′)

− q̃(θ̃ , dθ̃ ′)α̃
{
(θ̃ , z), (θ̃ ′, z′)

}
g(z′ | θ̄ ) f (θ̃ ′, z′)

∣∣∣ dz′355

≤ 2
∫∫

πωT (θ)qT (θ, θ
′)dθdBL

(
g(·|θ ′), g(·|θ̄ )

)
dθ ′. (2.16)

By Lemma 6 the bounded Lipschitz metric, dBL
{
g(·|θ ′), g(·|θ̄ )

}
, is bounded and continuous at θ̄ . Thus

(2.16) converges to zero by Lemma 4. �

PROPOSITION 3. Under Assumption 2, the map (θ, z) 7→ P̃ f (θ, z) is continuous for every f ∈
Cb(Rd+1).360

Proof of Proposition 3. Without loss of generality let ‖ f ‖∞ ≤ 1, consider (θ∗, z∗) ∈ 2× R and de-
note (θn, zn)n∈N a sequence converging to (θ∗, z∗) as n→∞. Using the decomposition (2.8) we have∣∣∣P̃ f (θn, zn)− P̃ f (θ∗, z∗)

∣∣∣
=
∣∣5 f (θn, zn)+ f (θn, zn) {1−51(θn, zn)} −5 f (θ∗, z∗)− f (θ∗, z∗)

{
1−51(θ∗, z∗)

}∣∣
≤
∣∣5 f (θn, zn)−5 f (θ∗, z∗)

∣∣+ ∣∣ f (θn, zn)− f (θ∗, z∗)
∣∣+ ∣∣51(θn, zn)−51(θ∗, z∗)

∣∣365

By continuity of f we have f (θn, zn)→ f (θ∗, z∗) as n→∞. Since 1 ∈ Cb(Rd+1) it remains to show
that 5 f is continuous for every f ∈ Cb(Rd+1). Now∣∣5 f (θn, zn)−5 f (θ∗, z∗)

∣∣
=

∣∣∣∣ ∫ f (θ ′, z′)min
{

1,
ϕ(θ ′; 0, 6)
ϕ(θn; 0, 6)

ν(θn − θ
′)

ν(θ ′ − θn)
ez′−zn

}
ν(θ ′ − θn)g(dz′ | θ)dθ ′ (2.17)

−

∫
f (θ ′, z′)min

{
1,
ϕ(θ ′; 0, 6)
ϕ(θ∗; 0, 6)

ν(θ∗ − θ ′)

ν(θ ′ − θ∗)
ez′−z∗

}
ν(θ ′ − θ∗)g(dz′ | θ)dθ ′

∣∣∣∣370

≤

∫ ∣∣ν(θ ′ − θn)− ν(θ
′
− θ∗)

∣∣ dθ ′ (2.18)

+

∫ ∣∣∣∣min
{

1,
ϕ(θ ′; 0, 6)
ϕ(θn; 0, 6)

ν(θn − θ
′)

ν(θ ′ − θn)
ez′−zn

}
−min

{
1,
ϕ(θ ′; 0, 6)
ϕ(θ∗; 0, 6)

ν(θ∗ − θ ′)

ν(θ ′ − θ∗)
ez′−z∗

} ∣∣∣∣ν(θ ′ − θ∗)g(dz′ | θ)dθ ′.

(2.19)

For (2.18), Assumption 2 implies ν(θ ′ − θn)→ ν(θ ′ − θ∗) as n→∞ and hence Scheffé’s lemma yields

∫ ∣∣ν(θ ′ − θn)− ν(θ
′
− θ∗)

∣∣ dθ ′→ 0.
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For (2.19), the map

(θ, z) 7→ min
{

1,
ϕ(θ ′; 0, 6)
ϕ(θ; 0, 6)

ν(θ − θ ′)

ν(θ ′ − θ)
ez′−z

}
is continuous for all θ ′, z′ since it is just a composition of continuous functions. Hence, 375∣∣∣∣min

{
1,
ϕ(θ ′; 0, 6)
ϕ(θn; 0, 6)

ν(θn − θ
′)

ν(θ ′ − θn)
ez′−zn

}
−min

{
1,
ϕ(θ ′; 0, 6)
ϕ(θ∗; 0, 6)

ν(θ∗ − θ ′)

ν(θ ′ − θ∗)
ez′−z∗

}∣∣∣∣→ 0

for every (θ ′, z′) and an application of dominated convergence shows that (2.19) goes to zero. �

S3. PROOFS OF SECTION 5

S3·1. Central Limit Theorem for Likelihood Estimators

We detail here the proof of Theorem 3. For clarity we explicitly state the probability space supporting
all random variables that are used to prove our limit theorem. For integers N , T, k we introduce the 380

space ET = 2× RN T k where 2 ⊂ Rd is the parameter space equipped with the Borel σ -algebra and
probability measure PT (dθ, du) = πωT (dθ)mT,θ (du). Finally, we will work with the Borel probability
measure P on E where E = YN

×
∏
∞

T=1 ET , P = PY
⊗
⊗
∞

T=1 PT .
We are interested in the asymptotic distribution of the relative error of the log-likelihood

ZT (θ) = log p̂(Y1:T | θ,U )− log p(Y1:T | θ),

where U ∼ mT,θ (·) or U ∼ πωT (· | θ). Indeed, we have Law {ZT (θ)} = gωT (· | θ) when U ∼ mT,θ (·) and 385

Law {ZT (θ)} = ḡωT (· | θ) when U ∼ πωT (· | θ). Weak convergence results for ZT (θ) have been estab-
lished in Deligiannidis et al. (2018, Theorem 1) using a Taylor expansion. However, the CLTs introduced
therein do not provide a bound on the Lipschitz metric dBL and are not uniform in the parameter θ as
required in Assumption 3. In order to obtain a uniform bound for all functions in BL(R) with ‖ f ‖BL ≤ 1
and all parameter values for some neighbourhood B(θ̄) we need to introduce further assumptions. We 390

follow the approach in Deligiannidis et al. (2018) and write

ZT (θ) =

T∑
t=1

log
{

1+
p̂(Yt | θ,Ut )− p(Yt | θ)

p(Yt | θ)

}

=

T∑
t=1

log
{

1+
εN (Yt , θ)
√

N

}
where

εN (Yt , θ) =
1
√

N

N∑
i=1

{
w(Yt ,Ut,i , θ)− 1

}
, 395

w(Yt ,Ut,i , θ) being a normalized importance weight defined in (10). Recall that

σ 2(y, θ) = E
{
εT (y, θ)2

}
= var

{
w(y,U1,1, θ)

}
, σ 2(θ) = E

{
σ 2(Y1, θ)

}
.

Here the number of particles, N , is scaled proportionally to the number of observations, that is N = dγ T e
for some γ > 0. In the following we will take γ = 1 (that is N = T ) for simplicity and without loss of
generality. In order to show convergence of the bounded Lipschitz metric uniformly in θ , we will exploit 400

the relation

log(1+ x) = x −
x2

2
+

∫ x

0

u2

1+ u
du,
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where for x < 0 we use the convention∫ x

0

u2

1+ u
du = −

∫ 0

x

u2

1+ u
du.

We thus obtain

ZT (θ) =
1
√

T

T∑
t=1

εT (Yt , θ)−
1

2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ), (3.1)

with

RT (y, θ) =
∫ εT (y,θ)/

√
T

0

u2

1+ u
du. (3.2)405

We recall the following assumptions regarding the normalized weights.

Assumption 4. There exists a closed ε-ball B(θ̄) around θ̄ and a function g such that the normalized
weight w(y,U1,1, θ) defined in (10) satisfies for some 1 > 0

sup
θ∈B(θ̄)

E
{
w(y,U1,1, θ)

2+1
}
≤ g(y),

where U1,1 ∼ h( · | y, θ) and µ(g) <∞. Additionally, θ 7→ σ 2(y, θ) is continuous in θ on B(θ̄) for all
y ∈ Y.410

We can relate expectations of powers of εT (y, θ) to that of w(y,U1,1, θ) in the following way.

LEMMA 7. For any k ≥ 2 and any T ≥ 1

E
{
|εT (y, θ)|k

}
≤ c(k)

[
E
{
w(y,U1,1, θ))

k
}
+ 1

]
where c(k) is a constant only depending on k.

Proof. This is Lemma 2 in Deligiannidis et al. (2018). We repeat it here for convenience. It holds

E
{
|εT (y, θ)|k

}
= E

∣∣∣∣∣ 1
√

T

T∑
i=1

{
w(y,U1,i , θ)− 1

}∣∣∣∣∣
k415

≤ c1(k)E

∣∣∣∣∣ 1
T

T∑
i=1

{
w(y,U1,i , θ)− 1

}2

∣∣∣∣∣
k/2

≤ c1(k)
1
T

T∑
i=1

E
{∣∣w(y,U1,i , θ)− 1

∣∣k}
≤ c1(k)c2(k)

[
E
{
w(y,U1,1, θ))

k
}
+ 1

]
for some constants c1(k), c2(k) by application of the Marcinkiewicz–Zygmund, Jensen and cr -
inequalities. �420

As a result we have thus

sup
θ∈B(θ̄)

E
{
|εT (y, θ)|k

}
≤ c(k) sup

θ∈B(θ̄)

[
E
{
w(y,U1,1, θ))

k
}
+ 1

]
(3.3)

and the left-hand-side is finite whenever the right-hand-side is finite.
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S3·2. Moment Conditions for Weak Convergence

Denote YT the σ−algebra spanned by the data Y1:T = (Y1, . . . , YT ) observed up to T .

THEOREM 3 (MOMENT CONDITIONS FOR UCLT). Under Assumption 4 we have the following uni- 425

form central limit theorems

a)

sup
θ∈B(θ̄)

dBL

[
gωT (· | θ), ϕ

{
·; −σ 2(θ)/2, σ 2(θ)

}
| YT

] P
→ 0,

and
b)

sup
θ∈B(θ̄)

dBL

[
ḡωT (· | θ), ϕ

{
·; σ 2(θ)/2, σ 2(θ)

}
| YT

] P
→ 0.

We will need the following auxiliary results.

LEMMA 8. Let ST (θ) =
∑T

i=1 ξi (θ) denote the sum of zero mean independent random variables
ξ1(θ), . . . , ξT (θ) such that var(ST ) = 1. Then for any Lipschitz function f with Lipschitz constant L 430

and Z ∼ N (0, 1)

|E [ f {ST (θ)} − f (Z)]| ≤ L

(
4E

[ T∑
i=1

ξ2
i (θ)1{|ξi (θ)|>1}

]
+ 3E

[ T∑
i=1

|ξi (θ)|
31{|ξi (θ)|≤1}

])
.

Proof. This is Theorem 3.2 in Chen et al. (2010). �

The above result reduces the problem of showing weak convergence uniformly over some neighbourhood
B(θ̄) to uniform laws of large numbers for conditional higher order moments. Conditions to ensure uni-
formity in the convergence of averages are widely established. We will use the following result given in 435

(Jennrich, 1969, Theorem 2).

LEMMA 9. Let A ⊂ Rd be compact and let f : Rk
× A→ R be continuous in θ for each y ∈ Rk and

measurable in y for each θ ∈ A. Further assume that there exists an integrable function g, such that
| f (y, θ)| ≤ g(y) for all y and θ . For independent random variables Yi ∼ µ (i = 1, . . . , T ) then PY -
almost surely 440

sup
θ∈A

∣∣∣∣∣ 1
T

T∑
t=1

f (Yt , θ)− E { f (Y1, θ)}

∣∣∣∣∣→ 0,

as T →∞.

Before we proceed with the proof of Theorem 3, we note that Lemma 8 is not formulated in terms
of conditional laws. However, considering conditionally (upon YT ) centred and independent random
variables ξT,1, . . . , ξT,T such that

∑T
i=1 var {ξi (θ)|Y1:T } = 1, we can apply the above lemma for ev-

ery realization Y1:T = y1:T . Denote P y
T a regular conditional distribution associated with the law of 445

ST = ξT,1 + . . .+ ξT,T given Y1:T = y1:T . By applying Lemma 8, we get

dBL
{

P y
T , ϕ( · ; 0, 1) | Y1:T = y1:T

}
≤ 4E

[ T∑
i=1

ξ2
i (θ)1{|ξi (θ)|>1} | Y1:T = y1:T

]
+ 3E

[ T∑
i=1

|ξi (θ)|
31{|ξi (θ)|≤1} | Y1:T = y1:T

]
. (3.4)

Thus, if the terms on the r.h.s. go to zero in PY -probability then dBL
{

PY
T , ϕ( · ; 0, 1)

} PY
−→ 0. With this

reasoning we can apply Lemma 8 to prove Theorem 3. 450
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Proof of Theorem 3, part a). Define

ξT,t (θ) =
εT (Yt , θ)

√
TσT (Y1:T , θ)

, ST (θ) =

T∑
t=1

ξT,t (θ),

where

σ 2
T (Y1:T , θ) =

1
T

T∑
t=1

var
{
εT,t (θ) | YT

}
. (3.5)

Thus

var {ST (θ) | YT } =

T∑
t=1

var
{
ξT,t (θ)

}
= 1.

In the following we will use the shorthand σT (Y1:T , θ) =
{
σ 2

T (Y1:T , θ)
}1/2 and σ r

T (Y1:T , θ) =455 {
σ 2

T (Y1:T , θ)
}r/2 for any real value r .

Then ST (θ) fulfils the conditions of Lemma 8 conditionally on YT . The random variable ZT (θ) defined
in (3.1) can be rewritten as

ZT (θ) = ST (θ)σT (Y1:T , θ)−
1

2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ).

We have for Z ∼ N (0, 1)

sup
θ∈B(θ̄)

dBL

[
Law {ZT (θ)} , ϕ

{
·; −σ 2(θ)/2, σ 2(θ)

}
| YT

]
460

= sup
θ∈B(θ̄)

dBL

[
Law {ZT (θ)} ,Law

{
Zσ(θ)−

σ 2(θ)

2

}
| YT

]

= sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣∣E
[

f

{
ST (θ)σT (Y1:T , θ)−

1
2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ)

}
| YT

]
− E

[
f

{
Zσ(θ)−

σ 2(θ)

2

}]∣∣∣∣∣
≤ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣E
[

f

{
ST (θ)σT (Y1:T , θ)−

1
2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2
+
σ 2(θ)

2

}
| YT

]
(3.6)

−E

[
f

{
ST (θ)σT (Y1:T , θ)+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2

}
| YT

]∣∣∣∣
+ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣∣E
[

f

{
ST (θ)σT (Y1:T , θ)+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2

}
| YT

]
465

−E

[
f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
| YT

]∣∣∣∣∣ (3.7)

+ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣∣E
[

f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
| YT

]
− E

[
f

{
Zσ(θ)−

σ 2(θ)

2

}]∣∣∣∣∣ (3.8)
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Now we have for (3.6)

(3.6) ≤ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣E
[

f

{
ST (θ)σT (Y1:T , θ)−

1
2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2
+
σ 2(θ)

2

}
| YT

]

−E

[
f

{
ST (θ)σT (Y1:T , θ)+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2

}
| YT

]∣∣∣∣ 470

≤ sup
θ∈B(θ̄)

E

[
min

{
1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
}
| YT

]
where we use that f is bounded and Lipschitz. We can bound this term by

sup
θ∈B(θ̄)

E

(
min

{
1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
} ∣∣∣∣YT

)

≤ sup
θ∈B(θ̄)

E

(
min

{
1,

∣∣∣∣∣ 1
2T

T∑
t=1

{
σ 2(Yt , θ)− σ

2(θ)
}∣∣∣∣∣
} ∣∣∣∣YT

)
(3.9)

+ sup
θ∈B(θ̄)

E

(
min

{
1,

∣∣∣∣∣ 1
2T

T∑
t=1

{
εT (Yt , θ)

2
− σ 2(Yt , θ)

}∣∣∣∣∣
} ∣∣∣∣YT

)
. 475

For any 0 < δ < 1, we can bound the first term on the r.h.s. of (3.9) by

sup
θ∈B(θ̄)

E

[
min

{
1,

∣∣∣∣∣ 1
2T

T∑
t=1

{
εT (Yt , θ)

2
− σ 2(Yt , θ)

}∣∣∣∣∣
} ∣∣∣∣YT

]

≤ sup
θ∈B(θ̄)

E

min

1,

∣∣∣∣∣ 1
2T

T∑
t=1

{
εT (Yt , θ)

2
− σ 2(Yt , θ)

}∣∣∣∣∣
1+δ

∣∣∣∣YT


1

1+δ

≤

[
C

21+δT 1+δ

T∑
t=1

sup
θ∈B(θ̄)

E
{∣∣∣εT (Yt , θ)

2
− σ 2(Yt , θ)

∣∣∣1+δ ∣∣∣∣YT

}] 1
1+δ

≤ C

[
C ′

21+δT 1+δ

T∑
t=1

{1+ g(Yt )}

] 1
1+δ

→ 0 480

in PY -probability by the law of large numbers using, in turn, Jensen’s inequality, von Bahr–Esseen inequal-
ity (von Bahr & Esseen, 1965) as E

{
εT (Yt , θ)

2
| YT

}
= σ 2(Yt , θ), cr -inequality, (3.3) and Assumption

4 for 1 = 2δ, noting that

σ 2(Yt , θ) = E
{
εT (Yt , θ)

2
| YT

}
≤ E

{
|εT (Yt , θ)|

2+1
}2/(2+1)

≤ C · {g(Yt )+ 1}2/(2+1) , 485

where the last inequality is due to (3.3). The second term on the right-hand side of (3.9) can be bounded

sup
θ∈B(θ̄)

E

(
min

{
1,

∣∣∣∣∣ 1
2T

T∑
t=1

{
σ 2(Yt , θ)− σ

2(θ)
}∣∣∣∣∣
}
| YT

)

≤ E

(
min

{
1, sup
θ∈B(θ̄)

∣∣∣∣∣ 1
2T

T∑
t=1

{
σ 2(Yt , θ)− σ

2(θ)
}∣∣∣∣∣
}
| YT

)
.
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Noting that σ 2(y, θ) is continuous in θ for all y by Assumption 4 and σ 2(y, θ) ≤ C · {1+ g(y)}2/(2+1)

we can apply Lemma 9 to get490

sup
θ∈B(θ̄)

∣∣∣∣∣ 1
2T

T∑
t=1

{
σ 2(Yt , θ)− σ

2(θ)
}∣∣∣∣∣ PY
→ 0

and we can use dominated convergence to conclude that

E

(
E

[
min

{
1, sup
θ∈B(θ̄)

∣∣∣∣∣ 1
2T

T∑
t=1

{
σ 2(Yt , θ)− σ

2(θ)
}∣∣∣∣∣
}
| YT

])
→ 0

and thus

E

[
min

{
1, sup
θ∈B(θ̄)

∣∣∣∣∣ 1
2T

T∑
t=1

{
σ 2(Yt , θ)− σ

2(θ)
}∣∣∣∣∣
}
| YT

]
PY
→ 0.

The quantity (3.7) can be upper bounded by

(3.7) ≤ E

[
min

{
1,

∣∣∣∣∣
T∑

t=1

RT (Yt , θ)

∣∣∣∣∣
}
| YT

]
≤

T∑
t=1

E [min {1, |RT (Yt , θ)|} | YT ] . (3.10)

We will split the expectation into two terms495

E [min {1, |RT (Yt , θ)|} | YT ]

= E
[

min {1, |RT (Yt , θ)|} 1{∣∣∣ εT (Yt ,θ)√
T

∣∣∣≤1
} | YT

]
+ E

[
min {1, |RT (Yt , θ)|} 1{∣∣∣ εT (Yt ,θ)√

T

∣∣∣>1
} | YT

]
. (3.11)

Recall

RT (y, θ) =
∫ εT (y,θ)/

√
T

0

u2

1+ u
du.

We investigate the integral500

9(x) =
∫ x

0

u2

1+ u
du (3.12)

in more detail (see also Figure 1), where in the case x < 0, we interpret the above as an integral over
the interval [x, 0]. Without loss of generality, we can always select 0 < 1 < 1 in Assumption 4. On the
interval (−1, 1], we can bound the function

u2

1+ u
≤
|u|1+1

1+ u
,

as 0 < 1 < 1 where we show1 = 0.1 as an example in Figure 1. Subsequently, we bound for x ∈ (−1, 1]∣∣∣∣∣
∫ x

0

u2

1+ u
du

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ x

0

|u|1+1

1+ u
du

∣∣∣∣∣ ≤
∣∣∣∣∣x · |x |1+11+ x

∣∣∣∣∣ ,
i.e. the box containing the area under the curve. This is visualized in Figure 1. The integral (shaded blue)505

is bounded by the striped box. Hence, on the set |εT (y, θ)/
√

T | ≤ 1, we have∣∣∣∣∣
∫ εT (y,θ)/

√
T

0

u2

1+ u
du

∣∣∣∣∣ ≤
∣∣∣∣∣ |εT (y, θ)|2+1

T 1+1/2
1

1+ εT (y, θ)/
√

T

∣∣∣∣∣ .
For any non-negative random variable X and event A, we have the identity

E {min(1, X)1A} ≤ E
{

X1X≤11A
}
+ P(X > 1),
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Fig. 1. For x ∈ (−1, 1], x = −0.5 on the graph, the re-
mainder of our expansion is estimated by the integral under
the solid curve (blue shaded area). We bound this integral
first by dashed line and then we approximate the integral

by the box containing the area (lines).

so we can bound the first term on the right-hand side of (3.11) for every t = 1, . . . , T

E
[

min {1, |RT (Yt , θ)|} 1{∣∣∣ εT (Yt ,θ)√
T

∣∣∣≤1
} | YT

]

≤ E

∣∣∣∣∣ε2+1
T (Yt , θ)/T 1+1/2

1+ εT (Yt , θ)/
√

T

∣∣∣∣∣ 1{∣∣∣∣∣ ε2+1
T (Yt ,θ)/T 1+1/2

1+εT (Yt ,θ)/
√

T

∣∣∣∣∣≤1

}1{∣∣∣ εT (Yt ,θ)√
T

∣∣∣≤1
}∣∣∣∣YT


+ P

{∣∣∣∣∣ε2+1
T (Yt , θ)/T 1+1/2

1+ εT (Yt , θ)/
√

T

∣∣∣∣∣ > 1
∣∣∣∣YT

}
. 510

By inspection of the function, similarly to before,

u 7→
|u|2+1

1+ u

one can easily verify that there exist 0 < δ1 < 1 and δ2 > 0 such that

|u|2+1

1+ u
≤ 1⇔ −δ1 ≤ u ≤ δ2.

Thus we have

E

∣∣∣∣∣ε2+1
T (Yt , θ)/T 1+1/2

1+ εT (Yt , θ)/
√

T

∣∣∣∣∣ 1{
ε2+1
T (Yt ,θ)/T 1+1/2

1+εT (Yt ,θ)/
√

T ≤1

}1{∣∣∣ εT (Yt ,θ)√
T

∣∣∣≤1
}∣∣∣∣YT


≤ E

[∣∣∣∣∣ε2+1
T (Yt , θ)/T 1+1/2

1+ εT (Yt , θ)/
√

T

∣∣∣∣∣ 1{−δ1≤εT (Yt ,θ)/
√

T≤δ2}

∣∣∣∣YT

]
515

≤
1

(1− δ1)T 1+1/2 E
[
|εT (Yt , θ)|

2+1
∣∣∣YT

]
, (3.13)
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while

P

{∣∣∣∣∣ε2+1
T (Yt , θ)/T 1+1/2

1+ εT (Yt , θ)/
√

T

∣∣∣∣∣ > 1
∣∣∣∣YT

}

≤ P
{∣∣∣∣εT (Yt , θ)

T 1/2

∣∣∣∣ > min{δ1, δ2}

∣∣∣YT

}
≤

1
min{δ1, δ2}2+1T 1+1/2 E

[
|εT (Yt , θ)|

2+1
∣∣∣YT

]
. (3.14)520

The second term on the right-hand side of (3.11) is bounded by

E
[

min {1, |RT (Yt , θ)|} 1{∣∣∣ εT (Yt ,θ)√
T

∣∣∣>1
} | YT

]
≤ E

[
|RT (Yt , θ)| 1{∣∣∣ εT (Yt ,θ)√

T

∣∣∣>1
} | YT

]
. (3.15)

As εT (Yt , θ)/
√

T ≥ −1, (3.15) is null for εT (Yt , θ) < −1 so writing X+ = max{0, X} this can be rewrit-
ten as525

E

{∫ εT (Yt ,θ)/
√

T

0

u2

1+ u
du1{εT (Yt ,θ)/

√
T≥1}

∣∣∣YT

}

≤ E

[∫ (εT (Yt ,θ)/
√

T )+

0

u2

1+ u
du
∣∣∣YT

]

=

∫
∞

0

u2

1+ u
P
{
εT (Yt , θ)

+ >
√

T u
∣∣∣YT

}
du,

where we have used that for the function (3.12) is increasing and differentiable on its domain so

E {9 (|X |)} = 9(0)+
∫
∞

0
9 ′(u)P(|X | > u)du.

For 1 ∈ (0, 1), we bound the remainder using530

=

∫
∞

0

u2

1+ u
P
{
εT (Yt , θ)

+ >
√

T u
∣∣∣YT

}
du

≤

∫
∞

0

u2

1+ u

E
{
|εT (Yt , θ)|

2+1
∣∣∣YT

}
T (2+1)/2u2+1 du

=

∫
∞

0

1
(1+ u) u1

du
1

T 1+1/2 E
{
|εT (Yt , θ)|

2+1
∣∣∣YT

}
= C(1)

E
{
|εT (Yt , θ)|

2+1
∣∣∣YT

}
T 1+1/2 (3.16)

noting that535 ∫
∞

0

1
(1+ u) u1

du = C(1) <∞

for1 ∈ (0, 1). Hence we can bound (3.11) by the sum of (3.13), (3.14) and (3.16) so, by using (3.10), we
obtain a bound for (3.7)

(3.7) ≤
1

(1− δ1)T (1+1)/2

T∑
t=1

sup
θ∈B(θ̄)

E
{
|εT (Yt , θ)|

2+1
∣∣∣YT

}
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+
1

min{δ1, δ2}2+1T (1+1)/2

T∑
t=1

sup
θ∈B(θ̄)

E
{
|εT (Yt , θ)|

2+1
∣∣∣YT

}

+ C(1)
1

T 1+1/2

T∑
t=1

sup
θ∈B(θ̄)

E
{
|εT (Yt , θ)|

2+1
∣∣∣YT

}
→ 0 540

which all converge in PY -probability by (3.3), Assumption 4 and the law of large numbers.
We are now going to bound (3.8). We will use the fact that any constant c and any two random variables

X1, X2 we have for c > 0

sup
f ∈BL(R)
‖ f ‖BL≤1

|E [ f (cX1)− f (cX2)]| ≤ sup
f ∈BL(R)
‖ f ‖BL≤c

|E [ f (X1)− f (X2)]|

= sup
f ∈BL(R)
‖ f ‖BL≤c

∣∣∣∣E [c
{

f (X1)

c
−

f (X2)

c

}]∣∣∣∣ 545

≤ c · sup
f ∈BL(R)
‖ f ‖L≤1

|E [{ f (X1)− f (X2)}]| .

Note that we only require ‖ f ‖L ≤ 1 (‖ f ‖L denoting the Lipschitz constant) in the last line alleviating the
bound on the supremum ‖ f ‖∞. The aim of the following paragraphs is to apply the above inequality and
Lemma 8 to find a bound on (3.8). Omitting for the moment the supremum over the set B(θ̄) we compute
for (3.8) 550

sup
f ∈BL(R)
‖ f ‖BL≤1

|E [ f {ST (θ)σT (Y1:T , θ)} | YT ]− E [ f {Zσ(θ)} | YT ]|

≤ sup
f ∈BL(R)
‖ f ‖BL≤1

|E [ f {ST (θ)σT (Y1:T , θ)} | YT ]− E [ f {ZσT (Y1:T , θ)} | YT ]|

+ sup
f ∈BL(R)
‖ f ‖BL≤1

|E [ f {ZσT (Y1:T , θ)} | YT ]− E [ f {Zσ(θ)}]|

≤ σT (Y1:T , θ) sup
f ∈BL(R)
‖ f ‖L≤1

|E [ f {ST (θ)} | YT ]− E [ f {Z}]| + E [|Z |] |σT (Y1:T , θ)− σ(θ)|

≤ σT (Y1:T , θ) sup
f ∈BL(R)
‖ f ‖L≤1

|E [ f {ST (θ)} | YT ]− E [ f {Z}]| +
(

2
π

)1/2

|σT (Y1:T , θ)− σ(θ)| , (3.17) 555

We have already shown

sup
θ∈B(θ̄)

∣∣∣σ 2
T (Y1:T , θ)− σ

2(θ)
∣∣∣ = sup

θ∈B(θ̄)

∣∣∣∣∣
T∑

t=1

σ 2 (Yt , θ)

T
− σ 2(θ)

∣∣∣∣∣ PY
−→ 0,

by the uniform law of large numbers (Lemma 9). Using |
√

a −
√

b| ≤
√
|a − b|, we have

sup
θ∈B(θ̄)

|σT (Y1:T , θ)− σ(θ)|
PY
−→ 0.

For the first part of (3.17), by Lemma 8 applied conditionally on YT

sup
θ∈B(θ̄)

σT (Y1:T , θ) sup
f ∈BL(R)
‖ f ‖L≤1

∣∣∣∣∣E
[

f

{
1
√

T

T∑
t=1

εT (Yt , θ)

σT (Y1:T , θ)

}
| YT

]
− E [ f {Z}]

∣∣∣∣∣ 560
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≤ 4 sup
θ∈B(θ̄)

σT (Y1:T , θ)

T∑
t=1

E

[{
ε(Yt , θ)

√
TσT (Y1:T , θ)

}2

1{ |εT (Yt ,θ)|√
TσT (Y1:T ,θ)

>1
} | YT

]
(3.18)

+ 3 sup
θ∈B(θ̄)

σT (Y1:T , θ)

T∑
i=1

E

[∣∣∣∣ ε(Yt , θ)
√

TσT (Y1:T , θ)

∣∣∣∣3 1{∣∣∣ εT (Yt ,θ)√
TσT (Y1:T ,θ)

∣∣∣≤1
} | YT

]
. (3.19)

In order to control the σ 2(Y1:T , θ) term consider the set

AT (δ) =

{
y1:T : sup

θ∈B(θ̄)

∣∣∣σ 2
T (y1:T , θ)− σ

2(θ)
∣∣∣ ≤ δ} .

The uniform convergence of σ 2
T (Y1:T , θ) means that for any δ > 0

PY
{

AT (δ)
{
}
→ 0

as T →∞. Choosing δ > 0 for any family of random variables γT (Y1:T , θ) we have565

PY

(∣∣∣∣∣ sup
θ∈B(θ̄)

γT (Y1:T , θ)

∣∣∣∣∣ > δ

)

= PY

({∣∣∣∣∣ sup
θ∈B(θ̄)

γT (Y1:T , θ)

∣∣∣∣∣ > δ

}
∩ AT (δ)

)
+ PY

({∣∣∣∣∣ sup
θ∈B(θ̄)

γT (Y1:T , θ)

∣∣∣∣∣ > δ

}
∩ AT (δ)

{

)

where we have already shown

PY

[{∣∣∣∣∣ sup
θ∈B(θ̄)

γT (Y1:T , θ)

∣∣∣∣∣ > η

}
∩ AT (δ)

{

]
≤ PY

{
AT (δ)

{
}
→ 0. (3.20)

Hence, for showing the convergence in probability for a random variable γT (Y1:T , θ) it suffices to ensure
convergence on the set A(δ). On the set A(δ) we can estimate σ 2

T {Y1:T (ω), θ} ≥ σ
2(θ)− δ for all θ . By570

continuity of σ 2(θ)—and by shrinking B(θ̄) if necessary—we further have σ 2(θ) ≥ σ 2(θ̄)− δ for all
θ ∈ B(θ̄) and we get for (3.18), ignoring the constant for now

sup
θ∈B(θ̄)

σT (Y1:T , θ)

T∑
t=1

E

[{
ε(Yt , θ)

√
TσT (Y1:T , θ)

}2

1{ |εT (Yt ,θ)|√
TσT (Y1:T ,θ)

>1
} | YT

]
1AT (δ)

≤ sup
θ∈B(θ̄)

1

σ 1+1
T (Y1:T , θ)

T∑
t=1

E

[{
ε(Yt , θ)
√

T

}2+1

1{ |εT (Yt ,θ)|√
TσT (Y1:T ,θ)

>1
} | YT

]
1AT (δ)

≤ sup
θ∈B(θ̄)

1{
σ 2(θ)− δ

}(1+1)/2 1
T 1+1/2

T∑
t=1

E
{
|εT (Yt , θ)|

2+1
| YT

}
1AT (δ)575

≤
C{

σ 2(θ̄)− 2δ
}(1+1)/2 T 1+1/2

T∑
t=1

{g(Yt )+ 1}
PY
−→ 0

independently of θ by the Marcinkiewicz-Zygmund law of large numbers (Kallenberg, 2006, Theorem
4.23). Together with (3.20) we can conclude that (3.18), vanishes in probability.

The second part, (3.19), can be controlled similarly via

σT (Y1:T , θ)

T∑
i=1

E

[∣∣∣∣ ε(Yt , θ)
√

TσT (Y1:T , θ)

∣∣∣∣3 1{∣∣∣ εT (Yt ,θ)√
TσT (Y1:T ,θ)

∣∣∣≤1
} | YT

]
1AT (δ)580
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≤
1

σ 1+1
T (Y1:T , θ)

T∑
t=1

E

[∣∣∣∣ε(Yt , θ)
√

T

∣∣∣∣2+1 1{∣∣∣ εT (Yt ,θ)√
TσT (Y1:T ,θ)

∣∣∣≤1
} | YT

]
1AT (δ)

≤
1{

σ 2(θ)− δ
}(1+1)/2 T∑

t=1

E

[∣∣∣∣ε(Yt , θ)
√

T

∣∣∣∣2+1 1{∣∣∣ εT (Yt ,θ)√
TσT (Y1:T ,θ)

∣∣∣≤1
} | YT

]
1AT (δ)

≤
1{

σ 2(θ̄)− 2δ
}(1+1)/2 1

T 1+1/2

T∑
t=1

E
{
|ε(Yt , θ)|

2+1
| YT

}
1AT (δ)

≤
C{

σ 2(θ̄)− 2δ
}(1+1)/2 T 1+1/2

T∑
t=1

{g(Yt )+ 1}
PY
−→ 0,

which also does not depend on θ . A similar argument to the one used to conclude in the case of (3.18) 585

suffices also in this case. �

Turning to part b), we analyse ZT (θ) under stationarity. Therefore we need to introduce the probability
measure of the auxiliary variables under stationarity, i.e. the distribution of the auxiliary variables condi-
tional on the current state θ. The conditional density is given by

π(u | θ) =
π(u, θ)
π(θ)

= π(θ)
p̂(y | θ, u)

p(y | θ)
m(u)/π(θ) =

p̂(y | θ, u)
p(y | θ)

m(u)

which gives us the Radon-Nikodym derivative 590

dπ(· | θ)
dm

=

T∏
t=1

p̂(yt | θ, ut )

p(yt | θ)
= exp {ZT (θ)}

or alternatively

T∏
t=1

p̂(yt | θ, ut )

p(yt | θ)
=

T∏
t=1

{
p̂(yt | θ, ut )− p(yt | θ)

p(yt | θ)
+ 1

}

=

T∏
t=1

{
εT (yt , θ)
√

T
+ 1

}
.

The limiting distribution will now be Gaussian with a shifted mean, i.e. ϕ(·; σ 2(θ)/2, σ 2(θ)). For Z ∼
N (0, 1) we will make use of the following identity 595

E

{
f

(
Zσ +

σ 2

2

)}
= E

{
f

(
Zσ −

σ 2

2

)
exp

(
Zσ −

σ 2

2

)}
for every bounded Lipschitz function f . The identity is not restricted to this case, but we will only consider
bounded Lipschitz functions. Before we present the proof, we have the following useful result.

PROPOSITION 4. The Radon-Nikodym derivative is asymptotically uniformly bounded in its second
moment,

lim sup
T→∞

sup
θ∈B(θ̄)

E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

]
<∞.

Proof. Using independence of
(
Ut,1:T

)
t≥1 we compute for all θ ∈ B(θ̄) 600

T∏
t=1

E

{
εT (Yt , θ)

2

T
+ 2

εT (Yt , θ)
√

T
+ 1 | YT

}
=

T∏
t=1

{
σ 2(Yt , θ)

T
+ 1

}
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≤ exp

{ T∑
t=1

σ 2(Yt , θ)

T

}

≤ exp

{ T∑
t=1

C(1+ g(Yt ))
2/(2+1)

T

}
→ exp

[
C E

{
(1+ g (Y1))

2/(2+1)
}]

in PY -probability, which is clearly finite by Assumption 4. �605

In the following we denote E the expectation under m and Ẽ the expectation under π(· | θ). Using the
Radon-Nikodym derivative, it is possible to relate the expectation of εT (y, θ)k under U at stationarity
(conditional on θ ) to the expectation under U ∼ m(·) by

EU∼π(·|θ)

{
εT (y, θ)k

}
=

1
√

T
EU∼m(·)

{
εT (y, θ)k+1

}
+ EU∼m(·)

{
εT (y, θ)k

}
;

see (Deligiannidis et al., 2018, Lemma 4) for a proof. We are now able to prove the second part of Theorem610

3.

Proof of Theorem 3, part b). Again we take Z ∼ N (0, 1) and use the same decomposition as before,
but with all expectations replaced by Ẽ , the expectation at stationarity:

sup
θ∈B(θ̄)

dBL

[
ḡωT (· | θ), ϕ

{
·; σ 2(θ)/2, σ 2(θ)

}]

= sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣Ẽ
[

f

{
ST (θ)σT (Y1:T , θ)−

1
2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ)

}
| YT

]
615

− Ẽ

[
f

{
Zσ(θ)+

σ 2(θ)

2

}] ∣∣∣∣
≤ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣Ẽ
[

f

{
ST (θ)σT (Y1:T , θ)−

1
2T

T∑
t=1

εT (Yt , θ)
2
+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2
+
σ 2(θ)

2

}
| YT

]
(3.21)

−Ẽ

[
f

{
ST (θ)σT (Y1:T , θ)+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2

}
| YT

]∣∣∣∣
+ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣Ẽ
[

f

{
ST (θ)σT (Y1:T , θ)+

T∑
t=1

RT (Yt , θ)−
σ 2(θ)

2

}
| YT

]
(3.22)

− Ẽ

[
f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
| YT

] ∣∣∣∣620

+ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣∣Ẽ
[

f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
| YT

]
− Ẽ

[
f

{
Zσ(θ)+

σ 2(θ)

2

}]∣∣∣∣∣ .
(3.23)
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For (3.21) we have

(3.21) ≤ sup
θ∈B(θ̄)

Ẽ

[
min

{
1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
}
| YT

]
.

An application of Cauchy-Schwartz yields

Ẽ

[
min

{
1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
}
| YT

]
625

= E

[
min

{
1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
} T∏

t=1

{
εT (Yt , θ)
√

T
+ 1

}
| YT

]

≤ E

min

1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
2
 | YT

1/2

E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

]1/2

≤ E

[
min

{
1,

∣∣∣∣∣σ 2(θ)

2
−

1
2T

T∑
t=1

εT (Yt , θ)
2

∣∣∣∣∣
}
| YT

]1/2

E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

]1/2

.

By Proposition 4

lim sup
T→∞

sup
θ∈B(θ̄)

E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

]1/2

<∞

and we have previously shown that 630

sup
θ∈B(θ̄)

E

[
min

{
1,

∣∣∣∣∣− 1
2T

T∑
t=1

εT (Yt , θ)
2
+
σ 2(θ)

2

∣∣∣∣∣
}
| YT

]
→ 0.

As for the remainder (3.22) we argue analogously

Ẽ

[
min

{
1,

∣∣∣∣∣
T∑

t=1

RT (Yt , θ)

∣∣∣∣∣
}
| YT

]

= E

[
min

{
1,

∣∣∣∣∣
T∑

t=1

RT (Yt , θ)

∣∣∣∣∣
} T∏

t=1

{
εT (Yt , θ)
√

T
+ 1

}
| YT

]

≤ E

min

{
1,

∣∣∣∣∣
T∑

t=1

RT (Yt , θ)

∣∣∣∣∣
}2

| YT

1/2

· E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

]1/2

≤ E

[
min

{
1,

∣∣∣∣∣
T∑

t=1

RT (Yt , θ)

∣∣∣∣∣
}
| YT

]1/2

· E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

]1/2

. 635

The first factor vanishes in probability as we have shown in the proof of Theorem 3(a), where as the
second factor is bounded by Proposition 4.

For (3.23), note first that

E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}
| YT

]
= 1 and E

[
eZσ(θ)− σ

2(θ)
2

]
= 1.
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Hence, we can write

Ẽ

[
f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
| YT

]
640

= Ẽ

[
f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

} T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}
| YT

]
E
[

eZσ(θ)− σ
2(θ)
2

]

= Ẽ

[
f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

} T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}
eZσ(θ)− σ

2(θ)
2 | YT

]

and similarly

Ẽ

[
f

{
Zσ(θ)+

σ 2(θ)

2

}]
= E

[
f

{
Zσ(θ)+

σ 2(θ)

2

}
eZσ(θ)− σ

2(θ)
2

]
E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}
| YT

]

= E

[
f

{
Zσ(θ)+

σ 2(θ)

2

}
eZσ(θ)− σ

2(θ)
2

T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}
| YT

]
,645

where we used that Z is independent of all other random variables in both cases. Using these identities
we obtain∣∣∣∣∣Ẽ

[
f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
| YT

]
− Ẽ

[
f

{
Zσ(θ)+

σ 2(θ)

2

}]∣∣∣∣∣
≤

∣∣∣∣∣Ẽ
[

f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
− f

{
Zσ(θ)+

σ 2(θ)

2

}
| YT

]∣∣∣∣∣
≤

∣∣∣∣∣E
[(

f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
− f

{
Zσ(θ)−

σ 2(θ)

2

}) T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}
eZσ(θ)− σ

2(θ)
2 | YT

]∣∣∣∣∣650

≤

∣∣∣∣∣∣∣E
[ f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
− f

{
Zσ(θ)−

σ 2(θ)

2

}]2

| YT


1
2
∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣E
 T∏

t=1

{
εT (Yt , θ)
√

T
+ 1

}2

e
2
{

Zσ(θ)− σ
2(θ)
2

}
| YT


1
2
∣∣∣∣∣∣∣ .

We investigate the two factors of the product separately. First we use the fact that ‖ f ‖∞ ≤ 1 when
‖ f ‖BL ≤ 1 (see (1.3)) and thus∣∣∣∣∣∣∣ sup

θ∈B(θ̄)
sup

f ∈BL(R)
‖ f ‖BL≤1

E

[ f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
− f

{
Zσ(θ)−

σ 2(θ)

2

}]2

| YT


1
2
∣∣∣∣∣∣∣655

≤ sup
θ∈B(θ̄)

sup
f ∈BL(R)
‖ f ‖BL≤1

∣∣∣∣∣∣E
([

f

{
ST (θ)σT (Y1:T , θ)−

σ 2(θ)

2

}
− f

{
Zσ(θ)−

σ 2(θ)

2

}]
| YT

) 1
2
∣∣∣∣∣∣→ 0
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in PY -probability as established in the previous part. For the second factor note that Z is independent of
all other random variables and hence

sup
θ∈B(θ̄)

∣∣∣∣∣∣∣E
 T∏

t=1

{
εT (Yt , θ)
√

T
+ 1

}2

e
2
{

Zσ(θ)− σ
2(θ)
2

}
| YT


1
2
∣∣∣∣∣∣∣

= sup
θ∈B(θ̄)

∣∣∣∣∣∣∣E
[ T∏

t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

] 1
2

E

e
2
{

Zσ(θ)− σ
2(θ)
2

}
1
2
∣∣∣∣∣∣∣ . 660

We know

sup
θ∈B(θ̄)

E

[ T∏
t=1

{
εT (Yt , θ)
√

T
+ 1

}2

| YT

] 1
2

converges to a constant in PY -probability and

sup
θ∈B(θ̄)

E

e
2
{

Zσ(θ)− σ
2(θ)
2

}
1
2

= sup
θ∈B(θ̄)

exp(σ (θ)2)1/2 <∞.

S3. GENERALIZED LINEAR MIXED MODELS

S3·1. Exponential Families and Random Effects

In this section we introduce a class of random effects models for which all assumptions required for 665

Theorem 1 are satisfied. We analyse the latent variable model introduced in Section 5 for the popular class
of generalized linear mixed models (see e.g McCulloch & Neuhaus, 2005), where the observation density
is of the form of an exponential family. We restrict attention here to the class of natural exponential family
distributions, i.e. T (y) = y, with respect to the Lebesgue measure

p(y | η) = m(y) exp
{
ηT y − A(η)

}
, (4.1)

where y is the natural sufficient statistic and η denotes the natural parameter, which will be set equal to 670

the linear predictor in a generalized linear model. The function m(y) is a base measure, which can be
absorbed into the dominating measure. A(η) is commonly referred to as the log-partition function and we
assume that A is strictly convex and increasing in η so that the log-likelihood will be strictly concave. This
assumption will be satisfied in the most common natural exponential family models including Poisson
and Binomial models. In the following we will allow for multiple measurements for each group, which 675

means we have one random effect associated with multiple observations. This corresponds to the logistic
mixed model of Section 7. For the conditional exponential family with J repeated measurements yt =

(yt,1, . . . , yt,J )
T where ηt, j = cT

t, jβ + X t , j = 1, . . . , J, t = 1, . . . , T and the random effects are centred
Gaussian variables X ∼ N (0, τ 2) independent for each set of repeated measurements y. We will simplify
the notation by dropping the subscript t as the importance sampler for each t can be considered in isolation. 680

Assume here that

g(y | x, θ) =
J∏

j=1

m(y j ) exp
[
η j (x)y j − A{η j (x)}

]
, f (x | θ) = ϕ(x; 0, τ 2), (4.2)
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where η j (x) = cT
jβ + x and c is a vector of covariates with corresponding parameter vector β. The (full)

model likelihood for every observation is now given by

p(y, x | θ) ∝
J∏

j=1

m(y j ) exp
[
η j (x)y j − A{η j (x)}

]
ϕ(x, 0, τ 2).

Since X is unobserved, we are interested in the marginal likelihood

p(y | θ) =
∫

p(y, x | θ)dx685

=

∫ J∏
j=1

m(y j ) exp
[
η j (x)y j − A{η j (x)}

]
ϕ(x, 0, τ 2)dx .

Consequently, the likelihood of a set of observations y1:T , with yi = (yi,1, . . . , yi,J ) is

p(y1:T | θ) =

T∏
t=1

∫ J∏
j=1

m(yt, j ) exp
[
ηt, j (xt )yt, j − A{ηt, j (xt )}

]
ϕ(xt , 0, τ 2)dxt .

We list the log-partition function as well as it’s first derivative A′(x) = ∂x A(x) (which will be important
later) below together with the base measure.
Binomial. Denote n the number of trials, then690

A(η) = n log
(
1+ eη

)
, A′(η) =

neη

1+ eη
, m(y) =

(
n
y

)
.

Poisson. For the Poisson family

A(η) = eη, A′(η) = eη, m(y) =
1
y!
.

S3·2. Asymptotic Posterior Normality

This section establishes the Bernstein-von Mises theorem for priors having exponentially decaying tails.
Denote2 ⊂ Rd a subset of the Euclidean space, where we take d = 1 without loss of generality. Consider
the case of i.i.d. observations Y1, Y2, . . . drawn from a density Yi ∼ f (· | θ̄ ), where θ̄ ∈ 2 is assumed to695

be the “true parameter”. The measure describing the distribution of the data vector Y1:T = (Y1, . . . , YT )
is written as PT,θ̄ . Writing π(θ) for the prior distribution we denote the posterior density as

πT (θ) = π(θ | Y1:T ) =

∏T
i=1 f (yi | θ)π(θ)∫

2

∏T
i=1 f (yi | θ)π(θ)dθ

.

THEOREM 4. Let the experiment be differentiable in quadratic mean at θ̄ with non-singular Fisher
information matrix Iθ̄ , and suppose that for every ε > 0 there exist an increasing sequence of sets K1 ⊂700

K2 ⊂ . . . with ∪∞i=1 Ki = 2 with KT growing at rate T . Assume there exists a sequence of tests such that

E(φT )→ 0, sup
{‖θ−θ̄‖≥ε}∩KT

En
θ (1− φT )→ 0.

Furthermore, let the prior measure be absolutely continuous in a neighbourhood of θ̄ with a continuous
positive density at θ̄ s.t. for T large enough, we have

π
(

[−T, T ]{
)
≤ c1 exp (−c2T ) ,

where c1 and c2 are positive constants. Then the corresponding posterior distributions satisfy∫ ∣∣∣π̃T (h)− ϕ
(

h,
√

T
(
θ̂T − θ0

)
, I−1
θ̄

)∣∣∣ dh → 0 (4.3)
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in PT,θ̄ -probability where 705

1T (θ̄) =
1
√

T

T∑
i=1

Ĩ−1
θ̄

∂`(θ̄ , Yi )

∂θ

and

π̃T (h) =
πT (θ̄ + h/

√
T )

T 1/2

is a measure on H =
{
h =
√

T
(
θ − θ̄

)
: θ ∈ 2

}
.

Proof. The proof follows Van der Vaart (2000), Theorem 10.1, see also the lecture notes by Nickl
(2012). We will show that it is enough to show convergence of the measures restricted on some arbitrarily
large compact set. In order to do so, denote 710

PC (A) =
P(A ∩ C)

P(C)

for any measurable set A the restriction of the probability measure P to the set C . Denote
h =
√

T
(
θ − θ̄

)
. We will write PT,h for the posterior distribution with data Y1:T and parameter

θ̄ + h/
√

T (= θ). Define the prior-weighted mixture measure over a set C as

PT,C =

∫
PT,hπ̃

C
T (h)dh.

The expectation with respect to PT,C is calculated as

EPT,C { f (Y1:T )} =

∫∫
f (y1:T )dPT,h(y1:T )π̃

C
T (h)dh. 715

For any sequence of sets AT with PT,θ̄ (AT )→ 0 it follows that PT,B(AT )→ 0 and vice versa, where B
denotes a closed ball around 0. (Two measures with this relationship are called mutually contiguous.)

This means that we can interchange convergence in probability under the measures PT,B and PT,0.
Let C now denote a ball of size MT around 0 where MT →∞ as T →∞. We can show that the total
variation between distance between the posterior and the posterior restricted on the set C vanishes by 720

estimating ∥∥∥π̃T (B)− π̃C
T (B)

∥∥∥
tv
≤ 2π̃T

(
C{
)
,

where ‖ · ‖tv denotes the total variation norm. We will show that the left-hand side converges to zero under
PT,B for B a closed ball around 0. We can now use the tests φT to bound

ET,B

{
π̃T (C{)

}
= ET,B

{
π̃T

(
C{
)
(1− φT + φT )

}
≤ ET,B

[
π̃T

(
C{
)
(1− φT )

]
+ ET,B (φT ) , 725

where ET,B (φT ) = oPT,B (1) by assumption. Now

ET,B

{
PHT |Y1:T

(
C{
)
(1− φT )

}
=

∫
B

∫
RT

∫
C{
(1− φT )

∏T
i=1 f (θ̄ + g/

√
T, yi )∫ ∏T

i=1 f (θ̄ + m/
√

T, yi )dπ̃(m)

T∏
i=1

f
(
θ̄ +

h
√

T
, yi

)
dyi

dπ̃(h)
π̃(B)

=
π̃(C{)

π̃(B)

∫
C{

∫
RT

∫
B
(1− φT )

∏T
i=1 f (θ̄ + h√

T , yi )∫ ∏T
i=1 f (θ̄ + m/

√
T, yi )dπ̃(m)

dπ̃(h)dPT
g (y)dπ̃

C{
(g)
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=
π̃(C{)

π̃(B)
ET,C{ {π̃T (B)(1− φT )} .730

The upper bound is

π̃(C{)

π̃(B)
ET

C{ π̃T (B)(1− φT ) =
π̃(C{)

π̃(B)

∫
C{
π̃T (B)(1− φT )PT

h
dπ̃(h ∩ C{)

π̃(C{)

=
1

π̃(B)

∫
C{

∫
Rd
π̃T (B)(1− φT )d PT

h (y)dπ̃(h ∩ C{)

≤
1

π̃(B)

∫
C{

E(1− φT )dπ̃(h ∩ C{)

=
1

π̃(B)

∫
C{

E(1− φT )dπ̃(h)735

=
1

π̃(B)

∫
C{∩K̃T

E(1− φT )dπ̃(h)+
1

π̃(B)

∫
C{∩K̃{

T

E(1− φT )dπ̃(h),

where K̃T = {h =
√

T (θ − θ̄ ) : θ ∈ KT }. For simplicity and without loss of generality we assume KT =

[−T, T ] in the following. By Van der Vaart (2000, Lemma 10.3) the tests converge exponentially fast so
with θ = θ̄ + h/

√
T, h =

√
T
(
θ − θ̄

)
, dθ = dh/

√
T

1
π̃(B)

∫
C{∩K̃T

E(1− φT )dπ̃(h) =
1

π̃(B)

∫
{‖θ−θ̄‖≥MT /

√
T }∩KT

Eθ (1− φT ) π(θ)dθ740

=
1

π̃(U )

∫
{‖θ−θ̄‖≥MT /

√
T }∩KT

Eθ (1− φT ) π(θ)dθ

=
1

π̃(B)

∫
{D′≥‖θ−θ̄‖≥MT /

√
T }∩KT

Eθ (1− φT ) π(θ)dθ

+
1

π̃(B)

∫
{‖θ−θ̄‖≥D′}∩KT

Eθ (1− φT ) π(θ)dθ

= c2

∫
{D′≥‖θ−θ̄‖≥MT /

√
T }∩KT

exp
(
−DT

∥∥θ − θ̄∥∥2
)

dθ

+
1

π̃(B)

∫
{‖θ−θ̄‖≥D′}∩KT

exp(−c3T )π(θ)dθ745

≤ c2

∫
{h:h≥MT }∩KT

exp
(
−DT

∥∥θ − θ̄∥∥2
)

T 1/2dθ

+ 2c3T 1/2 exp(−c4T ),

where we used π̃(B) ≥ 1/(c3T 1/2) for some constant c3 because the prior is positive and continuous at
θ̄ . For the second part

1
π̃(B)

∫
C{∩K̃ c

T

Eh(1− φT )dπ̃(h) ≤
1

π̃(B)

∫
C{∩K̃{

T

dπ̃(h)750

=
1

π̃(B)

∫
C{∩K̃{

T

π(θ̄ + h/
√

T )dh

≤ c3T 1/2
∫

K{
T

π(θ)dθ

≤ c3T 1/2
· c1 exp (−c2T ) .
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As T →∞ we have

‖π̃T − π̃
C
T ‖tv → 0

in PT,B-probability and by contiguity also in PT,θ̄ . 755

Similarly, for a Gaussian distribution with means sup |µT | <∞ and variance σ 2 we have∥∥∥N (
µT , σ

2
)
−NC

(
µT , σ

2
)∥∥∥ ≤ 2N

(
µT , σ

2
) (

C{
)
.

We know that1T,θ̄ is uniformly tight, i.e. for any ε > 0 there exists K such that supT P
(∣∣1T,θ̄

∣∣ ≤ K
)
=

1− ε. Hence, with probability 1− ε∥∥∥N (
1T,θ̄ , I−1

θ̄

)
−NC

(
1T,θ̄ , I−1

θ̄

)∥∥∥ ≤ 2N
(
1T,θ̄ , I−1

θ̄

)
(C{)

by choosing M (the radius of C) sufficiently large. Hence, by the triangle inequality we have to show that∫ ∣∣∣π̃C
T (h)− ϕ

C
(

h;1T,θ̄ , I−1
θ̄

)∣∣∣ dh → 0

in PT,0-probability. Denoting x+ = max{0, x} 760

1
2

∫ ∣∣∣π̃C
T (h)− ϕ

C
(

h;1T,θ̄ , I−1
θ̄

)∣∣∣ dh

=

∫ 1−
ϕC

(
h;1T,θ̄ , I−1

θ̄

)
π̃C

T (h)

+ π̃C
T (h)dh

=

∫ 1−
ϕC

(
h;1T,θ̄ , I−1

θ̄

) ∫
1C f C

T,g(g)π(g)dg

1C π̃
C
T (h)

+ π̃C
T (h)dh

=

∫ 1−
∫ 1C (g) f C

T,g(g)π(g)ϕ
C
(

h;1T,θ̄ , I−1
θ̄

)
1C (h) f C

T,h(h)π(h)ϕ
C
(

g;1T,θ̄ , I−1
θ̄

)ϕC
(

g;1T,θ̄ , I−1
θ̄

)
dg

+ π̃C
T (h)dh

≤

∫∫ 1−
f C
T,g(g)π(g)ϕ

C
(

h;1T,θ̄ , I−1
θ̄

)
f C
T,h(h)π(h)ϕ

C
(

g;1T,θ̄ , I−1
θ̄

)
+ ϕC

(
g;1T,θ̄ , I−1

θ̄

)
dgπ̃C

n (h)dh 765

≤

{
sup
x∈C

ϕC
(

x;1T,θ̄ , I−1
θ̄

)} ∫∫ 1−
f C
T,g(g)π(g)ϕ

C
(

h;1T,θ̄ , I−1
θ̄

)
f C
T,h(h)π(h)ϕ

C
(

g;1T,θ̄ , I−1
θ̄

)
+ dgπ̃C

T (h)dh.

By dominated convergence it is enough to conclude that this quantity goes to 0 in

PT,C (dy)π̃C
T (dh)λC (dg) =

∫
PT,x (dy)π̃C

T (h)dhλC (dg)

=

∫ T∏
i=1

f
(
θ + s/

√
T, yi

) ∏T
i=1 f

(
θ + h/

√
T, yi

)
π̃C (h)dh∫ ∏T

i=1 f
(
θ + u/

√
T, yi

)
π̃C (u)du

dsλC (dg)

=

T∏
i=1

f
(
θ + h/

√
T, yi

)
π̃C (h)dhλC (dg) 770

= PT,C (dy)π̃C (h)dhλC (dg)
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probability. Under Theorem 7.2 in Van der Vaart (2000) mean-square differentiability of the likelihood
implies that the likelihood ratio allows for the LAN (Van der Vaart, 2000, Definition 7.14) expansion∏T

i=1 f (θ + g/
√

T, yi )∏T
i=1 f (θ + h/

√
T, yi )

=

=

T∏
i=1

f (θ + g/
√

T, yi )

f (θ, yi )

/ T∏
i=1

f (θ + h/
√

T, yi )

f (θ, yi )
775

= exp

(
1
√

T

T∑
i=1

gT `′θ (yi )−
1
2

gT Iθg −
1
√

T

T∑
i=1

hT `′θ (yi )−
1
2

hT Iθh + oPθ (1)

)

and thus as T →∞ and using continuity of the prior π at θ̄ we have

1−
f C
T,g(g)π(g)ϕ

C
(

h;1T,θ̄ , I−1
θ̄

)
f C
T,h(h)π(h)ϕ

C
(

g;1T,θ̄ , I−1
θ̄

) → 0

which yields the result. �

Remark 3. i) The centring sequence 1T,θ can be replaced by any best regular estimator. To see this
note that following Van der Vaart (2000, Theorem 8.14) any best regular estimator, θ̂T , satisfies the780

expansion

√
T (θ̂T − θ̄ ) =

1
√

T

T∑
i=1

Ĩ−1
θ̄

∂`(θ̄ , Yi )

∂θ
+ oPT,θ̄

(1)

and thus

1T (θ̄)−
√

T
(
θ̂T − θ̄

)
→ 0

in PT,θ0 -probability as T →∞. Since∥∥∥N (
1T,θ̄ , Ĩ−1

θ̄

)
−N

{
√

T
(
θ̂T − θ̄

)
, Ĩ−1
θ̄

}∥∥∥ . ∥∥∥√T
(
θ̂T − θ̄

)
−1T,θ̄

∥∥∥→ 0

in probability.
ii) Under regularity conditions (Van der Vaart, 2000, Theorem 5.39) the maximum likelihood estimator is785

best regular and can be used as a centring sequence following the argument in i).

We will now apply this Bernstein-von Mises result to our exponential family models. Hence, consider
again the likelihood contribution of every observation y,

p(y | β, τ) =
∫ J∏

j=1

m(y j ) exp
{
(cT

jβ + x)y j − A(cT
jβ + x)

}
ϕ(x, 0, τ 2)dx . (4.4)

For simplicity we assume that the exogenous variables c j are all identical and that 2 is a subset of R. Let
A be continuously differentiable (e.g. the Binomial and Poisson models introduced above). The prior can790

be easily chosen to fulfil the conditions of the updated Bernstein–von Mises theorem. The other conditions
need further analysis. In order to show differentiability in quadratic mean it is sufficient to prove that the
map θ 7→ p(y | θ)1/2 is continuously differentiable. By Lemma 7.6 in Van der Vaart (2000) we need to
show that

θ 7→ p(y | θ)1/2 =
[∫

m(y) exp
{(

cTβ + x
)
· y − A(cTβ + x)

}
ϕ(x, 0, τ 2)dx

]1/2
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is continuously differentiable for all y. Firstly, 795

∂

∂θ
p(y | θ)1/2 =

1
2p(y | θ)1/2

∂θ p(y | θ).

It is easy to see that θ 7→ p(y | θ) and θ 7→ ∂θ p(y | θ) are continuous. The fisher information is well
defined, continuous in θ and positive since

Iθ = E
[
{∂θ log p(Y | θ)}2

]
=

∫
{∂θ log p(y | θ)}2 p(y | θ)dy > 0

whenever ∂θ log p(y | θ) is not identically 0 for all y. The multivariate case is more involved and treated 800

for example in Mukerjee & Sutradhar (2002) for the Binomial and Poisson case. In order to ensure the
existence of the tests consider K1 ⊂ K2 ⊂ . . . an increasing sequence of compact sets with ∪∞i=1 Ki = 2.
Then, if the model is identifiable and continuous in total variation norm, Lemma 10.6 in Van der Vaart
(2000), and a diagonal argument similar to that in the proof of (Van der Vaart, 2000, Lemma 10.6), ensures
the existence of a sequence of estimators θ̂T such that supθ∈KT

Pθ (|θ̂T − θ | ≥ ε)→ 0 whence we have, 805

see for example (Nickl, 2012, Lemmas 1,2 in Section 2.2.3),

Eθ̄ (φT )→ 0, sup
{‖θ−θ̄‖≥ε}∩KT

ET,θ (1− φT )→ 0.

Since our model has a density with respect to the Lebesgue measure continuity in total variation is trivially
the case as we can write the total variation distance as

‖Pθ − Pθ ′‖tv =
∫ ∣∣p(y | θ)− p(y | θ ′)

∣∣ dy.

Therefore, by Scheffé’s lemma, continuity in the parameter already implies convergence of the integral
and therefore continuity in the total variation distance. To conclude that our models are indeed identifiable 810

it is enough to ensure that

i) the integral

E(Y ) = E
[
A′(k + X)

]
=

∫
R

A′(k + τ x)ϕ(x; 0, 1)dx <∞,

for all k, τ and
i i) the equation

A′(cTβ1 + τ1x)
τ1

=
A′(cTβ2 + τ2x)

τ2
for all c and x

has no solution,

see Labouriau (2014). These conditions are fulfilled for the Binomial case, A′(η) = neη/(1+ eη), and
Poisson case A′(η) = eη. 815

S3·3. Importance Sampling with Univariate Random Effects

We will now consider Assumption 3 in the context of generalized linear mixed models, which we will
prove using Assumption 4 and Theorem 3. In the following we will first consider a univariate random ef-
fect and a Gaussian importance sampling proposal. This will include the example of Section 7. In addition
we will show how fatter tails in the proposal affect the existence of moments by considering a univariate 820

t-proposal. Recall that we are interested in bounds on

EY

[
sup
θ∈B(θ)

E X |Y {w(Y, X, θ)a
}]
= EY

[
sup
θ∈B(θ)

E X |Y
{w(Y, X, θ)a}
p(Y | θ)a

]
, (4.5)
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where a > 0, θ = (β, τ ) and B(θ̄) ⊂ 2 denotes a closed ε-ball around θ̄ . For additional clarity, we write
EY and E X |Y for the expectations over Y and X given Y , respectively. Consider the Gaussian proposal
centred at the mode

q(x | y) = ϕ(x; x̂, τ 2
q ), (4.6)

where τ 2
q denotes the proposal variance and x̂ is the mode of h(x; y) = g(y | x) f (x) and fulfils the first825

order condition

x̂ = τ 2 {S − Ã′(̂x)
}
, (4.7)

where Ã′(x) =
∑J

j=1 A′(cT
jβ + x) with A′(z) = ∂z A(z) and S =

∑J
j=1 y j . For later convenience we de-

fine the unnormalized proposal density

q̃(x; y) =
q(x | y)
q (̂x | y)

,

where q(x | y) is the proposal density. For a symmetric proposal distribution centred at x̂ the term q (̂x | y)
is simply an inverse normalizing constant, which only involves the proposal parameters. For the Gaussian830

proposal

q̃(x; y) = exp

{
−
(x − x̂)2

2τ 2

}
, q (̂x | y) =

1
(2πτ 2

q )
1/2 . (4.8)

Associated with this we introduce the modified weight which is defined as

w̃(x, y) =
g(y | x) f (x)
g(y | x̂) f (̂x)

1
q̃(x; y)

=
h(x; y)
h(̂x; y)

1
q̃(x; y)

, (4.9)

where h(x; y) = g(y | x) f (x). These weights are easier to work with as w̃(x, y) = 1 when x = x̂ . It is
easily seen that

w̃(x, y) =
h(x; y)
q(x | y)

q (̂x | y)
h(̂x; y)

= w(x, y)
q (̂x | y)
h(̂x; y)

,

so that the modified weights are proportional to the standard weights w(x, y) as a function of x . We can835

recast the expectation (4.5) as

EY

[
sup
θ∈B(θ)

E X |Y {w(Y, X, θ)a
}]
= EY

[
sup
θ∈B(θ)

E X |Y
{w(X, Y, θ)a}
p(Y | θ)a

]
(4.10)

= EY

[
sup
θ∈B(θ)

E X |Y {w̃(X, Y, θ)a}
E X |Y {w̃(X, Y, θ)}a

]
.

The log-density of the observations is given by

log g(y | x) =
J∑

j=1

{log m(y j )+ y jη j − A(η j )}840

=

J∑
j=1

{log m(y j )+ y j cT
jβ + y j x − A(cT

jβ + x)}

= k(y)+ x(J y)− Ã(x),
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where k(y) represents constant values (which do not depend upon x), J y =
∑J

j=1 y j and Ã(x) =∑J
j=1 A(cT

jβ + x). Hence, we get

log h(x; y) = log g(y | x) f (x) = c + x(J y)− Ã(x)−
x2

2τ 2 . (4.11)

We will proceed by deriving bounds for the denominator and enumerator of (4.5) separately. We present 845

the following lemma on the denominator without reference to the Gaussian proposal, because it holds for
general proposal distribution.

LEMMA 10. Consider the exponential family model with repeated measurement j = 1, . . . , J and
Gaussian random effects. For general proposal density q(x | y) we have

1
E X {w̃(X, y)}

≤
(2π)1/2

C
(b + 1),

where b = τ Ã′(̂x) and C = q (̂x | y)(2πτ 2)1/2. 850

Proof of Lemma 10. For given observation y, the expectation of the rescaled weights is

E X
{w̃(X, y)} =

∫
w̃(x, y)q(x | y)dx

=

∫
h(x; y)
h(̂x; y)

q(x | y)
q̃(x; y)

dx

= q (̂x | y)
∫

h(x; y)
h(̂x; y)

dx .

Write again S = J ȳ =
∑J

j=1 y j . Since Ã is an increasing function we obtain for x ≤ x̂ , 855

log h(x; y)− log h(̂x; y) = − Ã(x)+ x S −
1
2

x2

τ 2 + Ã(̂x)− x̂ S +
1
2

x̂2

τ 2

≥ (x − x̂)S −
1
2

x2

τ 2 +
1
2

x̂2

τ 2

= R2 −
1
2
{x − τ 2S}2

τ 2 ,

where

R2 =
τ 2S2

2
− x̂ S +

1
2

x̂2

τ 2 =
τ 2 Ã′(̂x)2

2
,

by using the first order condition for the mode x̂ = τ 2
{S − Ã′(̂x)}. Therefore 860

E X
{w̃(X, y)} ≥ q (̂x | y)

(
2πτ 2

)1/2
exp

{
τ 2 Ã′(̂x)2

2

}
8{−τ Ã′(̂x)}.

Consider the inequality due to Birnbaum (1942)

exp(−b2/2)
1−8(b)

<
(π

2

)1/2 {
b + (b2

+ 4)1/2
}

Setting b = τ Ã′(̂x) and C = q (̂x | y)(2πτ 2)1/2 gives

1
E X {w̃(X, y)}

≤
exp(−b2/2)

C {1−8(b)}

≤ C−1
(π

2

)1/2 {
b + (b2

+ 4)1/2
}
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≤
(2π)1/2

C
(b + 1),865

as (b2
+ 4)1/2 ≤ b + 2. �

Using Lemma 10 we can set

sup
θ∈B(θ)

1
E X {w̃(X, y, θ)}

≤ sup
θ∈B(θ)

1
q (̂x | y)τ

{
τ Ã′(̂x)+ 1

}
.

We will use this result in the following corollary.

COROLLARY 1. Assume one of the following condition holds:

(i) supx Ã′(x) <∞,870

(ii) EY (Y a) <∞ and supθ∈B(θ̄) Ã′(0) <∞.

Then taking the expectation over Y , we have

EY

[
sup
θ∈B(θ)

1
E X |Y {w̃(X, Y )}a

]
<∞.

Proof. Applying Lemma 10 with b = τ Ã′(̂x) yields

EY

[
sup
θ∈B(θ)

1
E X {w̃(X, Y )}a

]
≤ EY

[
sup
θ∈B(θ)

{
τ Ã′(̂x)+ 1

Cτ

}a]
, (4.12)

where we write C = q (̂x | y) which only involved parameters of the proposal distribution. The right-hand
side of (4.12) is finite provided EY

{supθ∈B(θ) Ã′(̂x)a} <∞. This concludes the proof for (i). For (ii) we875

need to control the function Ã′(̂x). Therefore, it is useful to establish the behaviour of Ã′(̂x) in terms of
the random variables y = (y1, . . . , yJ ). Recall the first order condition (4.7)

x̂ = τ 2
{J y − Ã′(̂x)},

where the sufficient statistic is S = J y =
∑J

j=1 y j . It is easily established that Ã′(̂x) ≤ max{ Ã′(0), J y}.
To see this note

∂x log h(x; y) = J y − Ã′(x)−
x
τ 2 . (4.13)

The function Ã′(x) is monotonically increasing. If Ã′(0) < J y, then at x = 0, ∂x log h(x; y) > 0 and880

at x = x̃ , where Ã′(̃x) = J y, ∂x log h(x; y) < 0 since x̃ > 0. Similarly, if Ã′(0) < J y then at x = 0,
∂x log h(x; y) < 0 and at x = x̃ , ∂x log h(x; y) > 0. As a consequence, the mode of the concave function
log h(x; y), x̂ is always between 0 and x̃ , where Ã′(̃x) = J y. This yields Ã′(̂x) ≤ max{ Ã′(0), J y} so that

EY

{
sup
θ∈B(θ)

Ã′(̂x)a
}
≤ EY

[
sup
θ∈B(θ)

max{ Ã′(0), S}a
]

≤ EY

[
max

{
sup
θ∈B(θ)

Ã′(0), S

}a]
885

= sup
θ∈B(θ)

Ã′(0)aPY

{
S < sup

θ∈B(θ)
Ã′(0)

}
+

∫
∞

supθ∈B(θ) Ã′(0)
sadFS(s).

The last quantity is finite whenever supθ∈B(θ) Ã′(0) <∞ and EY (Y a) <∞. �

Remark 4 (Examples with Gaussian proposal). If the proposal is a Gaussian centred at the mode
q(x | y) = ϕ(x; x̂, τ 2

q ) and C as defined in Lemma 10, then C = τ/τq . For the Binomial case, we know
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that supx Ã′(x) <∞ and therefore condition (i) of the preceding Corollary 1 is fulfilled. For the Poisson 890

case Ã′(x) is not bounded, but we can use the second part of the corollary. Note that Ã′(x) is continuous
and therefore Ã′(0) can be bounded in a neighbourhood small enough. In addition, if the Poisson model
is true, it is straightforward to establish that the moments E(Y a) exist for all a > 0 and we can therefore
conclude by part (ii).

Having established conditions to ensure 895

EY

[
sup
θ∈B(θ)

E X |Y
{w̃(X, Y )}−a

]
<∞

we can bound (4.10) whenever there exists a constant K <∞ such that

sup
y∈Y

sup
θ∈B(θ)

E X |Y {w̃(X, y)a
}
< K .

In the following we will provide conditions for Gaussian and t-distributed proposals.

PROPOSITION 5. Consider the Gaussian proposal (4.6) and some exponent a > 0. Then

E X
{w̃(X, y)a} <∞

if and only if τ 2
q >

(a−1)
a τ 2, where τ 2 is the variance of the random effects term. If this condition is

satisfied then 900

E X
{w̃(X, y)a} ≤

{
aτ 2

q − (a − 1)τ 2

τ 2

}− 1
2

,

independent of y.

Proof. For brevity we define the sum S = J y =
∑J

j=1 y j and again have Ã(x) =
∑J

j=1 A(cjTβ + x).
Note that x 7→ Ã(x) is convex and thus always dominates its chord

Ã(x) ≥ Ã(̂x)+ Ã′(̂x)(x − x̂)

for any values x, x̂ . Then the modified proposal form q̃(x; y) is given by (4.8), so

log w̃(x, y) = log h(x; y)− log h(̂x; y)− log q̃(x; y) 905

= x S − Ã(x)−
1
2

x2

τ 2

− x̂ S + Ã(̂x)+
1
2

x̂2

τ 2 +
1
2
(x − x̂)2

τ 2
q

.

This is, by design, zero at x = x̂ and can be bounded as

log w̃(x, y) ≤
1
2

x̂2

τ 2 + {S − Ã′(̂x)}(x − x̂)−
1
2

x2

τ 2 +
1
2
(x − x̂)2

τ 2
q

=
1
2
(x − x̂)2d, 910

by noting the first order condition that x̂/τ 2
= S − Ã′(̂x). The constant d is defined to be

d =
1
τ 2

q
−

1
τ 2 ,

and d > 0 if we choose τ 2
q < τ 2. Hence

E X
{w̃(X, y)a} ≤ E X

[
exp

{
ad
2
(X − x̂)2

}]
, (4.14)
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where again the expectation is with respect to q(x | y) = ϕ(x | x̂, τ 2
q ). As a > 0, clearly the above ex-

pectation exists if d ≤ 0 which would imply choosing τ 2
q ≥ τ

2. To obtain a precise condition we note
that915

(X − x̂)2

τ 2
q

∼ χ2
1 .

Considering the moment generating function of the χ2-distribution we know that the expectation (4.14)
exists provided

adτ 2
q = a

(
1−

τ 2
q

τ 2

)
< 1, i.e. τ 2

q >
(a − 1)

a
τ 2. (4.15)

If this inequality holds, the moment generating function of the χ2-distribution exists and we have

E X
[

exp
{

ad
2
(X − x̂)2

}]
=

(
1− adτ 2

q

)−1/2
.

Finally we obtain920

E X
{w̃(X, y)a} ≤

{
1− a

(
1−

τ 2
q

τ 2

)}−1/2

=

{
aτ 2

q − (a − 1)τ 2

τ 2

}−1/2

. (4.16)

as required. �

Note that by the upper bound in Proposition 5 still depends on parameters via the variance term τ . How-
ever, since the dependence is continuous we can find an upper bound over any compact set. Thus, we have
the simple corollary.

COROLLARY 2. Under the conditions of Proposition 5 there exists a constant K1 <∞ such that925

sup
θ∈B(θ)

E X
{w̃(X, y, θ)a} ≤ K1

independent of y.

We can summarize the results so far in the following theorem.

THEOREM 5. Consider the random effects model (4.2) and assume we have an importance sampling
estimator with proposal distribution

q(x | y) = ϕ(x; x̂, τ 2
q )

and proposal variance τ 2
q >

(a−1)
a τ 2. Assume additionally that either930

i) supx Ã′(x) <∞ or
ii) EY (Y a) <∞ and supθ∈B(θ̄) Ã′(0) <∞.

Then

EY

[
sup
θ∈B(θ)

E X {w(Y, X, θ)a
}]
<∞.

Proof. We have

EY

[
sup
θ∈B(θ)

E X {w(Y, X, θ)a
}]
= EY

[
sup
θ∈B(θ)

E X {w̃(X, Y, θ)a}
E X {w̃(X, Y, θ)}a

]
935
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≤ EY

[
sup
θ∈B(θ)

K1

E X {w̃(X, Y, θ)}a

]
<∞.

where the first inequality is by Corollary 2 and the second by Corollary 1. �

For the logistic model of Section 7, Ã′(x) is bounded above by a constant. Indeed

Ã′(x) =
J∑

j=1

A′(cT
jβ + x) =

J∑
j=1

ecT
j β+x

1+ ecT
j β+x

.

Hence, we know (see Remark 4) that

EY

[
sup
θ∈B(θ)

E X |Y {w(X, Y )a
}]
<∞

for all a if we take, for example, τ 2
q = τ

2. We note, however, that the proposal may not be particularly 940

efficient as the proposal variance would ideally be made to be proportional to 1/J , where J represents
the number of observations associated with each latent variate. Hence, taking τ 2

q = τ
2, for example, may

be much too large as a choice for τ 2
q . This naturally leads to consideration of the t-distribution which has

heavier tails, see for example (Owen, 2013, Chapter 9) and so controls the numerator term. We consider
the t-distribution proposal centred at the mode, with scaling τ 2

q , so that q(x | y) = tν(x | x̂, τ 2
q ). For the 945

t-proposal, we have

q̃(x; y) =
{

1+
(x − x̂)2

ντ 2
q

}−(ν+1)/2

, q (̂x | y) =
√
νπ 0 (ν/2) τq

0 {(ν + 1)/2}
. (4.17)

We proceed in the same manner as in the Gaussian case. First we compute the bound from Lemma 10 for
the t-distribution. Assume the proposal is a t-distribution centred at the mode q(x | y, θ) = tν(x | x̂, τ 2

q ),
then

C =
τ

τq

√
2
ν

0
(
ν+1

2

)
0
(
ν
2

)
and thus 950

1
E X {w̃(X, y)}

≤
τq

τ

√
ν

2
0
(
ν
2

)
0
(
ν+1

2

) (b + 1).

PROPOSITION 6. For the target h(x; y) of (4.11) with q(x | y, θ) = tν(x | x̂, τ 2
q ) specified above we

shall assume that the function x 7→ A(x) is a monotonically non-decreasing convex function. Then,

E X |Y {w̃(X, Y )a
}
≤ K a

2 ,

where

K2 =

{
τ 2

τ 2
q

(ν + 1)
ν

} (ν+1)
2

exp

{
ν

2

(
τ 2

q

τ 2 − 1−
1
ν

)}
,

for τ 2
q <

(ν+1)
ν τ 2 and K2 = 1 for τ 2

q ≥
(ν+1)
ν τ 2.

Unlike the Gaussian proposal above, the t-distributed proposal does not have any restriction on how 955

small the variance τ 2
q can be. This might be chosen, for example, according to the second derivative of

log h(x; y) at 0 so that τ−2
q = τ−2

+ Ã′′(0). This would reflect the influence of a large number of repeated
observations, J .
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Proof of Proposition 6. Recall that x 7→ A(x) is convex and thus always dominates its chord

Ã(x) ≥ Ã(̂x)+ Ã′(̂x)(x − x̂)

for any values x, x̂ . For the modified log weight this yields960

log w̃(x, y) = log h(x; y)− log h(̂x; y)− log q̃(x; y)

= x S − Ã(x)−
1
2

x2

τ 2

− x̂ S + Ã(̂x)+
1
2

x̂2

τ 2 +
(ν + 1)

2
log

{
1+

(x − x̂)2

ντ 2
q

}
≤

1
2

x̂2

τ 2 + {S − Ã′(̂x)}(x − x̂)−
1
2

x2

τ 2 +
(ν + 1)

2
log

{
1+

(x − x̂)2

ντ 2
q

}
.

We recall that x̂/τ 2
= S − Ã′(̂x). Hence965

log w̃(x, y) ≤ −
(x − x̂)2

2τ 2 +
(ν + 1)

2
log

{
1+

(x − x̂)2

ντ 2
q

}
.

Writing x̃ = (x − x̂)/τq we obtain

log w̃(x, y) ≤ −
1
2

τ 2
q

τ 2 x̃2
+
(ν + 1)

2
log

(
1+

x̃2

ν

)
.

The resulting symmetric function can be verified to be maximized at x̃2
= (ν + 1)τ 2/τ 2

q − ν, provided
this expression is positive, otherwise the only maximising root is at x̃ = 0 and so log w̃(x, y) ≤ 0. If the
expression is positive we obtain an upper bound970

log w̃(x, y) ≤ −
1
2

{
(ν + 1)− ν

τ 2
q

τ 2

}
+
(ν + 1)

2
log

{
(ν + 1)
ν

τ 2

τ 2
q

}
.

COROLLARY 3. Under the conditions of Proposition 6 there exists a constant K3 <∞ such that

sup
θ∈B(θ)

E X
{w̃(X, y)a} ≤ K3

independent of y.

Proof. The constant in Proposition 6 depends on θ only through τ . Moreover, the upper bound in975

Proposition 6 is continuous in τ and thus can be bounded over the compact set B(θ). �

We can summarize the results regarding the t-distribution in the following theorem.

THEOREM 6. Consider the random effects model (4.2) and assume we have an importance sampling
estimator with proposal distribution

q(x | y) = tν(x | x̂, τ 2
q )

with τ 2
q > 0. Assume additionally that either980

i) supx Ã′(x) <∞ or
ii) E(Y a) <∞ and supθ∈B(θ̄) Ã′(0) <∞.



Supplementary Material to Large Sample Asymptotics of the Pseudo-Marginal Method 43

Then

EY

[
sup
θ∈B(θ)

E X |Y {w(Y, X, θ)a
}]
<∞.

Proof. We can bound

EY

[
sup
θ∈B(θ)

E X |Y {w(Y, X, θ)a
}]
= EY

[
sup
θ∈B(θ)

E X |Y {w̃(X, Y, θ)a}
E X |Y {w̃(X, Y, θ)}a

]
985

≤ EY

[
sup
θ∈B(θ)

K3

E X |Y {w̃(X, Y, θ)}a

]
<∞.

where the first inequality is by Corollary 3 and the second by Corollary 1. �

Theorem 5 and Theorem 6 provide simple and verifiable conditions for Assumption 4 to hold in the
case of generalized linear mixed models when using a Gaussian proposal or a t-distribution. We have
established these conditions by formulating assumptions on the models and the proposal. The assumptions
that are required for the model are fulfilled in the Binomial and Poisson cases as pointed out in Remark 4.
Gaussian proposals require that the variance is large enough, namely

τ 2
q >

1+1
2+1

τ 2,

where 0 < 1 < 1 corresponds to the quantity in Assumption 4. When one proposes from a t-distribution
instead, no such restriction is required.

S4. FURTHER SIMULATION STUDIES 990

S4·1. Toy example

We consider first a simple Gaussian latent variable model where

X t ∼ N (θ, 1), Yt | X t = x ∼ N (x, 1).

Here X t , (t = 1, . . . , T ) are assumed to be independent. In this case, the likelihood associated to T ob-
servations can be computed exactly as p(y1:T | θ) =

∏T
t=1 ϕ(yt ; θ, 2). This makes it an easy example to 995

examine Assumption 1. The maximum likelihood estimator and Fisher information are given by

θ̂ωT =
1
T

T∑
t=1

Yt , IT (θ) = IT =
T
2
.

If we assign a zero mean Gaussian prior to θ of variance σ 2
0 then the posterior is also normal with mean

µpost and variance σ 2
post given by

µpost =

(
1
σ 2

0
+

T
2

)−1(∑T
t=1 Yt

2

)
, σ 2

post =

(
1
σ 2

0
+

T
2

)−1

. 1000

Assume the data are arising from the model with true parameter value θ̄ . It follows readily from Pinsker’s
inequality that the Bernstein-von Mises theorem holds for 6 = 2 as we have as T →∞∫ ∣∣∣πωT (θ)− ϕ (θ; θ̂ωT , I−1

T

)∣∣∣ dθ =
∫ ∣∣∣∣ϕ (θ;µpost, σ

2
post

)
− ϕ

(
θ, θ̂ωT ,

2
T

)∣∣∣∣ dθ
PY
−→ 0.
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Hence this model fulfils Assumption 1. To estimate the likelihood we simulate data from the model with
θ̄ = 0.5 and use σ 2

0 = 1010. The likelihood is estimated using importance sampling1005

p̂(y1:T | θ,U ) =
T∏

t=1

1
N

N∑
i=1

ϕ(yt −Ut,i ; θ, 1), Ut,i ∼ N (0, 1).

In order to prove that Assumption 3 is fulfilled we show the stronger Assumption 4, i.e. for some 1 > 0

E

[
sup
θ∈B(θ̄)

E
{
w(y,U, θ)2+1

}]
= E

[
sup
θ∈B(θ̄)

E

{
ϕ(y −U ; θ, 1)2+1

ϕ(y; θ, 2)2+1

}]
<∞

In a first step we compute for a > 0

E
{
ϕ(y −U ; θ, 1)a

ϕ(y; θ, 2)a

}
=

(
2a−1

π

)1/2 ∫
∞

−∞

exp

(
−

a(y − x − θ)2

2
+

a(y − θ)2

4
−

x2

2

)
dx

=

(
2a−1

π

)1/2 ∫
∞

−∞

exp

(
−

2a(y − x − θ)2 − a(y − θ)2 + 2x2

4

)
dx .1010

Completing the square yields

2a(y − x − θ)2 − a(y − θ)2 + 2x2

= 2(a + 1)
(

x −
a

(a + 1)
(y − θ)

)2

−
a (a − 1)

a + 1
(y − θ)2

and

E
{
ϕ(y −U ; θ, 1)a

ϕ(y; θ, 2)a

}
=

(
2a

a + 1

)1/2

exp
{

a (a − 1)
4(a + 1)

(y − θ)2
}
.1015

We now consider

sup
θ∈B(θ̄)

E
{
w(y,U, θ)a

}
=

(
2a

a + 1

)1/2

exp

{
a (a − 1)
4(a + 1)

sup
θ∈B(θ̄)

{(y − θ)2}

}
.

Now let us write

(y − θ)2 = (y − θ̄ + θ̄ − θ)2

= (y − θ̄ )2 + 2(y − θ̄ )(θ̄ − θ)+ (θ̄ − θ)2

and consider θ ∈ B(θ) corresponding to
∣∣θ − θ ∣∣ ≤ ε, where ε > 0. It is clear then that (y − θ)2 is opti-1020

mised over B(θ) at either θ = θ + ε or θ = θ + ε. Let us denote yD = y − θ and d = θ − θ for simplicity
so that

(y − θ)2 = y2
D + 2yDd + d2,

Then we consider an upper bound on this which is quadratic in yD as

(1+ α)y2
D + (1+ ε

2),

where we need to determine α to achieve bounding for all values |d| ≤ ε. By symmetry of the left-hand
side, we need only consider the supremum case d = ε so that1025

(1+ α)y2
D + (1+ ε

2) ≥ y2
D + 2yDε + ε

2,
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in which case, examining the roots of the resulting quadratic in yD , it is required that 4ε2
− 4α ≤ 0, so

α ≥ ε2. Taking α = ε2 and using the bounding quadratic expression we obtain,

sup
θ∈B(θ)

E[w(y,U, θ)a] =
(

2a

a + 1

) 1
2

exp

{
a(a − 1)
4(a + 1)

sup
θ∈B(θ)

{(y − θ)2}

}

≤

(
2a

a + 1

) 1
2

exp
{

a(a − 1)
4(a + 1)

(y − θ)2(1+ ε2)+
a(a − 1)
4(a + 1)

(1+ ε2)

}
= g(y; a). 1030

So finally it is required that

EY {g(y; a)} =
∫
∞

−∞

g(y; a)ϕ(y; θ, 2)dy <∞,

for a = 2+1 for some 1 > 0. The above integral is finite when

a(a − 1)
(a + 1)

(1+ ε2) < 1.

Hence with a = 1+ 2,

ε2 <
(3+1)

(2+1)(1+1)
− 1,

with the right-hand side always positive provided 1 <
√

2− 1.
We apply the pseudo-marginal method to this model to demonstrate how our result can approximate its 1035

characteristics. For the Markov chain, we use a random walk proposal with variance equal to the inverse
Fisher information I−1

T scaled by ` = 2. For each T , we run a pseudo-marginal chain for various N to
sample the posterior for 250000 iterations as well as the limit Markov chain of kernel P̃`,σ . In Table S4·1
we summarize the simulations results. As expected, we find that both the average acceptance probability
and the integrated autocorrelation time for f (θ) = θ of the pseudo-marginal algorithm converge to those 1040

of the limiting Markov chain as T increases.

S4·2. Stochastic Lotka-Volterra Model

Assumption 3 is difficult to verify in state space models. To illustrate the applicability of our results
beyond latent variable models we investigate here a stochastic kinetic Lotka-Volterra model arising in
systems biology. Such models are used to describe interacting species in a predator and prey setting. In 1045

particular we consider the model with transition equations given by

P
(
X1,t+h − X1,t = 1, X2,t+h − X2,t = 0 | X1,t = x1,t , X2,t = x2,t

)
= β1x1,t + o(h)

P
(
X1,t+h − X1,t = −1, X2,t+h − X2,t = 1 | X1,t = x1,t , X2,t = x2,t

)
= β2x1,t x2,t + o(h)

P
(
X1,t+h − X1,t = 0, X2,t+h − X2,t = −1 | X1,t = x1,t , X2,t = x2,t

)
= β3x2,t + o(h),

where X1,t and X2,t denotes the number of preys and predators at time t ∈ [0, T ]. This model has 1050

been previously investigated, for example in (Andrieu et al., 2009) and (Wilkinson, 2012). We assume
independent gamma priors for the kinetic rate parameter vector β = (β1, β2, β3) with

β1 ∼ 0(5, 5), β2 ∼ 0(1·5, 10), β3 ∼ 0(3·5, 5).

In our simulations we assume we are only able to observe predator and prey X t = (X1,t , X2,t ) at discrete
equidistant time points with independent measurement error Yi,t = X i,t +Wi,t , i = 1, 2, t = 0, . . . , 50
where Wi,t ∼ N (0, 102). The artificial data have been generated using the Gillespie algorithm (Gillespie, 1055

1977) for the rate constants β = (1, 0·005, 0·6).
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Table 1. For T data and N particles: standard deviation σ̂ of the log-likelihood
estimator at θ̄ , integrated autocorrelation time τ̂ and average acceptance proba-

bility p̂acc for pseudo-marginal kernel with ` = 2 and limiting kernel P̃`=2,σ̂ .

Data T Particles N σ̂ ÎAT p̂racc ÎAT
(

P̃`=2,σ=σ̂

)
p̂racc

(
P̃`=2,σ=σ̂

)
T = 20 6 1·70 17·55 18·69% 31·25 15·32%

8 1·44 12·34 23·14% 17·62 20·27%
10 1·24 10·76 26·34% 12·44 24·25%
12 1·12 8·98 28·78% 10·02 27·19%

T = 30 8 1·83 27·70 15·41% 46·57 13·17%
11 1·47 16·32 20·24% 18·64 19·61%
14 1·30 12·04 24·03% 12·74 23·29%
17 1·16 10·85 26·68% 9·91 26·09%

T = 50 20 1·85 30·46 13·94% 41·53 13·10%
30 1·48 18·59 19·58% 17·53 19·51%
40 1·29 13·30 23·59% 11·63 23·34%
50 1·16 10·51 26·86% 9·91 26·09%

T = 100 20 1·86 34·64 13·01% 41·04 12·81%
30 1·51 17·98 19·15% 18·73 18·93%
40 1·32 14·56 23·15% 13·59 22·99%
50 1·16 10·51 26·33% 9·91 26·09%

T = 200 80 1·83 38·35 13·11% 46·57 13·17%
120 1·52 20·65 18·90% 20·42 18·58%
160 1·30 13·87 22·94% 12·74 23·29%
200 1·17 11·15 26·07% 9·73 26·05%

In this context, it is difficult to develop standard MCMC algorithms to sample the posterior distribution
while the pseudo-marginal algorithm can be easily applied as an unbiased estimate of the likelihood can be
computed using a bootstrap particle filter; see, e.g., (Andrieu et al., 2009) and (Wilkinson, 2012, Chapter
10). We use a multivariate Gaussian random walk proposal with scaling factor ` = 2·17 and covariance1060

matrix close to the posterior covariance, which we estimated in a short preliminary run. This can efficiently
implemented in R (R Core Team, 2017) using the package smfsb (Wilkinson, 2012) and the example code
which can be found on the author’s blog.

The algorithm is then run for 250000 iterations. We collect acceptance rate and computing time
CT(N ) = IAT(N ) · N for a range of particles N , see Table S4·2. In practice we do not choose σ

(
θ̄
)
,1065

but the number of particles, N , which is also displayed in Table S4·2. For comparison we also give an
estimate of σ

(
θ̄
)

for given N .
The computing time is optimized at N = 225 for all rates, β1, β2 and β3. We estimate σ

(
θ̄
)

to be 1·44,
slightly above the results of Table 1 suggesting σ = 1·24. The corresponding acceptance rate of 18·57%
is in accordance with the one suggested by our theory, which for parameter dimension d = 3 yields an1070

asymptotically optimal rate of around 19·30% (` = 2·17, σ = 1·24). We conjecture that the deviation
from the results obtained in the limiting case are due to the fact that the posterior is not very concentrated
around θ̄ .

Sherlock et al. (2015) carry out Bayesian inference for a 5-dimensional stochastic Lotka-Volterra model
using the pseudo-marginal algorithm based on a data set with T = 50 observations. The authors optimize1075

over a grid of values for both σ and `. Experimentally, it was found that the optimal standard deviation was
σ ≈ 1·45 and the optimal tuning for the random walk achieved at ` = 2·048 with an associated optimal
jumping rate of 15·39%. This is slightly above our guidelines with the values σ̂opt = 1·30, ˆ̀opt = 2·17
and pracc(σ̂opt, ˆ̀opt) = 17·35% obtained in Table 1.
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Table 2. Comparison of the computing time for different num-
bers of particles in the stochastic Lotka-Volterra model.

Particles N Acceptance Rate CT(β1) CT(β2) CT(β3) σ̂ (θ̄ )
100 8·92% 7375 9035 7564 2·38
125 11·17% 6668 6717 6580 2·10
150 13·44% 5805 5903 6208 1·84
175 15·62% 5688 6137 6101 1·68
200 17·03% 5564 5632 5744 1·55
225 18·57% 5178 5452 5122 1·44
250 19·54% 6107 6958 5831 1·36
275 20·82% 5473 6087 5248 1·30
300 21·47% 6436 6340 5959 1·22
325 22·41% 5771 6586 6178 1·19
350 23·20% 6406 6234 6393 1·13

Fig. 2. Histogram of marginal posterior p(βi | y1:T ), i =
1, 2, 3 on the diagonal with Gaussian approximation (line)
using sample mean and variance. In addition, we show den-
sity estimates of the projections to the plane. The ellipses
indicate the contour lines of a Gaussian with sample mean
and sample covariance matrix. It is clear from the plots that

the posterior is very close to a Gaussian.
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