
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 991–1016

DUAL SPACE PRECONDITIONING FOR GRADIENT DESCENT∗
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Abstract. The conditions of relative smoothness and relative strong convexity were recently
introduced for the analysis of Bregman gradient methods for convex optimization. We introduce
a generalized left-preconditioning method for gradient descent and show that its convergence on
an essentially smooth convex objective function can be guaranteed via an application of relative
smoothness in the dual space. Our relative smoothness assumption is between the designed precon-
ditioner and the convex conjugate of the objective, and it generalizes the typical Lipschitz gradient
assumption. Under dual relative strong convexity, we obtain linear convergence with a generalized
condition number that is invariant under horizontal translations, distinguishing it from Bregman gra-
dient methods. Thus, in principle our method is capable of improving the conditioning of gradient
descent on problems with a non-Lipschitz gradient or nonstrongly convex structure. We demonstrate
our method on p-norm regression and exponential penalty function minimization.
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1. Introduction.

1.1. Setting and method. We study the minimization of a proper, closed, and
essentially smooth convex function f : Rd → R ∪ {∞},

(P) min
x∈Rd

f(x).

For unconstrained f , i.e., dom f = {x ∈ Rd : f(x) < ∞} = Rd, essential smoothness
is simply differentiability. For constrained f , essential smoothness is the assumption
that f is differentiable on int(dom f) 6= ∅ and that the norm of the gradient grows
without bound, ‖∇f(x)‖ → ∞, as x approaches the boundary of the domain. Thus, a
global minimizer xmin of f , if it exists, is in int(dom f). The method that we introduce
(Algorithm 1.1) is a nonlinear generalization of linear left-preconditioning for gradient
descent (see, e.g., [15, sect. 9.4]), and our analysis relies on recent generalizations of
the typical Lipschitz gradient assumption [7]. For the sake of exposition, we will
assume in the introduction that f is twice continuously differentiable on int(dom f),
but this is not a requirement of our method.
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Algorithm 1.1 Dual preconditioned gradient descent.

Given an essentially smooth convex f : Rd → R ∪ {∞}, a Legendre convex k : Rd →
R∪{∞} with ∇f(int(dom f)) ⊆ int(dom k) and 0 = arg minx∗ k(x∗), x0 ∈ int(dom f),
and L∗ > 0. For all i ≥ 0,

xi+1 = xi −
1

L∗
∇k(∇f(xi)).

In the analysis of first-order methods, it is standard to assume that the derivatives
of f at some order are globally bounded by constants. For example, consider the
gradient descent method, whose iterates satisfy

(1.1) xi+1 = arg min
x∈dom f

{
〈∇f(xi), x〉+ L

2 ‖x− xi‖
2
}
,

where L > 0 and x0 ∈ int(dom f). A classical analysis shows that the iterates of
gradient descent converge linearly in i, i.e., f(xi)− f(xmin) = O(λi) for λ = 1− µ/L,
when f is assumed to be µ > 0 strongly convex and ∇f is assumed to be L-Lipschitz
continuous (typically called “smoothness”). Taken together for twice continuously
differentiable f , these conditions are equivalent to the conditions that the eigenvalues
of the Hessian matrix of second-order partial derivatives ∇2f(x) are everywhere lower
bounded by µ > 0 (strong convexity) and upper bounded by L > 0 (smoothness),

(1.2) µI � ∇2f(x) � LI for all x ∈ int(dom f).

Analyses of first-order methods using only nonconstant bounds on the derivatives
of f have recently been discovered [11, 7, 45, 42, 31]. In particular, [7] studied the fol-
lowing generalized gradient method that takes a designed, essentially smooth, strictly
convex reference function h : Rd → R ∪ {∞} with int(dom f) ⊆ int(domh). Given
x0 ∈ int(dom f), this method’s iterates satisfy

(1.3) xi+1 = arg min
x∈dom f

{〈∇f(xi), x〉+ LDh(x, xi)} ,

where L > 0, 〈·, ·〉 is the Euclidean inner product, and Dh(x, y) = h(x) − h(y) −
〈∇h(y), x− y〉 for x, y ∈ int(domh). (1.3) is due to [34] and falls in a family of so-
called Bregman gradient methods. A standard analysis of (1.3) (see, e.g., [8]) makes
the “absolute” assumptions that f is Lipschitz continuous and that h is strongly
convex. In contrast, consider the following “relative” conditions between f and h, for
µ ≥ 0 and L > 0

(1.4) µ∇2h(x) � ∇2f(x) � L∇2h(x) for all x ∈ int(dom f).

For twice continuously differentiable f , Bauschke, Bolte, and Teboulle [7] first showed
that (1.4) with µ = 0 is a sufficient assumption to guarantee the sublinear convergence
of f(xi)− f(xmin) in (1.3). Lu, Freund, and Nesterov [31] extended this analysis and
showed that (1.4) with µ > 0 is sufficient for the linear convergence of f(xi)−f(xmin).
Conditions (1.4) are relative in the sense that it is possible for (1.4) to hold for f and
h that are both nonsmooth or nonstrongly convex. For example, [7] studies a Poisson
inverse objective whose derivatives of all orders are unbounded as x → 0. They
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design an appropriate h, whose Hessian is also unbounded at 0, but which satisfies
(1.4). Analyses of first-order methods using nonconstant bounds on the derivatives of
f have been extended to nonconvex f [12, 23] continuous convex optimization [30],
composite least-squares problems [24], symmetric nonnegative matrix factorization
[23], and the Sinkhorn algorithm [33]. Notably, relative smoothness conditions have
also been used to justify fast implementations of third-order tensor methods [36].

The method that we introduce (Algorithm 1.1) exploits an application of these
relative conditions in the dual space through an essentially smooth, strictly convex
dual reference function k : Rd → R ∪ {∞} with ∇f(int(dom f)) ⊆ int(dom k) and
0 = arg minx∗ k(x∗). The method is a generalization of left-preconditioned gradient
descent, which we discuss in more detail in section 1.2. In section 3 we consider the
conditions under which we can provide convergence rates for our method. For twice
continuously differentiable f the sufficient conditions that we study are the existence
of µ∗ ≥ 0, L∗ > 0 such that

(1.5) µ∗[∇2k(∇f(x))]−1 � ∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ int(dom f).

When µ∗ = 0, we show that k(∇f(xi))− k(0) converges sublinearly with rate O(i−1)
(and thus xi → xmin) along the iterates of Algorithm 1.1. When f is strictly convex
and µ∗ > 0, we show that f(xi) − f(xmin) converges linearly with rate λ∗ = 1 −
µ∗/L∗. As we show in section 3, assumptions (1.5) are relative smoothness and strong
convexity assumptions in the dual space, and they are distinct from (1.4). In section
4, we design dual reference functions for p-norm regression (see [17, 1] and references
therein) and exponential penalty functions (see, e.g., [21, 20]).

1.2. Preconditioning. In this paper, we introduce a generalization of linear
left-preconditioning, which is a fundamental technique used in algorithms for solv-
ing linear systems. In this subsection, we review linear preconditioning, following
closely Wathen’s short introduction [46], and give an interpretation of our method
and Bregman gradient methods as left- and right-preconditioning, respectively.

Consider the problem of minimizing a positive-definite quadratic, which is equiv-
alent to finding the solution x of a linear system of d equations with d unknowns:
Ax = b, where b ∈ Rd, and A ∈ Rd×d is symmetric and positive-definite. “Precon-
ditioning” refers to the idea of modifying this system in a way that preserves the
solution but improves the convergence of iterative methods. For example, given a
positive-definite P ∈ Rd×d, we may consider the following systems (known as left- or
right-preconditioning, respectively):

(1.6) P−1Ax = P−1b or AP−1y = b s.t. x = P−1y.

These have the same solution as the original, and if P−1A or AP−1 approximates
the identity, then iterative methods will converge faster. Indeed, for iterates of the
conjugate gradient (CG) method [26], 〈x− xi, A(x− xi)〉 converges linearly with a
rate that varies monotonically with the condition number κA = λAmax/λ

A
min, i.e., the

ratio of the largest to the small eigenvalue of A [25, Chap. 3.1]. A smaller condition

number is better, so if κA � κP
−1A, then left-preconditioned CG will converge faster.

Preconditioned methods typical solve a system with P at every iteration. Thus, P
should satisfy two criteria: κP

−1A should be small and Px = b should be easy to
solve. It may seem difficult to strike this balance but it is possible in many cases.
Wathen [46] gives an example due to Strang for Toeplitz matrices that reduces the
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994 C. J. MADDISON, D. PAULIN, Y. W. TEH, AND A. DOUCET

complexity of linear solves from O(d2) to O(d log d). More generally, preconditioners
are considered essential in solvers for very large, sparse, linear systems [10, 39].

Consider now the more general problem (P) for an unconstrained f . One can show
that the following are stationary conditions of Algorithm 1.1 or (1.3), respectively:

(1.7) ∇k(∇f(x)) = 0 or ∇f(∇h∗(y)) = 0 s.t. x = ∇h∗(y),

where∇h∗(y) = arg maxx∈Rd 〈x, y〉−h(x). Clearly, (1.6) specializes (1.7) for appropri-
ately chosen quadratic f, k, h. Thus, our method and the Bregman gradient method
(1.3) may be seen as a generalization of left- and right-preconditioning for gradient
descent, respectively. Moreover, for symmetric, positive-definite A,P ∈ Rd×d, the
existence of L, µ > 0 such that µP � A � LP guarantees κP

−1A ≤ L/µ and an error
bound on preconditioned CG. This is generalized by the primal (1.4) and dual (1.5)
relative conditions. However, in contrast to the linear case, the choice of left (dual) vs.
right (primal) in the nonlinear case is much more consequential and the two methods
are not equivalent in general (left- and right-preconditioning for CG are equivalent
[39, Chap. 9.1]). The class of f satisfying the dual conditions (1.5) for a fixed k is
closed under horizontal translations. This is not true in general for f satisfying the
primal conditions (1.4) for a fixed h. Thus, in general, µ 6= µ∗, L 6= L∗, and the global
information encoded in the dual reference function k is distinct from the information
encoded in the reference function h.

Nonlinear preconditioning is far less studied but has been considered in a number
of works. Nonlinear preconditioning methods have recently been shown to stabilize
Euler discretization schemes of stochastic differential equations [27, 40]. In fact, the
nonlinear preconditioning of [27] is the same as the one we consider for exponential
penalty functions. Finally, recent work [18, 22] developed nonlinear preconditioning
schemes for Newton’s method applied to problems arising from the discretization of
partial differential equations.

2. Convex analysis background.

2.1. Essential smoothness and convex conjugates. In this section we re-
view some basic facts of convex analysis that will be used throughout. Let h : Rd →
R∪{∞} be a proper closed convex function with domain domh = {x : Rd : h(x) <∞}.
To indicate domh = Rd, we simply define h : Rd → R as ranging only over the reals.
∂h(x) denotes the subdifferential of h at x ∈ Rd. For a proper convex function, being
closed is equivalent to being lower semi-continuous (lsc). Let ‖·‖ and 〈·, ·〉 indicate
the Euclidean norm and inner product, respectively, unless otherwise specified. The
convex conjugate h∗ : Rd → R∪{∞} of a proper closed convex function h is given by

(2.1) h∗(x∗) = sup{〈x, x∗〉 − h(x) : x ∈ domh}.

h∗ is also a proper closed convex function, and (h∗)∗ = h [38, Cor. 12.2.1]. For more
on h∗, we refer readers to [38, 15, 13].

In this work, we study the minimization of an essentially smooth convex function
f [38, Chap. 25], which can be thought of as an assumption of differentiability. For
constrained f , essential smoothness comes with additional structure that prevents f
from having sharp edges at the boundary of its domain. In some cases, we will consider
the additional assumption that f is strictly convex on the interior of its domain.

Definition 2.1 (essential smoothness and Legendre convexity). Let h : Rd →
R ∪ {∞} be a proper closed convex function. h is essentially smooth if

1. int(domh) is not empty,
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2. h is differentiable on int(domh), with limi→∞ ‖∇h(xi)‖ =∞ whenever xi ∈
int(domh) is a sequence converging to the boundary of int(domh).

h is Legendre convex if additionally
3. h is strictly convex on int(domh).

In this work, the assumption that h is essentially smooth carries with it the implied
assumption that h is proper and closed.

Essentially smooth convex functions can only be minimized in their interior.

Lemma 2.2. If h : Rd → R ∪ {∞} is an essentially smooth convex function that
is minimized at xmin ∈ domh, then xmin ∈ int(domh).

Proof. Suppose that xmin is a boundary point. Since int(domh) 6= ∅, by convexity
there exists a line segment connecting the boundary point xmin and any other interior
point a. However, by [38, Lem. 26.2], we know that the directional derivative converges
to −∞ as we tend toward the boundary point on this line segment, and hence xmin

could not be a minimum of h.

Legendre convex functions (essentially smooth, strictly convex functions) have
an even more convenient structure. One consequence of Legendre structure, which
will be used in our analysis to show that k is radially unbounded, is that achieving a
minimum is sufficient to imply that a Legendre convex function grows without bound.

Lemma 2.3. Let h : Rd → R ∪ {∞} be a Legendre convex function that is mini-
mized at 0 ∈ domh. Then h is radially unbounded, i.e., if xi ∈ Rd is a sequence such
that ‖xi‖ → ∞, then h(xi)→∞.

Proof. First, by Lemma 2.2 it follows that 0 ∈ int(domh). Because h is strictly
convex, 0 is the unique minimum of h. Thus, we can define the sphere S = {x ∈ Rd :
‖x‖ = r} for some r > 0 such that S ∈ int(domh). By continuity of h in the interior of
its domain, and the uniqueness of the minimum at zero, we have infx∈S h(x) > h(0).
Now, assume without loss of generality that ‖xi‖ > r. By strict convexity of Legendre
functions, property 3 of Definition 2.1, we have

(2.2) h(0) +
‖xi‖
r

(
h

(
rxi
‖xi‖

)
− h(0)

)
< h(0) + (h(xi)− h(0)) ,

and thus

(2.3) h(xi) > h(0) +
‖xi‖
r

(
inf
x∈S

h(x)− h(0)

)
.

Our result follows by taking i→∞.

A second key consequence of Legendre structure is that the gradient map ∇h is
invertible and given by (∇h)−1 = ∇h∗, which also gives a characterization of the
inverse of ∇2h(x). We summarize both of these properties in Lemma 2.4.

Lemma 2.4. Let h : Rd → R∪{∞} be Legendre convex. Then, h is Legendre con-
vex, the map ∇h : int(domh)→ int(domh∗) is one-to-one and onto, it is continuous
in both directions, and for all x ∈ int(domh),

(2.4) ∇h∗(∇h(x)) = x.

If h is C2 on an open set containing x and det∇2h(x) 6= 0, then

(2.5) ∇2h∗(∇h(x))∇2h(x) = ∇2h(x)∇2h∗(∇h(x)) = I.
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Proof. For the first part see Rockafellar [38, Thm. 26.5]. For (2.5), note that, by
the inverse function theorem, ∇h∗ is continuously differentiable at ∇h(x) under the
assumption that ∇h is continuously differentiable on an open set containing x. The
remainder follows by the chain rule applied to (2.4).

2.2. Relative smoothness and relative strong convexity. Analyses of first-
order methods for differentiable optimization typically require that ∇f is Lipschitz
continuous (smooth). Recent generalizations of smoothness (and strong convexity) [7,
31] can be used to guarantee convergence of first-order methods beyond the Lipschitz
∇f case. We will use these in our analysis of dual preconditioning. Following [7], we
define these relative conditions in terms of zeroth-order properties.

Definition 2.5 (relative smoothness and strong convexity). Let h, g : Rd →
R ∪ {∞} be proper closed convex functions, Q ⊆ domh ∩ dom g be a convex set, and
L, µ ≥ 0. Define dL, dµ : Rd → R ∪ {∞} for x ∈ Q by

dL(x) = Lg(x)− h(x), dµ(x) = h(x)− µg(x)(2.6)

and for x /∈ Q by dL(x) = dµ(x) = ∞. h is L-smooth relative to g on Q if dL is
convex. h is µ-strongly convex relative to g on Q if dµ is convex.

The special cases with g(x) = ‖x‖22 /2 are exactly the classical conditions of strong
convexity and smoothness. We now provide first- and second-order characterizations.

2.3. First-order characterizations for relative conditions. The first-order
characterizations of relative smoothness and strong convexity are given in terms of the
Bregman divergence [16, 6], which for essentially smooth convex h : Rd → R ∪ {∞}
and x ∈ domh, y ∈ int(domh) is given by h(x) − h(y) − 〈∇h(y), x− y〉. Unfortu-
nately, in our analysis, we will require smoothness relative to f∗, which can fail to be
differentiable when f is essentially smooth. Thus, we will make use of a generalization
of the Bregman divergence, which we define via the one-sided directional derivative
of h : Rd → R ∪ {−∞,∞} with respect to y ∈ Rd at a point x where h is finite:

(2.7) h′(x; y) = lim
ε↓0

h(x+ εy)− h(x)

ε
.

This may take values in {∞,−∞}. The advantage of one-sided direction derivatives
is that they always exist at x ∈ domh for proper convex h [38, Thm. 23.1]. We are
now prepared to define a novel generalization of the Bregman divergence.

Definition 2.6 (generalized Bregman divergences). Let h : Rd → R ∪ {−∞,∞}
be a function. Let x, y ∈ Rd be points at which h is finite and h′(y;x − y) exists.
Define the generalized Bregman divergence,

(2.8) Dh(x, y) = h(x)− h(y)− h′(y;x− y).

If h is proper, closed, and convex, then Dh(x, y) is defined for all x, y ∈ domh [38,
Thm. 23.1] and is finite for y ∈ dom ∂h = {x ∈ Rd : ∂h(x) 6= ∅} [38, Thm. 23.2].

Clearly, Dh(x, y) coincides with the standard Bregman divergence if h is differ-
entiable at y. The advantage of the generalization is that it allows us to define the
relative conditions in terms of first-order properties without the assumption of differ-
entiability.

Proposition 2.7 (first-order characterizations of relative conditions). Let h, g :
Rd → R∪{∞} be proper closed convex functions, Q ⊆ domh∩dom g be a convex set,
and L, µ ≥ 0. The following are equivalent:
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1. h is L-smooth relative to g on Q.
2. For all x, y ∈ Q, Dh(x, y) ≤ LDg(x, y).

The following are equivalent:
3. h is µ-strongly convex relative to g on Q.
4. For all x, y ∈ Q, µDg(x, y) ≤ Dh(x, y).

To prove these equivalences, we will use two lemmas, which extend the first-order
characterization of one-dimensional convexity to the nondifferentiable case.

Lemma 2.8 (a variant of the mean value theorem). Let r : [0, 1] → R be a
continuous function. Define r′+(z) = limε↓0(r(z + ε) − r(z))/ε. Assuming that r′+(z)
exists for z ∈ [0, 1), if s, t ∈ [0, 1] and s < t, then there is exists z ∈ [s, t) such that
r′+(z) ≥ (r(t)− r(s))/(t− s).

Proof. We can add a linear function to r without changing the difference between
the two sides on the inequality, so without loss of generality we may assume that
r(s) = r(t) = 0. Then, we want to prove that r′+(z) ≥ 0 for some z ∈ [s, t]. Since r
is continuous, it has a minimum in [s, t], so there is a z ∈ [s, t] such that r(u) ≥ r(z)
for every u ∈ [s, t]. If z = t, then r(z) = r(s), so we could instead take z = s. Thus

we may assume that z ∈ [s, t). Then r′+(z) = limu↓z, u∈(z,t)
r(u)−r(z)
u−z ≥ 0, because

r(u) ≥ r(z), proving the claim.

Lemma 2.9 (characterization of one-dimensional convexity). Let r : [0, 1]→ R be
a continuous function. r is convex on [0, 1] if and only if r′+(z) (defined in Lemma 2.8)
exists for all z ∈ (0, 1), and for all s, t ∈ (0, 1) such that s < t,

(2.9) r(t) ≥ r(s) + r′+(s)(t− s).

Proof. Suppose that r is not convex on [0, 1]. Then by continuity, it is also not
convex on (0, 1). After adding a linear function, we can arrange that 0 = r(s) =
r(t) < r(z) for some 0 < s < z < t < 1. Since r is continuous, r achieves its
maximum restricted to the interval [s, t], so we could choose z ∈ (s, t) such that
r(z) = maxu∈[s,t] r(u) > 0. Since r(z) > 0 and r is continuous, there is a u ∈ (s, z)
such that r(v) > 0 for every v ∈ [u, z]. By Lemma 2.8, there is a v ∈ [u, z) such

that r′+(v) ≥ r(z)−r(u)
z−u ≥ 0, and so 0 = r(t) ≥ r(v) + r′+(v)(t − v) ≥ r(v) > 0. This

contradiction proves that r is indeed convex.
Now suppose that r is convex and continuous on [0, 1]. By [38, Thm. 23.1] the

difference quotient r(z+ε)−r(z)
ε is a nondecreasing function of ε for ε > 0 and z ∈ [0, 1),

and limit r′+(z) exists. Using the fact that the difference quotient is nondecreasing in
ε it follows that r(t) ≥ r(s) + r′+(s)(t− s) for every s, t ∈ [0, 1], s < t.

We are now prepared to provide the proof of equivalence between the zeroth- and
first-order definitions of the relative conditions.

Proof of Proposition 2.7. We only show the equivalence of 1 and 2; the proof of
the equivalence of 3 and 4 is similar. First, suppose that 1 holds, i.e., dL is convex.
Let x, y ∈ Q. Then for xt = y+ t(x−y), we have (after dividing by t and rearranging)

h(x)− h(y)− h(xt)− h(y)

t
≤ Lg(x)− Lg(y)− Lg(xt)− g(y)

t
.(2.10)

Taking the limit t ↓ 0 gives us that Dh(x, y) ≤ LDg(x, y), with the existence of the
limits following from [38, Thm. 23.1].

For the other direction, suppose that Dh(x, y) ≤ LDg(x, y) for every x, y ∈ Q.
Let x, y ∈ Q, and xt = y+t(x−y). Then for any 0 < s < t < 1, it is easy to check that
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both h′(xt;xs−xt) and g′(xt;xs−xt) are finite. (If one of the directional derivatives is
nonfinite, then this would contradict the convexity or finiteness of these functions over
Q.) Thus Dh(xs, xt) and Dg(xs, xt) are finite and satisfy Dh(xs, xt) ≤ LDg(xs, xt).
Thus, it follows that for any 0 < s < t < 1,

(2.11) DdL(xs, xt) = LDg(xs, xt)−Dh(xs, xt) ≥ 0.

Let r(t) = dL(xt) for t ∈ [0, 1] be the restriction of dL on the line segment between
x and y, and then (2.11) implies that the condition (2.9) holds. r is a continuous
function by [38, Thm. 10.2]. Thus, by Lemma 2.9, r is a convex function on [0, 1].
This holds for all x, y ∈ Q, and thus dL is convex.

2.4. Second-order characterizations of relative conditions. Verifying rel-
ative smoothness or strong convexity is typically done via second-order conditions.
Just as the Lipschitz continuity of ∇h can be characterized by a bound on ∇2h, the
relative conditions can be characterized by the second derivatives of h and g [7, 31].
Proposition 2.10 allows ∇2h,∇2g to be undefined at a point, a slight generalization
of the standard result that is useful in our analysis when ∇2f is undefined at xmin.

Proposition 2.10 (second-order characterizations of relative conditions). Let
h, g : Rd → R ∪ {∞} be proper closed convex functions that are differentiable on the
interior of their domains. Let Q ⊆ int(dom g) ∩ int(domh) be an open convex set,
z ∈ Q, and L, µ ≥ 0. If h, g are C2 on Q \ {z}, then the following hold:

1. h is L-smooth relative to g on Q if and only if

∇2h(x) � L∇2g(x) ∀x ∈ Q \ {z}.

2. h is µ-strongly convex relative to g on Q if and only if

µ∇2g(x) � ∇2h(x) ∀x ∈ Q \ {z}.

Proof. Again, we prove the relative smoothness equivalence, and relative strong
convexity follows similarly. For relative smoothness, (⇒) follows from part one of
[35, Thm. 2.1.4] applied to dL at x ∈ Q. For (⇐), it is sufficient to prove the
convexity of the restriction of dL to an open line segment with endpoints x, y ∈ Q.
Let xt = y+t(x−y) and r(t) = dL(xt) for t ∈ (0, 1). Let a ∈ (0, 1) be such that xa = z,
if it exists, or some arbitrary a ∈ (0, 1), otherwise. dL is continuously differentiable at
all x ∈ Q by [38, Thm. 25.5]. Thus r′(t) = 〈∇dL(xt), x− y〉 is a continuous and finite
function of t ∈ (0, 1). If r′ is nondecreasing, then the argument of [38, Thm. 4.4] gives
us our result. Thus, with a slight abuse of notation,

r′(t) = r′(a) + r′(t)− r′(a) = r′(a) + lim
s→a

∫ t

s

〈
x− y,∇2dL(xt)(x− y)

〉
.

The limit is actually a one-sided limit, depending on t ≤ a or t > a. Either way,
∇2dL(xt) = L∇2g(xt)−∇2h(xt) is positive semidefinite, so r′ is nondecreasing.

3. Analysis of the dual preconditioned scheme.

3.1. Motivation and assumptions. Relative smoothness of f with respect to
a reference function h is the key assumption under which [7, 42, 31] analyzed the
convergence of Bregman gradient methods. We now build towards an analysis of the
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dual space preconditioned gradient method (Algorithm 1.1) using the assumption that
k is smooth relative to f∗. As shorthand to distinguish these two assumptions, we
use the terms primal relative smoothness to refer to the condition that f is L-smooth
relative to h and dual relative smoothness to refer to the condition that k is L∗-smooth
relative to f∗. To motivate our assumption, consider the following idealizations.

Consider the Bregman gradient method update (1.3), which can be rewritten as

(3.1) xi+1 = arg min
x∈dom f

{〈∇f(xi)− L∇h(xi), x〉+ Lh(x)} .

In this form, it is clear that if h = f and L = 1, then the iteration would converge
in a single step to the minimizer of h = f . This is an idealization, because a single
iteration would be as expensive to compute as the original problem. The spirit behind
primal relative smoothness is that the condition h = f can be relaxed to admit h for
which the update (3.1) is efficiently solvable and the iterates still converge.

Now, consider the case that f is Legendre convex with a minimum at xmin, and
let f∗c (x∗) = f∗(x∗) − 〈x∗, xmin〉 for x∗ ∈ Rd. Notice that ∇f∗c (∇f(x)) = x − xmin

by Lemma 2.4 and that Algorithm 1.1 with k = f∗c and Li = 1 would converge in a
single step to the minimizer xmin of f . Thus, in analogy to the relative smoothness
analysis of [7] in the primal space, the spirit behind our analysis under dual relative
smoothness is that the requirement k = f∗c can be relaxed while maintaining the
convergence of Algorithm 1.1. In particular, sufficient assumptions on k are that it is
minimized at 0 and smooth relative to f∗.

More precisely, our analysis of Algorithm 1.1 uses the following assumptions.

Assumption 3.1.
1. f : Rd → R ∪ {∞} is convex and essentially smooth.
2. k : Rd → R ∪ {∞} is Legendre convex and uniquely minimized at 0.
3. ∇f(int(dom f)) ⊆ int(dom k) and for all x, y ∈ int(dom f),

Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y).

As we show in the following sections, Assumption 3.1.3 is a necessary condition of
the relative smoothness of k with respect to f∗. Assumption 3.1.3 is the assumption
that requires the most effort to verify, since the convexity of L∗f∗−k will typically be
difficult to check. For this reason, we also provide second-order sufficient conditions
expressed (mostly) in terms of conditions on f and k.

3.2. Dual relative conditions for Legendre convex objectives. When f
is essentially smooth and strictly convex (Legendre), we are able to provide clean
characterizations of the dual relative conditions. In particular, Assumption 3.1.3 is
necessary and sufficient for the smoothness of k relative to f∗ on int(dom f∗). We
begin by linking Df and Df∗ in what is a well-known identity for Legendre convex f .

Lemma 3.2. If f : Rd → R ∪ {∞} is an essentially smooth convex function, then

(3.2) Df∗(∇f(y),∇f(x)) ≤ Df (x, y)

for all x, y ∈ int (dom f). If f is Legendre convex, then this is an equality.
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Proof. Note, by [38, Cor. 26.4.1], we have ∇f(int(dom f)) = dom ∂f∗. Thus,
Df∗(∇f(y),∇f(x)) is finite for any x, y ∈ int(dom f). Note x ∈ ∂f∗(∇f(x)). Now,

Df∗(∇f(y),∇f(x)) = f∗(∇f(y))− f∗(∇f(x))− (f∗)′(∇f(x);∇f(y)−∇f(x))

(a)

≤ f∗(∇f(y))− f∗(∇f(x))− 〈x,∇f(y)−∇f(x)〉
(b)
= −f(y) + 〈∇f(y), y〉+ f(x)− 〈∇f(x), x〉 − 〈x,∇f(y)−∇f(x)〉
= f(x)− f(y) + 〈∇f(y), y − x〉 = Df (x, y),

where (a) follows from [38, Thm. 23.2] amd (b) follows from [38, Thm. 26.4]. If
f is Legendre convex, then by Lemma 2.4, f∗ is Legendre, f∗ is differentiable on
int(dom f∗) = ∇f(int(dom f)), and (a) is an equality [38, Thm. 23.4].

We can now provide first-order characterizations of the dual relative conditions.

Proposition 3.3 (first-order characterization of dual relative conditions, Le-
gendre convex case). Let f, k : Rd → {R,∞} be Legendre convex functions. The
following are equivalent:

1. k is L∗-smooth relative to f∗ on int(dom f∗).
2. ∇f(int(dom f)) ⊆ int(dom k), and for all x, y ∈ int(dom f),

Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y).

The following are equivalent:
3. k is µ∗-strongly convex relative to f∗ on int(dom f∗).
4. ∇f(int(dom f)) ⊆ int(dom k), and for all x, y ∈ int(dom f),

µ∗Df (x, y) ≤ Dk(∇f(y),∇f(x)).

Proof. We prove the relative smoothness results, and the relative strong convexity
ones follow similarly. First, notice that ∇f(int(dom f)) = int(dom f∗) by Lemma 2.4.
For (1 ⇒ 2), by the definition of relative smoothness, we have int(dom f∗) ⊆ dom k,
and since this is an open set, we necessarily have int(dom f∗) ∈ int(dom k). By
Proposition 2.7 we have that for all x∗, y∗ ∈ int(dom f∗),

Dk(y∗, x∗) ≤ L∗Df∗(y
∗, x∗).(3.3)

By Lemmas 2.4 and 3.2, this implies

Dk(∇f(y),∇f(x)) ≤ L∗Df∗(∇f(y),∇f(x)) = L∗Df (x, y)(3.4)

for all x, y ∈ int(dom f). For (2⇒ 1), by Lemma 3.2, we have for all x, y ∈ int(dom f),

(3.5) Df (x, y) = Df∗(∇f(y),∇f(x)).

Using this, Proposition 2.7 implies that k is L∗-smooth relative to f∗ on int(dom f∗).

If f is Legendre convex, then the dual relative conditions have a natural second-
order characterization, which reveals the structure of the difference between them
and primal relative conditions. Again, typically it is easiest to prove dual relative
smoothness (or strong convexity) via these second-order conditions.
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Proposition 3.4 (second-order characterizations of dual relative conditions, Le-
gendre convex case). Let f : Rd → R ∪ {∞} be Legendre convex, minimized at xmin,
and C2 on int(dom f) \ {xmin} such that det∇2f(x) 6= 0 at x ∈ int(dom f) \ {xmin}.
Let k : Rd → R ∪ {∞} be Legendre convex, C2 on int (dom f∗) \ {0} such that
det∇2k(x∗) 6= 0 at x∗ ∈ int(dom f∗) \ {0}. Let L, µ ≥ 0.

1. k is L∗-smooth relative to f∗ on int(dom f∗) if and only if

∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ int(dom f) \ {xmin}.

2. k is µ∗-strongly convex relative to f∗ on int(dom f∗) if and only if

µ∗[∇2k(∇f(x))]−1 � ∇2f(x) ∀x ∈ int(dom f) \ {xmin}.

Remark 3.5. It is well-known that the primal and dual relative conditions are
equivalent in the case of ∇2h(x) = I = ∇2k(x∗) (see, e.g., [48, 41, 28]). In particular,
if f is µ-strongly convex and L-smooth on int(dom f), then its convex conjugate f∗

is (1/L)-strongly convex and (1/µ)-smooth on int(dom f∗). In fact, for twice contin-
uously differentiable f , the equivalence is a simple consequence of Propositions 2.10
and 3.4. However, this equivalence is not true in general.

Given a Legendre convex g : R→ R ∪ {∞} define the following sets of functions:

Fg = {Legendre convex f : f is smooth and strongly convex relative to g},(3.6)

F ∗g = {Legendre convex f : g is smooth and strongly convex relative to f∗}.(3.7)

Let k(x∗) = |x∗|q/q for x∗ ∈ R and 1 < q < 2. A simple argument by contradiction
shows that F ∗k * Fh for all twice continuously differentiable h : R → R, implying
that the primal and dual relative conditions are not equivalent in general. Consider

(3.8) fb(x) = |x− b|p/p

for p = q
q−1 and x ∈ R. First fb ∈ F∗k for all b, which follows from [k′′(f ′b(x))]−1 =

(p − 1)|x − b|p−2 = f ′′b (x) and Proposition 3.4. On the other hand, suppose there is
some twice continuously differentiable h : R → R such that fb ∈ Fh for all b. Then
there exists µ > 0 such that µh′′(b) ≤ f ′′b (b) = 0 for all b. This implies that h′′(x) ≡ 0
and thus h(x) ≡ 0. However, this leads to a contradiction, because smoothness is
violated: f ′′b (b+ ε) > 0 = Lh′′(x) for any L, ε > 0.

Proof of Proposition 3.4. We prove the relative smoothness result, and the rel-
ative strong convexity one follows similarly. By Lemma 2.4, if ∇f is continuously
differentiable for x ∈ int(dom f) \ {xmin}, then ∇f∗ is continuously differentiable for
x∗ ∈ int(dom f∗) \ {0} by the inverse function theorem. Thus, by Proposition 2.10
dual relative smoothness is equivalent to the following: for all x∗ ∈ int(dom f∗) \ {0},

∇2k(x∗) � L∗∇2f∗(x∗).(3.9)

By Lemma 2.4, (3.9) is equivalent to for all x ∈ int(dom f) \ {xmin},

∇2k(∇f(x)) � L∗[∇2f(x)]−1.(3.10)

Since A−1 � B−1 is equivalent to B � A for positive definite matrices, we are done.

A major difference between the primal and dual relative conditions is the fact
that dual relative conditions are invariant under horizontal translations of f . To see
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why, let k be L∗-smooth relative to f∗ on a convex set Q. Define g(x) = f(x− z) for
z ∈ Rd. Then, by [38, Thm. 12.3], g∗(x∗) = f∗(x∗) + 〈z, x∗〉. Bregman divergences
of functions that differ only in affine terms are identical (see [6] for the differentiable
case), so we have for all x∗, y∗ ∈ Q, Dk(x∗, y∗) ≤ L∗Df∗(x

∗, y∗) = L∗Dg∗(x
∗, y∗).

Thus k is L∗-smooth relative to g∗ on Q. Invariance under horizontal translation is
clearly easy to violate in the case of primal relative smoothness.

Even if h is allowed to translate with f , the primal and dual relative conditions
can lead to distinct conditioning. Given a positive definite A � 0, let

(3.11) f(x) = ‖Ax− b‖p /p, h(x) =
∥∥x−A−1b

∥∥p /p, k(x∗) = ‖x∗‖q /q

for 1/p + 1/q = 1 and p > 2. It can be shown that f satisfies both the dual (with
respect to k) and primal (with respect to h) relative conditions. Nonetheless, the
condition numbers are distinct. A simple calculation reveals that in this case

(3.12)
L

µ
= p2

(
σmax(A)

σmin(A)

)p
vs.

L∗

µ∗
= (p− 1)2

(
σmax(A)

σmin(A)

)4−q

,

where σmin and σmax are the smallest and largest singular values of A, respectively.
Thus, the primal condition number is larger than the dual number (since 4 − q =
3−(p−1)−1 < p when p > 2). Similarly, the example f(x) = ‖Ax−b‖44/4+‖Cx−d‖22/2
of [31, p. 339] can be shown to have better conditioning under the dual preconditioned
method than under the Bregman gradient method.

3.3. Dual relative conditions for essentially smooth objectives. We now
show that the smoothness of k relative to f∗ on dom f∗ is a sufficient condition for
Assumption 3.1.3. We also provide a sufficient, second-order condition.

Proposition 3.6. Let f, k : Rd → R ∪ {∞} be essentially smooth convex func-
tions. If k is L∗-smooth relative to f∗ on dom f∗, then ∇f(int(dom f)) ⊆ int(dom k)
and for all x, y ∈ int(dom f),

(3.13) Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y).

Proof. Note that by [38, Cor. 26.4.1], ∇f(int(dom f)) = dom ∂f∗ ⊆ dom f∗. We
have dom f∗ ⊆ dom k by the definition of relative smoothness. By Proposition 2.7
and Lemma 3.2, for every x, y ∈ int(dom f) we have

(3.14) Dk(∇f(y),∇f(x)) ≤ L∗Df∗(∇f(y),∇f(x)) ≤ L∗Df (x, y).

Now, we are going to show that ∇f(int(dom f)) ⊆ int(dom k). We argue by contra-
diction. Suppose there is a x∗ ∈ ∇f(int(dom f)) such that x∗ /∈ int(dom k). So x∗ has
to be in dom k \ int(dom k), i.e., on the boundary of int(dom k). Using the essential
smoothness of k, by [38, Lem. 26.2] it follows that for any y∗ ∈ int(dom k), we have

(3.15) k′(x∗ + λ(y∗ − x∗); y∗ − x∗) ↓ −∞ as λ ↓ 0.

We fix an arbitrary y∗ ∈ int(dom k) and define the function h : [0, 1] → R as h(λ) =
L∗f∗(x∗ + λ(y∗ − x∗)) − k(x∗ + λ(y∗ − x∗)). Then relative smoothness implies that
h is a finite, continuous convex function on [0, 1]. However, for such a function we
must have lim supλ↓0 h

′
+(λ) < ∞, since otherwise it could not be finite on [0, 1] by

Lemma 2.9. By combining this with (3.15), it follows that

f∗′(x∗ + λ(y∗ − x∗); y∗ − x∗)→∞ as λ ↓ 0.
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Let r : [0, 1]→ R be r(λ) = f∗(x∗+λ(y∗−x∗)), and then this implies that r′+(λ)→∞
as λ ↓ 0, and by (2.9) of Lemma 2.9, this contradicts the assumption that f∗ is finite in
dom f∗. Hence we must have x∗ ∈ int(dom k), and ∇f(int(dom f)) ⊆ int(dom k).

The next proposition gives a second-order sufficient condition for Assumption 3.1.3.

Proposition 3.7. Let f : Rd → R ∪ {∞} be essentially smooth, and C2 on
int(dom f). Let k : Rd → R ∪ {∞} be Legendre convex, and C2 on int(dom k). If
∇f(int(dom f)) ⊆ int(dom k), det∇2k(x∗) 6= 0 for all x∗ ∈ int(dom k), and

(3.16) ∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ int(dom f),

and then Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y) for every x, y ∈ int(dom f).

Proof. Let x, y ∈ int(dom f), and let W ⊆ Rd be a bounded open neighborhood
of the segment I = [∇f(x),∇f(y)] = {t∇f(x) + (1 − t)∇f(y) : 0 ≤ t ≤ 1} such
that cl(W ) ⊆ int(dom k). Let δ > 0. Let ε > 0, and let fε : Rd → R ∪ {∞},
fε(z) = f(z) + ε

√
1 + ‖z‖2. Then fε is a Legendre convex function, and dom(fε) =

dom(f). We have ∇fε(z) = ∇f(z) + ε(1 + ‖z‖2)−
1
2 z and ∇2fε(z) = ∇2f(z) + ε(1 +

‖z‖2)−
3
2 ((1 + ‖z‖2)Id − zT z) � 0 for every z ∈ int(dom f). So ‖∇fε(z)−∇f(z)‖ ≤ ε

and 0 � ∇2fε(z)−∇2f(z) � εId for every z ∈ int(dom f). Let Iε denote the segment
[∇fε(x),∇fε(y)] ⊆ Rd. Choose ε small enough so that the following hold:

1. the 2ε-neighborhood of Iε is in W (so dist(Iε,Rd \W ) ≥ 2ε).
2. εId � δ

2 [∇2k(w)]−1 for every w ∈W .

3. ∀w1, w2 ∈W s.t. ‖w1 − w2‖ ≤ ε, [∇2k(w1)]−1 � (1 + δ
2L∗ )[∇2k(w2)]−1 (uni-

form continuity of (∇2k)−1 on compact set cl(W ) by Heine–Cantor theorem).
We will show that (L∗+δ)f∗ε −k is convex when restricted to the segment Iε. Let w ∈ Iε
and z = (∇fε)−1(w) ∈ int(dom f). Then ∇fε(z) = w, and since ‖∇f(z) − w‖ ≤ ε,
we get ∇ f(z) ∈ W . We have ∇ 2((L∗ + δ)f∗ε − k)(w) = (L∗ + δ)[∇ 2fε(z)]

−1 −
∇ 2k(∇ fε(z)), and we would like to show that this is � 0. So we want to show
∇2fε(z) � (L∗ + δ)[∇2k(∇fε(z))]−1. This follows from ∇2fε(z) � ∇2f(z) + εId and
εId � δ

2 [∇2k(∇fε(z))]−1 and∇2f(z) � L∗[∇2k(∇f(z))]−1 � (L∗+ δ
2 )[∇2k(∇fε(z))]−1.

So for small enough ε’s (L∗ + δ)f∗ε − k is indeed convex when restricted to Iε. Then
Dk(∇fε(y),∇fε(x)) ≤ (L∗ + δ)Df∗ε

(∇fε(y),∇fε(x)) = (L∗ + δ)Dfε(x, y), using the
convexity of (L∗ + δ)f∗ε − k on Iε combined with the same limiting argument as in
(2.10), and Lemma 3.2. Taking ε ↓ 0 and then δ ↓ 0 we get Dk(∇f(y),∇f(x)) ≤
L∗Df (x, y).

3.4. Convergence rates for dual space preconditioned gradient descent.
In this section we show that Assumption 3.1 is sufficient to provide convergence rates
for Algorithm 1.1 on essentially smooth convex f . We find that k(∇f(xi))) − k(0)
converges with rate O(i−1). Under an additional dual relative strong convexity con-
dition, we find that f(xi) − f(xmin) converges with rate O((1 − µ∗/L∗)i). We begin
with the following descent lemma.

Lemma 3.8 (descent lemma). Let f, k : Rd → R ∪ {∞} satisfy Assumption 3.1.
If x0 ∈ int(dom f), then for all i > 0, the iterates xi of Algorithm 1.1 are such that
xi ∈ int(dom f) and for all x ∈ int(dom f),

(3.17) k(∇f(xi)) ≤ k(∇f(x))−Dk(∇f(x),∇f(xi−1))+L∗Df (xi−1, x)−L∗Df (xi, x).
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1004 C. J. MADDISON, D. PAULIN, Y. W. TEH, AND A. DOUCET

Proof. Let C = int(dom f). We proceed by induction. For i = 0 we have x0 ∈ C
by assumption. Now, for i > 0, assume the induction hypothesis for xi−1. Define

(3.18) xλ = xi−1 −
1

λ
∇k(∇f(xi−1))

for λ > 0. Because xi−1 ∈ int(dom f) 6= ∅, the set S = {λ ≥ L∗ : xλ ∈ C} is not
empty. Let x ∈ C. Let x∗ = ∇f(x), x∗i−1 = ∇f(xi−1), and x∗λ = ∇f(xλ) for λ ∈ S.
The following identities follow by our definition of xλ and some algebra.〈

∇k(x∗i−1), x∗ − x∗λ
〉

= λ 〈xi−1 − xλ, x∗ − x∗λ〉 ,(3.19)

〈xi−1 − xλ,∇f(x)−∇f(xλ)〉 = Df (xλ, x) +Df (xi−1, xλ)−Df (xi−1, x).(3.20)

Combining (3.19) and (3.20), we get

(3.21)
λDf (xi−1, xλ) +

〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
= λDf (xi−1, x)− λDf (xλ, x) +

〈
∇k(x∗i−1), x∗ − x∗i−1

〉
.

Putting everything together, we have

k(x∗λ) = k(x∗i−1) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
+Dk(x∗λ, x

∗
i−1)

(a)

≤ k(x∗i−1) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
+ L∗Df (xi−1, xλ)

(b)

≤ k(x∗i−1) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
+ λDf (xi−1, xλ)

(c)
= k(x∗i−1) +

〈
∇k(x∗i−1), x∗ − x∗i−1

〉
+ λDf (xi−1, x)− λDf (xλ, x)

(d)

≤ k(x∗)−Dk(x∗, x∗i−1) + λDf (xi−1, x)− λDf (xλ, x).(3.22)

(a) follows from L∗-smoothness, (b) from L∗ ≤ λ and the nonnegativity of the Breg-
man divergence, (c) from (3.21), and (d) by definition and simple algebra. Taking
x = xi−1 and recalling the definition of x∗i−1 and x∗λ reveals that

(3.23) k(∇f(xλ)) + λDf (xλ, xi−1) ≤ k(∇f(xi−1)).

Now, our goal is to show that xi = xL∗ ∈ int(dom f) by showing that L∗ ∈ S.
We proceed by contradiction, so suppose L∗ /∈ S. Then xL∗ ∈ Rd \ int(dom f). Hence
we can find Λ ≥ L∗ such that xΛ ∈ ∂(dom f). Now take a sequence λj → Λ such that
λj > Λ. By the above discussion for all j ≥ 0 we have k(∇f(xλj )) ≤ k(∇f(xi−1)). k
being minimized at 0 means it satisfied Lemma 2.3 and thus is radially unbounded.
This implies that ‖∇f(xλj )‖ ≤ c for some c > 0 and all j ≥ 0. But this contradicts the
requirement that ‖∇f(xλj )‖ → ∞ since xλj → xΛ ∈ ∂(dom f) from the assumption
of essential smoothness. This completes the proof that xi = xL∗ ∈ int(dom f). Since
L∗ ∈ S, (3.22) ensures that (3.17) holds.

We can now provide convergence rates for our method.

Theorem 3.9. Let f, k : Rd → R∪{∞} satisfy Assumption 3.1. If x0 ∈ int(dom f),
then for all i > 0 the iterates of Algorithm 1.1 satisfy

(3.24) k(∇f(xi))− k(0) ≤ L∗

i
(f(x0)− f(xmin)).
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In particular, ∇ f(xi) → 0. If additionally f is Legendre convex and there exists
µ∗ > 0 such that µ∗Df (x, y) ≤ Dk(∇f(y),∇f(x)) for all x, y ∈ int(dom f), then for
all i > 0 the iterates of Algorithm 1.1 satisfy

(3.25) f(xi)− f(xmin) ≤
(

1− µ∗

L∗

)i
(f(x0)− f(xmin)).

Proof of Theorem 3.9. Let C = int(dom f). We have xi ∈ C and k(∇f(xi)) ≤
k(∇f(xi−1)) by the descent lemma, Lemma 3.8. We also have xmin ∈ C by Lemma
2.2. Finally, (3.17) of Lemma 3.8 with x = xmin gives us

(3.26)
k(∇f(xi))− k(0) ≤ L∗(f(xi−1)− f(xi))−Dk(0,∇f(xi−1))

≤ L∗(f(xi−1)− f(xi)).

Putting this together, we get

(3.27)
i(k(∇f(xi))− k(0)) ≤

i∑
j=1

k(∇f(xi))− k(0)

≤ L∗(f(x0)− f(xi)).

Dividing by i gives our first result. This implies that k(∇ f(xi)) → k(0), which
implies that ∇f(xi) → 0 by continuity and the uniqueness of k’s minimum. Now,
assume that f is Legendre convex and there exists µ∗ > 0 such that µ∗Df (x, y) ≤
Dk(∇f(y),∇f(x)) for all x, y ∈ int(dom f). For all i > 0,

(3.28)
L∗(f(xi)− f(xmin))

(a)

≤ L∗(f(xi−1)− f(xmin))−Dk(0,∇f(xi−1))

(b)

≤ L∗(f(xi−1)− f(xmin))− µ∗(f(xi−1)− f(xmin)),

where (a) follows from (3.26) and the nonnegativity of k(x∗)− k(0). (b) follows from
dual relative strong convexity. This inequality implies our desired result.

Theorem 3.9 guarantees the convergence of the iterates of Algorithm 1.1 under the
assumption that dual relative smoothness holds globally for a fixed L∗. Unfortunately
it may be difficult to derive a tight bound on L∗ or small L∗ may be appropriate locally.
In this case, it may be useful to use a line search to choose L∗. Consider the following
generalization of the update rule of Algorithm 1.1,

(3.29) xi+1 = xi −
1

L∗i
∇k(∇f(xi)),

where L∗i > 0 is allowed to depend on the iteration. The next proposition shows that,
under suitable assumptions, (3.29) converges with rates analogous to Theorem 3.9.

Proposition 3.10 (adaptive step-sizes). Let f : Rd → R ∪ {∞} be a proper
closed convex function that is differentiable on int(dom f) 6= ∅ and minimized at
xmin. Let k : Rd → R ∪ {∞} be a proper closed convex function that is differentiable
on ∇f(int(dom f)). If x0 ∈ int(dom f) and for all i > 0 the iterates xi in (3.29)
satisfy

1. xi ∈ int(dom f),
2. k(∇f(xi)) ≤ k(∇f(xi−1)),
3. k(∇f(xi))− k(0) ≤ L∗i−1(f(xi−1)− f(xi)),

D
ow

nl
oa

de
d 

11
/0

3/
21

 to
 1

63
.1

.2
11

.2
4 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1006 C. J. MADDISON, D. PAULIN, Y. W. TEH, AND A. DOUCET

then we have

(3.30) k(∇f(xi))− k(0) ≤
max0≤j≤i−1 L

∗
j

i
(f(x0)− f(xmin)).

Remark 3.11. In practice, a possible choice of step-sizes is

(3.31) L∗i−1 = min{2r, r ∈ Z : 1, 2, and 3 of Proposition 3.10 are satisfied}.

If L∗ is the smallest real number such that f is dual L∗-smooth relative to k (see
Lemma 3.6 for an equivalent condition), then this scheme satisfies that L∗i−1 < 2L∗

for every i > 0 (hence we are making steps that are almost as large or larger as if we
would use the smallest possible fixed L∗, without knowing the value of L∗ in advance).
The search through the set in (3.31) for finding L∗i can be initialized at L∗i−1.

Proof of Proposition 3.10. The proof follows similar lines as in the previous case.
First, by summing up the inequalities from 3, we obtain that∑
1≤j≤i

[k(∇f(xj))−k(0)] ≤
∑

1≤j≤i

L∗i−1(f(xi−1)−f(xi)) ≤ (f(x0)−f(xmin)) max
0≤j≤i−1

L∗j ,

and using 2 it follows that
∑

1≤j≤i[k(∇f(xj)) − k(0)] ≥ i(k(∇f(xi)) − k(0)). The
result follows directly.

An important question that we do not address in this section is whether the sub-
linear convergence of k(∇f(xi)) − k(0) implies specific rates of convergence of other
quantities of interest. These might be, for example, ‖xi − xmin‖ or f(xi) − f(xmin).
Rates for these will likely depend on both f and k.

4. Applications.

4.1. Exponential penalty functions. Consider the following problem:

(LP) min
x∈Rd
{cTx : Ax ≤ b},

where c ∈ Rd, b ∈ Rn, and A ∈ Rn×d. Associate with this linear program the following
relaxation into an unconstrained problem: minx∈Rd fτ (x) for

fτ (x) = cTx+ τ

n∑
i=1

exp((Aix− bi)/τ),(4.1)

where τ > 0 and Ai is the ith row of A (a row vector). This approximation of (LP)
with exponential penalty functions was studied by several authors (see [44, 21, 37, 5])
and is directly useful in the machine learning literature for boosting (see, e.g., [32]).
Here we design a dual reference function for fτ under the following assumptions.

Assumption 4.1. Suppose that the following hold for problem (LP):
1. ‖Ai‖ = 1 for 1 ≤ i ≤ n.
2. A ∈ Rn×d is of full rank d ≤ n.
3. P = {x ∈ Rn : Ax ≤ b} is a polytope, which is contained in a Euclidean ball

of radius R > 0 and contains a Euclidean ball of radius r > 0.

The dual reference function will be designed so that it is smooth relative to f∗τ and
Algorithm 1.1, with appropriate step-size choices, converges with global guarantees.
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Define the dual reference function k : Rd → R,

(4.2) k(x∗) = ‖x∗‖ − log(‖x∗‖+ 1).

This behaves like a quadratic ‖x∗‖2/2 near its minimum x∗ = 0 and like ‖x∗‖, i.e.,
grows linearly, at infinity. It is also possible to verify that k is Legendre convex.
Furthermore, we have

(4.3) ∇k(x∗) =
x∗

‖x∗‖+ 1
, ∇2k(x∗) =

I

‖x∗‖+ 1
− x∗x∗T

(‖x∗‖+ 1)2‖x∗‖ .

Hence, [∇2k(x∗)]−1 � (1+‖x∗‖)I. From Proposition 3.4 and this inequality it follows
that the fact that k is L∗-smooth relative to f∗τ is implied by

(4.4) ∇2fτ (x) � L∗ [1 + ‖∇fτ (x)‖] I ∀x ∈ Rd.

This is the strategy of the following theorem, which shows that fτ is dual smooth to
this choice of k under our assumptions.

Proposition 4.2. Under Assumption 4.1 for fτ defined in (4.1) and k defined
in (4.2), we have that

(4.5) ∇2fτ (x) � L∗τ [∇2k(∇fτ (x))]−1 ∀x ∈ Rd,

where the dual relative smoothness constant is given by

(4.6) L∗τ =
2R

r

∥∥ATA∥∥
τ

(η + ‖c‖).

Here, ‖ATA‖ is the induced matrix norm, and

(4.7) η = sup
‖s‖∞≤1

∥∥AT s∥∥ ≤ √n∥∥AT∥∥∞ .

Because fτ and k are Legendre convex, k is smooth relative to f∗τ and Theorem 3.9
implies that Algorithm 1.1 converges with k(∇f(xi)) converging at a rate O(1/i).

Remark 4.3. From Theorem 3.9, we have

(4.8) k(∇fτ (x)) ≤ L∗τ (fτ (x0)− fτ (xmin))

i
.

This suggests that if we can start from an initial point within the polytope, then we
can reach a point where ‖∇fτ (x)‖ is significantly less than ‖c‖ (which is expected
to be near the minimum) in a polynomial amount of steps, depending on the condi-
tioning R/r and the value of τ . The step-size 1/L∗i can also be chosen adaptively, as
explained in Proposition 3.10. Near the minimum, both fτ (x) and k(x∗) behave like
quadratic functions, so local linear convergence rates hold. We believe that this iter-
ative scheme is reasonably efficient for high dimensional well-conditioned polytopes,
but in other less well conditioned instances it is outperformed by existing algorithms
such as multiplicative weights [4] or [20], which is based on Newton’s method (hence
uses second-order information).
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Proof of Proposition 4.2. Note that 1 ≤ η ≤ n, because ‖Ai‖ = 1. Let α(x) :=
maxi∈[n](Aix − bi). Then α(x) < 0 inside the polytope and α(x) > 0 outside of it.
By differentiation, we have

∇fτ (x) =

n∑
i=1

Ai exp((Aix− bi)/τ) + c,(4.9)

∇2fτ (x) =

n∑
i=1

ATi Ai
τ

exp((Aix− bi)/τ).(4.10)

Note that fτ is defined everywhere and differentiable. Furthermore, under our as-
sumption that rank(ATA) = rank(A) = d, it is evidently strictly convex and therefore
Legendre.

The Hessian of fτ satisfies

∇2fτ (x) � exp(α(x)/τ)
ATA

τ
� exp (α(x)/τ)

∥∥ATA∥∥
τ

I.(4.11)

Because η ≥ 1, it is clear that the claim of the theorem holds for every x where
α(x) ≤ 0 (i.e., inside the polytope or on its boundary). From now on we will assume
that x is such that α(x) > 0 (outside of the polytope). Let xc be a minimizer of α(x)
(at least one exists since the polytope is compact and α(x) is a continuous function),
and then using the assumption ‖Ai‖ = 1 it follows that α(xc) = −r < 0. Hence
x 6= xc. We are going to need an upper bound on ‖x− xc‖, which we will obtain as
follows. By the definitions, we have Aixc ≤ −r+bi and Aix = Aix−bi+bi ≤ α(x)+bi,
and hence

Ai

(
xc +

r

α(x) + r
(x− xc)

)
=

r

α(x) + r
Aix+

α(x)

α(x) + r
Aixc

≤ r

α(x) + r
(α(x) + bi) +

α(x)

α(x) + r
(−r + bi) = bi.

Therefore xc + r
α(x)+r (x− xc) ∈ P ⊂ Bxc(2R), so

(4.12) 0 < ‖x− xc‖ ≤ 2
α(x) + r

r
R and ‖x− xc‖−1 ≥ r

α(x) + r

1

2R
.

Let I = {i ∈ [n]; Aix− bi > 0}, J = {i ∈ [n]; Aix− bi ≤ 0}, and

(4.13) GI(x) =
∑
i∈I

e
1
r (Aix−bi)Ai GJ (x) =

∑
i∈J

e
1
r (Aix−bi)Ai.

Then ∇fτ (x) = GI(x) +GJ (x) + c. We have

‖GI(x)‖ ≥ GI(x)T (x− xc)
‖x− xc‖

= ‖x− xc‖−1
∑
i∈I

e
1
r (Aix−bi)Ai(x− xc)

(a)

≥ ‖x− xc‖−1
e
α(x)
τ (α(x) + r)

(b)

≥ r

2R
e
α(x)
τ .
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Here, (a) follows from the fact that there is a j ∈ I such that Aj(x − xc) = α(x) +
bj − Ajxc ≥ α(x) + r and the fact that Ai(x − xc) ≥ bi + r − bi > 0 holds for every
i ∈ I. (b) follows from (4.12). From (4.11) we obtain that

(4.14)

∇2fτ (x) � exp (α(x)/τ)

∥∥ATA∥∥
τ

I

� 2R

r

∥∥ATA∥∥
τ

‖GI(x)‖ I

� 2R

r

∥∥ATA∥∥
τ

(‖∇fτ (x)‖+ ‖GJ (x)‖+ ‖c‖)I.

Hence (4.4) follows from the facts that ‖GJ (x)‖ ≤ η and η + ‖c‖ ≥ 1. As discussed
(4.5) follows from [∇2k(x∗)]−1 � (1 + ‖x∗‖)I.

4.2. p-norm regression. Consider the following p-norm regression problem,

(pnorm) min
x∈Rd

‖Ax− b‖pp ,

where A ∈ Rn×d, d� n, b ∈ Rn, and p ≥ 1. This problem is a useful abstraction for
some important graph problems, including Lipschitz learning on graphs [29] and `p-
norm minimizing flows [3]. Algorithms specialized for p-norm regression have recently
been studied in the theoretical computer science literature by several authors (see,
e.g., [17, 1] and references therein). In this subsection, we design an appropriate dual
reference function for (pnorm) under the following assumptions. Let Ai denote the
rows of A (as row vectors).

Assumption 4.4. Suppose that the following hold for problem (pnorm):
1. 2 ≤ p <∞.
2. A is full rank d, and for all x ∈ Rd there is a subset I(x) ⊂ [n] such that
Aix 6= bi for all i ∈ I(x), and span{Ai : i ∈ I(x)} = Rd.

3. cG = inf‖s‖=1 ‖As‖pp > 0.

4. cH = infu,v∈Rd:‖u‖=1,‖v‖=1

∑n
i=1 |Aiu|

p−2
(Aiv)2 > 0.

Remark 4.5. Although these assumptions seem restrictive, we can show that if
n ≥ 2d− 1 and (Ai)1≤i≤n and (bi)1≤i≤n are chosen as independent random variables
with densities that are absolutely continuous with respect to the Lebesgue measure
on Rd and R, then the assumptions hold with probability 1. Assumption 2 is implied
by the stronger assumption that any d rows of A define a full rank d matrix, and the
maximal number of equalities Aix = bi that hold for any x is no more than d. This
stronger version of Assumption 2, and Assumption 3, holds with probability 1 under
the random allocation due to the fact that the set of real valued d× d matrices with
determinant 0 has Lebesgue-measure 0 in Rd×d (due to the fact that the determinant
is a multivariate polynomial of the entries, and the zero set of such polynomials
has Lebesgue measure zero unless they are constant 0; see [19]). The minimum in
Assumption 4 is achieved for some umin and vmin due to continuity and compactness
of the unit sphere. Since any d rows of A form an independent basis with probability
1, it follows that u and v can be orthogonal to at most d − 1 of them, respectively,
so using n ≥ 2d − 1 there exists an i in the sum

∑n
i=1 |Aiumin|p−2

(Aivmin)2 that is
nonzero, and hence Assumption 4 holds.

Consider the dual reference function k : Rd → R,

(4.15) k(x∗) = 1
q

(
‖x∗‖2 + 1

) q
2 − 1

q ,
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Fig. 1. Convergence rates for p-norm regression are mostly unaffected by the dimension d for
these random instances with p = 4.

for q = p
p−1 (hence 1

p + 1
q = 1). This behaves like a quadratic ‖x∗‖2/2 near its

minimum x∗ = 0 and like ‖x∗‖q/q at infinity. For this k, we have

(4.16) ∇k(x∗) = x∗(1 + ‖x∗‖2)
q−2
2 .

As the next theorem shows dual relative strong convexity and smoothness of k relative
to the conjugate of (pnorm) hold under our assumptions.

Proposition 4.6. Let f(x) = ‖Ax− b‖pp be the p-norm objective. Under As-
sumption 4.4 for k defined in (4.15), there exists µ∗, L∗ > 0 such that

(4.17) µ∗[∇2k(∇f(x))]−1 � ∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ Rd.

See (4.27) and (4.28) for the definitions of µ∗ and L∗. Because f and k are Le-
gendre convex, k is smooth and strongly convex relative to f∗ and Theorem 3.9 im-
plies that Algorithm 1.1 converges with f(xi) − f(xmin) converging at a linear rate
O((1− µ∗/L∗)i).

To test the empirical performance of this method, we have implemented it for
p = 4, n = 10d, d ∈ {102, 103, 104}, with Ai, b, and x0 chosen as independent
and identically distributed standard normals. The inverse step-size L∗0 was chosen
to be L∗0 = 1 initially and multiplied by 2 if the function value would increase due
to too large steps (hence this was chosen adaptively in the beginning, but L∗i was
never decreased later on). As Figure 1 shows, empirically our method seems to be
performing well, with high precision achieved after 50–80 gradient evaluations, and
the convergence rate seems to be mostly unaffected by the dimension d. Hence in this
random setting dual space preconditioning is indeed very efficient and competitive
with previous works [17, 1, 3] which had dimension dependent convergence rates.
We think that based on Proposition 4.6, it can be shown that with high probability,
dimension-free convergence rates hold in this random scenario when the number of
vectors n tends to infinity. (The proof would be based on concentration inequalities
for empirical processes; see, e.g., [14] for an overview of such inequalities.) Note,
however, that we do not believe this always to be the case for general nonrandom A
and b, and there could be instances of very poor conditioning (such as when n ≈ d)
where the homotopy method of [17] or the IRLS method of [2] could perform better.
The proof of Proposition 4.6 is based on the following two lemmas.
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Lemma 4.7 (bounds on the gradient). Let f(x) = ‖Ax− b‖pp be the p-norm
objective for (pnorm). Under Assumption 4.4, we have

(4.18) LG‖x‖p−1 − CG ≤ ‖∇f(x)‖ ≤ UG‖x‖p−1 +DG

for all x ∈ Rd, with constants

LG = 2−p+1cG = 2−p+1 inf
‖s‖=1

‖As‖pp , CG =

(
n∑
i=1

|bi|p
)(p−1)/p

· c1/pG ,

UG = 2p−2(p+ 1) sup
‖s‖=1

‖As‖pp , DG = 2p−2(p− 1)

(
n∑
i=1

|bi|p
)
.

Proof. By differentiation, we have

(4.19) ∇f(x) = p

n∑
i=1

|Aix− bi|p−2
(Aix− bi)Ai,

thus

‖∇f(x)‖ = p

∥∥∥∥∥
n∑
i=1

|Aix− bi|p−2
(Aix− bi)Ai

∥∥∥∥∥
≥ max

(
p

‖x‖
n∑
i=1

|Aix− bi|p−2
(Aix− bi)Aix, 0

)

= max

(
p

‖x‖
n∑
i=1

[
|Aix− bi|p−2

(Aix− bi)2 + |Aix− bi|p−2
(Aix− bi)bi

]
, 0

)

≥ max

(
p

‖x‖
n∑
i=1

(
|Aix− bi|p − |Aix− bi|p−1 |bi|

)
, 0

)
,

now by Young’s inequality |Aix− bi|p−1 |bi| ≤ |Aix− bi|p p−1
p + |bi|p

p , hence

≥ max

(
1

‖x‖
n∑
i=1

(|Aix− bi|p − |bi|p) , 0
)

using the fact that |a+ b|p ≤ (|a|+ |b|)p = ( 2|a|+2|b|
2 )p ≤ 2p−1(|a|p+ |b|p) by convexity

(this is so-called the Cp inequality), so |Aix− bi|p + |bi|p ≥ 2−p+1 |Aix|p, and hence

≥ max

(
1

‖x‖
n∑
i=1

(
2−p+1 |Aix|p − 2|bi|p

)
, 0

)

≥ max

(
2−p+1

[
inf
‖s‖=1

‖As‖pp
]
· ‖x‖p−1 − 2

∑n
i=1 |bi|p
‖x‖ , 0

)
,

and the lower bound follows from Assumption 4.4 by straightforward rearrangement.
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For the upper bound, notice that

‖∇f(x)‖ ≤ p sup
‖v‖=1

n∑
i=1

|Aix− bi|p−1 |Aiv|

≤ 2p−2p sup
‖v‖=1

n∑
i=1

(
|Aix|p−1 |Aiv|+ |bi|p−1 |Aiv|

)
≤ 2p−2p

[
‖x‖p−1 sup

‖s‖=1,‖v‖=1

n∑
i=1

(
|Ais|p−1 |Aiv|

)
+ sup
‖v‖=1

n∑
i=1

|bi|p−1 |Aiv|
]

≤ 2p−2p

[
p+ 1

p
sup
‖s‖=1

‖As‖pp +
p− 1

p

n∑
i=1

|bi|p
]
,

and hence the result follows. The last step uses Fenchel–Young and rearrangement.

Lemma 4.8 (bounds on the Hessian). Let f(x) = ‖Ax− b‖pp be the p-norm
objective. Suppose that Assumption 4.4 holds, and let

RH =

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥
1/(p−2)

/(cH2−p)1/(p−2),(4.20)

ρH = inf
‖x‖≤RH

λmin(∇2f(x)) = inf
‖x‖≤1,‖u‖=1

p(p− 1)

n∑
i=1

|Aix− bi|p−2
(Aiu)2.(4.21)

Then ρH > 0, and we have

(4.22) (LH‖x‖p−2 + CH)I � ∇2f(x) � (UH‖x‖p−2 +DH)I

for all x ∈ Rd, with constants

LH = min

(
p(p− 1)2−p−1cH ,

ρH

2Rp−2
H

)
,

UH = 2p−3p(p− 1) sup
‖u‖=1,‖v‖=1

n∑
i=1

|Aiu|p−2
(Aiv)2,

CH = min
(ρH

2
, p(p− 1)2−p−1cHR

p−2
H

)
, DH = p(p− 1)2p−3

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥ .
Proof. We have by differentiation

(4.23) ∇2f(x) = p(p− 1)

n∑
i=1

|Aix− bi|p−2
ATi Ai.

Notice that using the fact that |a− b|p−2 + |b|p−2 ≥ 2−(p−1)|a|p−2, we have

∇2f(x) = p(p− 1)

n∑
i=1

|Aix− bi|p−2
ATi Ai

� p(p− 1)

n∑
i=1

(
2−(p−1)|Aix|p−2 − |bi|p−2

)
ATi Ai

� p(p− 1)2−(p−1)cH‖x‖p−2 − p(p− 1)

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥ .
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Let RH be as in (4.20), and then using the above bound, we can see that for ‖x‖ ≥ RH ,
we have

(4.24)
∇2f(x) � p(p− 1)2−pcH‖x‖p−2I

� p(p− 1)2−p−1cH‖x‖p−2 + p(p− 1)2−p−1cHR
p−2
H .

Since the minimum of the continuous function λmin(∇2f(x)) is achieved on the com-
pact set BRH , and by the second part of Assumption 4.4, it cannot be zero, and
hence ρH > 0 and ∇2f(x) � ρHI for every x ∈ BRH . The lower bound in (4.22)
follows by combining this with (4.24). For the upper bound, using the inequality
|a+ b|p−2 ≤ 2p−3(|a|p−2 + |b|p−2), we obtain that

∇2f(x) � p(p− 1)2p−3 sup
‖s‖=1

∥∥∥∥∥
n∑
i=1

|Ais|p−2
ATi Ai

∥∥∥∥∥ · ‖x‖p−2

+ p(p− 1)2p−3

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥ .
Now we are ready to prove our main result in this section.

Proof of Proposition 4.6. First, both f and k are Legendre convex in this case.
This is easy to verify for k, and evidently f is differentiable everywhere. To verify
strict convexity of f , note that ∇2f(x) � 0 under part two of Assumption 4.4. Since
both f and k are twice differentiable, by Proposition 3.4, it suffices to check that
(4.17) holds for the linear convergence of Algorithm 1.1. We have by differentiation

(4.25) ∇2k(x∗) = (1 + ‖x∗‖2)
q−2
2 I + (q − 2)(1 + ‖x∗‖2)

q−4
2 x∗x∗T .

Now it is easy to see that for p ∈ [2,∞), we have q = p/(p− 1) ∈ (1, 2] and it is not
difficult to verify that ∇2k satisfies that for all x∗ ∈ Rd,

(4.26) (1 + ‖x∗‖2)
1
2
p−2
p−1 I �

[
∇2k(x∗)

]−1 � (p− 1)(1 + ‖x∗‖2)
1
2
p−2
p−1 I.

The claim of the theorem now follows by some straightforward rearrangement using
Lemmas 4.7 and 4.8, with constants

µ∗ = min

(
CH

2(p− 1)(2 + 2DG)
,

LH

4(p− 1)U
(p−2)/(p−1)
G

)
,(4.27)

L∗ = min

(
UH

(LG/2)(p−2)/(p−1)
, 4UH

(
CG
LG

)(p−2)/(p−1)

+ 2DH

)
.(4.28)

5. Discussion. In this paper we introduced a nonlinear preconditioning scheme
for gradient descent on Legendre convex functions f that converges under generaliza-
tions of the standard Lipschitz assumption on ∇f . There are at least two interpre-
tations of this method. The first is as a generalization of gradient descent in which
the update direction is preconditioned by the gradient map ∇k of a designed dual
reference, Legendre convex function k. The second interpretation is as a Bregman gra-
dient method in the dual space, which minimizes the designed k while the conjugate
f∗ plays the role of the “reference function.” The choice of k affects the conditioning
of our method, which is made explicit in our analysis through a relative smoothness
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condition between k and f∗. The dual relative conditions admit nonsmooth f and
k and are provably distinct dual cousins of the relative smoothness conditions intro-
duced by [7]. k serves as a model of the convex conjugates f∗ in a certain problem
class. In section 4, we show how this method can be applied to exponential penalty
functions (see, e.g., [21, 20]) and p-norm regression (see [17, 1] and references therein)
with global convergence rate guarantees.

Algorithm 1.1 is related to a number of existing methods, some of which are
subject to the analysis we provide. The most notable of these is the method of
steepest descent with respect to a given norm ‖·‖ (now not necessarily Euclidean).
Here we follow the exposition of Boyd and Vandenberghe [15, sect. 4.9]. The steepest
descent iteration is given by

(5.1) xi+1 = xi +
1

L
‖∇f(xi)‖∗ d, where d ∈ arg max

‖x‖≤1

〈−∇f(xi), x〉 ,

and ‖x∗‖∗ = sup‖x‖≤1 〈x, x∗〉 is the dual norm of ‖·‖. The identity ∂(‖x∗‖2∗ /2) =

‖x∗‖∗ arg max{〈x∗, x〉 : ‖x‖ ≤ 1} for all x∗ ∈ Rd implies that for strictly convex
and differentiable ‖·‖∗, the steepest descent method (5.1) is a special case of dual

preconditioned gradient descent with k(x∗) = ‖x∗‖2∗ /2. Our analysis does not apply
in the case of other norms or normalized steepest descent [15]. Algorithm 1.1 also
generalizes the rescaled gradient method of [47, sect. 2.2]. Thus, our method may
be seen as a generalization of the steepest descent method and rescalings of gradient
descent. Dual preconditioning is more distantly related to the dual gradient methods
[43, 9]. These methods are designed for problems with nonsmooth, but strongly
convex, structure. They exploit the duality between classical smoothness and strong
convexity by applying smooth minimization algorithms to a dual problem. Similarly,
Algorithm 1.1 can be seen as a move to the dual space, in which a dual problem
k(x∗) ≈ f∗(x∗) − 〈x∗, xmin〉 (dual to f(x) + δx=xmin

(x)) is minimized by a Bregman
gradient method. Thus, dual gradient methods and dual preconditioning are most
easily applied when the dual structure is relatively more benign to model than the
primal structure, e.g., when f has superquadratic growth.

There are a couple of natural questions that arise from this work. First, it may be
useful to pursue the analogy with dual gradient methods further and to design meth-
ods for the general composite model that exploit dual relative smoothness. Second,
there is still considerable difficulty in the design of k. Thus, it may be productive
to investigate whether methods from linear preconditioning (see [10] for a review),
such as incomplete factorizations or sparse approximate inverses, can be generalized
to the nonlinear setting for the design of k. Nonetheless, the dual relative conditions
studied in this work provide new avenues for improving the conditioning of optimizers
via hard-won domain-specific knowledge.

Acknowledgments. We thank the anonymous referees for their insightful com-
ments that helped us to improve the paper. We thank David Balduzzi for insight-
ful comments, Patrick Rebeschini for suggesting exponential penalty functions, and
Sushant Sachdeva for suggesting p-norm regression.
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[48] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ,

2002.

D
ow

nl
oa

de
d 

11
/0

3/
21

 to
 1

63
.1

.2
11

.2
4 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

http://ttic.uchicago.edu/~shai/papers/KakadeShalevTewari09.pdf
https://arxiv.org/abs/1909.06918
https://doi.org/10.1017/S0962492915000021
https://doi.org/10.1017/S0962492915000021

	Introduction
	Setting and method
	Preconditioning

	Convex analysis background
	Essential smoothness and convex conjugates
	Relative smoothness and relative strong convexity
	First-order characterizations for relative conditions
	Second-order characterizations of relative conditions

	Analysis of the dual preconditioned scheme
	Motivation and assumptions
	Dual relative conditions for Legendre convex objectives
	Dual relative conditions for essentially smooth objectives
	Convergence rates for dual space preconditioned gradient descent

	Applications
	Exponential penalty functions
	p-norm regression

	Discussion
	References

