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ARTICLE INFO ABSTRACT

Keywords: Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches
Uncertainty quantification have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple
Hydrogeology temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which
;{/‘iﬁ‘s’g:phy““ calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological devel-

opments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathe-
matics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and
hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their
specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics
simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We
consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential
Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling
errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty
is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions en-
countered in hydrogeological and geophysical problems make UQ a complicated and important challenge that

Proxy models
Modeling errors
Petrophysics

has only been partially addressed to date.

1. Introduction

The subsurface environment is highly heterogeneous and non-linear
coupled processes take place at multiple spatial and temporal scales.
Valuable information about subsurface structures and processes can be
obtained from borehole measurements, outcrops, laboratory analysis of
field samples, and from geophysical and hydrogeological experiments;
however, this information is largely incomplete. It is critical that basic
scientific studies and management decisions for increasingly complex
engineering challenges (e.g., enhanced geothermal systems, carbon
capture and storage, nuclear waste repositories, aquifer storage and
recovery, remediation of contaminated sites) account for this in-
completeness in our system understanding. This enables us to consider
the full range of possible future outcomes, to base scientific findings on
solid grounds and to target future investigations. Nevertheless, un-
certainty quantification (UQ) is highly challenging because it attempts
to quantify what we do not know. For example, it is extremely difficult
to properly describe prior information about a hydrogeological system,
to accurately quantify complex error characteristics in our data, and to
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quantify model errors caused by incomplete physical, chemical, and
biological theories.

Eloquent arguments have been put forward to explain why nu-
merical models in the Earth Sciences cannot be validated (Konikow and
Bredehoeft, 1992; Oreskes et al., 1994). These arguments are based on
Popperian viewpoints (Tarantola, 2006) and on the recognition that
natural subsurface systems are open and inherently under-sampled.
This implies that UQ in the Earth Sciences can never be considered to be
complete. Instead, it should be viewed as a partial assessment that is
valid for a given set of prior assumptions, hypotheses, and simplifica-
tions. With this in mind, UQ in terms of probability distributions, often
characterized in terms of probability density functions (pdfs), can still
greatly help to make informed decisions regarding, for example, stra-
tegies for mitigating the effects of climate change, how to best exploit
natural resources, how to minimize exposure to environmental pollu-
tants, and how to protect environmental goods such as clean ground-
water.

This review focuses on UQ in hydrogeology and hydrogeophysics.
Using the term UQ, we refer both to (i) the forward UQ problem,
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namely how to characterize the distribution of output variables of in-
terest (e.g., to determine the risk of contamination in a water supply
well) given a distribution of input variables (e.g., subsurface material
properties); and (ii) the solution of the Bayesian inverse UQ problem,
whereby prior knowledge is merged with (noisy) observational data
and numerical modeling in order to obtain a posterior distribution for
the input variables. Note that it is beyond the scope of this work to
make an exhaustive review of UQ or to present all existing and potential
applications in hydrogeology and hydrogeophysics. Rather, we try to
connect a number of recent methodological advances in UQ with se-
lected contemporary challenges in hydrogeology and hydrogeophysics.
The mathematical development and the description of the methods are
kept to a minimum and ample references are provided for further
reading. We emphasize general methods that do not necessarily rely
upon linearizations or Gaussian assumptions. The price to pay for this
generality is a substantial increase in computational cost, which is re-
flected by the fact that more approximate approaches are presently
favored (e.g., Ensemble Kalman filters (Evensen, 2009), quasi-static
linear inversion (Kitanidis, 1995)). Clearly, these approximate methods
are not only used because they are comparatively fast, but also because
they have shown to produce useful and robust results in a wide range of
application areas.

After introducing the main concepts and notations (Section 2), we
discuss the definition of prior distributions for spatially distributed
parameter fields (Section 3.1). This is followed by a discussion on the
role of proxy models in forward UQ (Section 3.2), after which we
present how Multi-Level Monte Carlo and related techniques can be
used within forward UQ to propagate prior uncertainties into quantities
of interest (Section 3.3). Next, we consider the Bayesian inverse pro-
blem where we examine likelihood functions (Section 4.1) and discuss
sampling approaches with an emphasis on particle methods
(Section 4.2). This is followed by an outlook towards how to best ac-
count for model errors (Section 5.1) and petrophysical-relationship
uncertainty in hydrogeophysical inversions (Section 5.2).

2. Main concepts and notations

In hydrogeology, it is often desirable to predict and characterize
uncertainties on Quantities of Interest (Qol) given a set of inputs de-
scribed by a multivariate parameter u. Depending on the problem, u
may refer to a vector, a field, a more general function, or combinations
thereof; here, without loss of generality, we use the “field” as a generic
term to denote u. As an example, u may represent a permeability field
and a contaminant source region, and the QoI may be the contaminant
concentration in a water supply well at some future time. In this case,
the forward model that links the two would typically be a numerical
solver of the advection-dispersion equation for some set of (possibly
uncertain) boundary and initial conditions. Herein, u is treated either as
a discretized (finite-dimensional) or continuous (infinite-dimensional)
object. This distinction might seem superfluous at first because dis-
cretization is always needed at some stage when dealing with numerical
forward models; however, considering an infinite-dimensional form-
alism can be highly relevant as discussed later.

A given Qol, denoted by Q, is a function of the output from the
considered solution map (in practice, the output of a numerical simu-
lator), formalized as a deterministic function #: u — #(u) that is
generally non-linear. Here, we use 2 for the function mapping u to Q.
This function can be formulated as 2 o# for some function . as Qis
assumed to depend on u solely via Z(u) so thatQ = 2(u) = 7 (Z (u)).

In essence, the probabilistic approach to forward UQ consists of
endowing the considered set of u’s with a probability distribution py,
and propagating this distribution to Q by using uncertainty-propagation
techniques. The standard means of doing this, referred to as the basic
Monte-Carlo method, consists of drawing a sample {w;, ---, uy} from o,
calculating the corresponding sample {Z2(w), ---, Z(uy)}, and
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empirically approximating expectations of functions of Q under the
discrete probability distribution % Zf\il Ssuy)-

Practical and theoretical work over the past decade has focused on
how to best account for imperfect numerical modeling (see Section 3.2),
for instance via error models, and how to take advantage of multiple
numerical models with different levels of fidelity and computation
times (see Section 3.3). Overall, propagating uncertainties in the inputs,
accounting for imperfect numerical modeling, and addressing real-
world problems using statistical procedures and numerical models are
broadly considered as part of uncertainty propagation or forward UQ.

Inverse problems have played an important role in applied mathe-
matics for more than a century and are of crucial importance in hy-
drogeology (e.g., Carrera et al., 2005; McLaughlin and Townley, 1996;
Zhou et al., 2014) and geophysics (e.g., Menke, 2012; Parker, 1994;
Tarantola, 2005). The starting point when solving an inverse problem is
to write the relation linking observed data y to model parameters u

@

where the forward map%: u — % (u) can be viewed as the combination
of a solution map# and an observation map(’ that returns n = 1 func-
tionals of #(u) (typically linear forms, such as point-wise evaluations
at specific locations and/or times), and € typically stands for observa-
tional noise. In simpler terms, ¢ extracts from the output of the solution
map the information that is needed to calculate the forward responses
Z(u) = ¢(#(u)), that are to be compared with the observed data y.

For example, u may stand for lithological properties of an aquifer,
with % returning the space-time evolution of contaminant concentra-
tion within this aquifer. The corresponding ¢ could indicate con-
centrations at specific well locations and times, and the inverse problem
would then consist of recovering the unknown lithology from noisy
measurements y at these locations. In practice, ¢ is the best possible
numerical prediction of an experiment, but it is never a perfect map in a
strict mathematical sense. This implies that virtually all ¢’s in the
geosciences could be considered as proxy models (see Section 3.2) and
we use ¢ herein when referring to high-fidelity forward simulations.
While we do not explicitly consider e terms that incorporate model
errors at this stage, the topic is implicitly tackled in forthcoming sec-
tions on likelihood functions and error modeling.

The inherent inaccuracies of forward solvers ¥ have two origins.
First, geological and physical heterogeneity are present at all scales, but
numerical forward solvers can only handle heterogeneity up to a given
spatial (e.g., model cell size) or spectral (e.g., truncation of spherical
harmonics) resolution. The impact of limited resolution on simulation
results depends strongly on the physics involved. For example, pre-
dicted gravimetric or groundwater-level responses will be compara-
tively insensitive, whereas seismic or ground penetrating radar (GPR)
full-waveform modeling or tracer transport simulation results may be
highly sensitive (Dentz et al., 2011). Second, considerable simplifica-
tions of the underlying physics are often made, even when using the
most advanced simulation algorithms. The needed simplifications and
their impacts are strongly problem dependent. For instance, gravimetric
modeling can be performed using physical descriptions that are highly
accurate, whereas GPR forward modeling typically does not account for
the well-known frequency-dependence of subsurface electrical proper-
ties or the finite sizes of transmitter and receiver antennas
(Klotzsche et al., 2013). Furthermore, the accuracy of ¢ for a given
physical description and model domain depends also on the numerical
schemes (e.g., in time) and equation solvers (e.g., iterative, direct)
employed. Despite these simplifications, evaluating ¢ (u) (i.e., solving
the forward problem) often leads to significant computing times (e.g.,
Fichtner, 2010; Geiger et al., 2004), which limits the number of forward
simulations that can be practically considered.

In hydrogeology and geophysics, u is generally high-dimensional, ¢
is costly to evaluate and non-linear, and the size of y is limited by data
acquisition constraints. Bayesian inversion (the inverse UQ problem)
provides a framework to make inferences on u from observations y by

y=%) +e,
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formulating and inferring the posterior distribution ¢/*. Since analytical
derivations of posterior distributions are generally intractable, Bayesian
inverse problems call for Markov chain Monte Carlo (MCMC) and re-
lated sampling procedures (see Section 4.2). Below, we first focus on
the topic of defining the prior y, (i.e., a probabilistic description of
model parameter values and their relations before considering the ob-
served data); an essential component both in uncertainty propagation
(forward UQ) and Bayesian inversion (inverse UQ).

3. Prior distributions and forward UQ
3.1. Prior distributions on parameter fields

Defining a prior distribution, y,, for a spatial parameter field u is a
challenging task. Since the advent of geostatistics, and notably the
seminal works of Krige (1951) and Matheron (1963), a central ap-
proach underlying the prediction of spatially distributed variables has
been to view the true but unknown field of interest as one realization of
a random field (i.e., a random process with multivariate index space).
In basic versions of kriging, no distributional assumptions on the field
were made beyond the existence of moments. However, the Gaussian
assumption delivers a way to express the simple-kriging equations in
terms of conditional expectation and variance, thus allowing for con-
ditional simulations (Journel, 1974; Lantuéjoul, 2002). With time, this
initial Gaussian model was further developed to account for positivity
(e.g., with log-Gaussian fields) and other constraints (Cressie, 1993;
Diggle and Ribeiro, 2007). Connections between kriging, Gaussian
random fields, and Bayesian inference have been made notably in
O’Hagan (1978), Omre (1987), Omre and Halvorsen (1989),
Handcock and Stein (1993), Tarantola (2005) and Hansen et al. (2006).
This has led to a number of developments, for instance, hierarchical
models that include distributions on hyperparameters describing
Gaussian process models (Banerjee et al., 2014; Gelman et al., 2013).
Throughout the paper, we use the notions of random processes and
fields exchangeably. Note also that the Gaussian-random-field termi-
nology is equivalent to what is often referred to as multi-Gaussian in the
geosciences.

In mathematics, Gaussian-related priors have been recently revived
through their omnipresence in the blossoming field of UQ. Due to their
favorable properties and well developed mathematical theory, Gaussian
random fields, or equivalently Gaussian measures on function spaces
(Rajput and Cambanis, 1972), have been extensively used in the study
of stochastic partial differential equations (PDEs) (Da Prato and
Zabczyk, 2014; Hairer, 2009) and PDEs with random coefficients
(e.g., Lord et al., 2014). Recent contributions to the stochastic PDE
approach to Gaussian-random-field modeling have highlighted its
ability to cope with large data sets and to encode non-stationarity in a
powerful way (Fuglstad et al., 2015; Ingebrigtsen et al., 2015; Lindgren
et al., 2011; Simpson et al., 2012). Also, theoretical aspects of infinite-
dimensional Bayesian inverse problems with Gaussian-random-field
priors have been investigated (Conrad et al., 2016; Dashti and Stuart,
2011; Stuart, 2010), where yy is specified in terms of random series
u=d¢,+ Z;:} u;¢,, with ¢; denoting functions in a Banach space (i.e., a
complete normed vector space) and u; Gaussian random coefficients.
Non-Gaussian extensions (e.g., for uniformly distributed u;’s) have also
been considered (Hoang and Schwab, 2014; Kuo et al, 2015),
Dashti and Stuart.

The impact of non-Gaussian property fields on stochastic forward
simulations have been investigated (e.g., Rubin and Journel, 1991)
with results illustrating that covariances are insufficient to characterize
geologically realistic subsurface properties. To address this, multiple-
point statistics (MPS) simulation has arisen as a new paradigm that has
deeply influenced modern geostatistics (Arpat and Caers, 2007;
Guardiano and Srivastava, 1993; Hu and Chugunova, 2008; Mariéthoz
and Caers, 2014; Strebelle, 2002). Connections between MPS and
Markov random fields (Dimitrakopoulos et al., 2010; Stien and
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Kolbjgrnsen, 2011), texture synthesis developed for computer graphics
purposes (Mariéthoz and Lefebvre, 2014), and universal kriging
(Li et al., 2015) have been investigated. Emery and Lantuéjoul (2014)
studied the ability of MPS to reproduce statistical properties of a
random field by averaging over a large number of MPS realizations
obtained from a single training image. Exact statistical recovery was
only shown to be possible when the training image was an “infinitely”
large realization of a stationary and ergodic random field (i.e., statis-
tical properties do not change in space and statistics can be recovered
from one realization). The influence of Gaussian-random-field and
training-image-based priors on the solution of geophysical inverse
problems was examined in Hansen et al. (2012). It was found that
complex prior information not only enhances the geological realism of
posterior model realizations, but also renders the inference problem
easier and faster to solve compared to the case of non-constraining
priors. In field applications, the main challenge in applying MPS is how
to obtain representative training images. For recent reviews on geolo-
gically realistic prior model definitions and inversion, we refer to
Linde et al. (2015) and Hansen et al. (2016).

The process of choosing realistic and implementable prior dis-
tributions is a crucial yet rarely addressed topic that is often restricted
to mean and covariance selection for Gaussian random fields or training
image definition in MPS. In all instances, choices must be made that
may dramatically influence forward UQ and the posterior distributions
obtained through Bayesian inversion. Already for the Gaussian case,
designing the covariance function (kernel) is a delicate task that implies
a range of assumptions on the physical attributes for which one is in-
verting. For instance, the choice of a specific family of covariance
function automatically defines the spatial regularity (smoothness class)
of each realization drawn from the prior distribution and, hence, from
the posterior distribution as well (see Scheuerer (2010) for results in the
Gaussian case and beyond). The impact of the prior is clearly shown in
Hansen et al. (2012) who inverted the same synthetic data set using
different prior models (Fig. 1). It is seen that the spatial statistics are
largely determined by the prior model, while regions of predominantly
high- or low velocities are determined by the data used in the inversion.

3.2. Proxy models for forward UQ

Proxy or surrogate models are often used when the full or high-
fidelity forward response is too expensive to be systematically used in
computations. They are commonly employed when a large number of
forward simulations are required for UQ or sensitivity analysis appli-
cations. Proxy models can be grouped into two broad categories: lower-
fidelity models and metamodels. Lower-fidelity proxies are typically
physically-based; however, they contain less detail and therefore offer a
less accurate, but cheaper-to-run, means of computing forward re-
sponses than their high-fidelity counterparts. Model simplifications are
generally made by (i) considering only some of the physics involved,
either through approximations or by explicitly ignoring particular ele-
ments (e.g., Josset et al., 2015b); (ii) reducing the numerical accuracy
of the forward model response by, for example, coarsening the spatial
discretization (e.g., Arridge et al., 2006) or using model-order-reduc-
tion (MOR) approaches (e.g., Liu et al., 2013). In contrast, metamodels
are usually not linked to the physics of the problem at hand. Instead,
they are based on data-driven approximations of the forward model
response using a relatively small number of high-fidelity simulation
outputs. Methods that fall into the latter category notably include re-
sponse surface modeling (RSM) (e.g., Myers et al., 2016), polynomial
chaos expansion (PCE) (e.g., Marzouk and Xiu, 2009), artificial neural
networks (e.g., Khu and Werner, 2003), radial basis functions
(e.g., Regis and Shoemaker, 2007), and Gaussian process (GP) models
(Rasmussen and Williams, 2006; Santner et al., 2003).

Hydrogeology has seen significant use of proxy models for forward
UQ and sensitivity analysis. Being physically-based, lower-fidelity
models have the advantage over metamodels in that they may better
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Fig. 1. Sampled MCMC posterior realizations based on 800 crosshole first-arrival GPR travel times acquired between the left and the right sides of the model domain. The true subsurface
structure (not shown) used to create the data in this synthetic example has channel-like features similar to those in (d). The other posterior realizations are based on: (a) a nugget prior
model with the correct mean and variance; (b) a Gaussian-random-field prior model with the correct two-point statistics; and (c) the same Gaussian-random-field prior model truncated
into a binary field with the correct facies proportions provide realizations that are largely incompatible with the true subsurface structure. From Hansen et al. (2012).

emulate the original response in unexplored regions of the input
parameter space and are generally less susceptible to problems in high
parameter dimensions (e.g., Razavi et al., 2012). In this regard,
Scheidt and Caers (2009) and Josset and Lunati (2013) employ
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simplified-physics proxies for subsurface flow and transport together
with distance and kernel methods (e.g., Hastie et al. (2001)) in order to
select, from a large number of permeability fields, a small subset of
representative fields upon which to run high-fidelity forward
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simulations.

In terms of metamodels, many studies have focused on the appli-
cation of PCE-based methods to hydrogeological problems (e.g., Beck
et al., 2014; Nobile et al., 2015). Basically, a PCE represents the re-
sponse of a complex system by a polynomial expansion with respect to
the input random variables. When using PCEs, polynomials must be
chosen that form an orthogonal basis with respect to the assumed
probability distribution of input random variables. An important ad-
vantage of PCE over other metamodels is that it delivers polynomial
approximations that are fast to evaluate and can lead to closed-form
expressions (e.g., for Sobol’ sensitivity indices) provided that the or-
thogonal polynomial basis functions are chosen accordingly
(Formaggia et al., 2013). Initial work was limited to low-dimensional
problems because of the marked increase in the required number of PCE
terms with the number of input parameters. However, recent applica-
tions involving sparse grids and truncated spectral expansions of the
input random fields report successes with problems involving hundreds
of model parameters. Nevertheless, the effectiveness of PCE techniques
deteriorates when dealing with input random fields that are rough and/
or have short correlation lengths. Hydrogeological applications of me-
tamodeling with Gaussian process models include (Marrel et al., 2008)
that considered a hydrogeological transport problem. Here, the use of
Gaussian process models were shown to outperform boosting regression
trees and linear regression on most considered outputs. Another ex-
ample is Ginsbourger et al. (2013), in which a Gaussian process model
incorporating proxy simulations and distance information was pro-
posed for a sequential inversion problem where the candidate inputs
were generated using MPS simulation.

3.3. Forward UQ with multi-level Monte Carlo

Consider the forward problem of reliably computing the expectation
of some quantity of interest Q involving the solution of the forward
model, Q = Z(u), where u is assumed random with prior distribution g,
(hence Q is a random variable). Examples of Qols could be tracer
breakthrough curves or contaminant concentrations for an assumed
prior distribution of lithological properties (e.g., porosity, perme-
ability). In practice, approximations of .2(u) can only be obtained by
numerical simulations that inevitably require discretization or physical
simplifications (see Section 2). We denote by Z,(u) any such numerical
solution, where { denotes the resolution level. The latter may refer to
the spatial grid discretization and/or time step increments used in the
forward simulator, or any other type of model simplification.

In recent years, the so-called Multi Level Monte Carlo (MLMC)
method has been established as a computationally efficient sampling
method that builds upon the classical Monte Carlo technique. It was
first proposed in Heinrich (2001) for applications in parametric in-
tegration, and then extended to weak approximations of stochastic
differential equations in Giles (2008) together with a full complexity
analysis. The idea behind MLMC is to introduce multiple levels
¢ =0, ..,L of increasing resolution (accuracy) with corresponding nu-
merical solutions Qg = Z,(u), Q; = Z(n), ..,Qr = Z (u). While a
classical Monte-Carlo approach would simply approximate the expected
value of Q; on a sufficiently high-resolution level L using an ensemble-
average over a sample of independent realizations from y,, the MLMC
method relies upon the simple observation that, by linearity of ex-
pectation,

L
E[Q] ~ E[Q.] = Z E[Q; — Qe-1] + E[Qo],

=1

(2)

and computes each expectation in the sum by statistically independent
Monte-Carlo sampling. Thanks to independence, the overall variance of
the MLMC estimator is given by the sum of the variances of each Monte
Carlo estimator. If Q, converges to a limit value as the resolution level £
increases, the variance of (Q, — Q,_;) will be progressively smaller as £

Advances in Water Resources 110 (2017) 166-181

increases. Dramatic computational savings can thus be obtained by
approximating the quantities E[Q, — Q,_;] with smaller sample sizes at
higher, and computationally more costly, resolution levels.

The application of MLMC methods to forward UQ problems invol-
ving PDE models with random parameters has been investigated from
the mathematical point of view (Barth et al., 2013; 2011; Charrier et al.,
2013; Cliffe et al., 2011; Mishra et al., 2012a; Teckentrup et al., 2013).
Recent work (Haji-Ali et al., 2016b; Harbrecht et al., 2013; Kuo et al.,
2012; Teckentrup et al., 2014; van Wyk, 2014) has also explored the
possibility of replacing the Monte-Carlo sampler on each level by other
formulas, such as sparse polynomial or quasi-Monte-Carlo quadrature.
Multi-Index Monte Carlo is a generalization of MLMC that was recently
proposed (Haji-Ali et al., 2016c) to accommodate and treat in-
dependently multiple resolution parameters; potentially, this leads to
substantial improvements over MLMC. This idea has been extended to
sparse polynomial quadratures (Haji-Ali et al., 2016a; b).

Despite recent efforts, performing accurate forward UQ analyses for
high-dimensional hydrogeological and geophysical problems remains a
challenging task and further advances are needed with respect to the
above-mentioned methods to have a strong impact on applications.
Indeed, in hydrogeology, the use of MLMC has been so far limited
(Efendiev et al., 2013; Mishra et al., 2012b; Miiller et al., 2013; Miiller
et al.,, 2014). For example, Miiller et al. (2014) considered water
flooding of an initially saturated oil reservoir characterized by a
Gaussian-random-field prior describing the logarithm of permeability.
Using different quantities of interest and a pre-defined approximation
error, they investigated the performance of MC, MLMC with a grid
hierarchy of five levels, and an alternative MLMC approach based on a
solver hierarchy using fast streamline-based and full reservoir-simulator
predictions. With Q representing the mean saturation field at a given
time, they found that MLMC with grid hierarchy and with solver hier-
archy were 28.7 and 3.3 times faster than MC, respectively (Fig. 2). The
authors argue that the solver-based hierarchy might be more practical
when boundary conditions cannot be accurately defined with a coarse
mesh. Combinations of MLMC techniques and metamodels based on
sparse-grid PCE approximations have also been proposed (Nobile and
Tesei, 2015) to further accelerate the computation of expectations in
forward UQ problems with rough input permeability fields.

4. Bayesian inversion

It is well understood (Tikhonov and Arsenin, 1977) that inverse
problems are ill-posed unless the search space is drastically restricted.
Standard deterministic inversion approaches proceed by penalizing a
measure of model structure (e.g., relying on gradients, curvatures, or
deviations from a reference model), thereby leading to a unique “reg-
ularized” solution. Deterministic approaches are popular because of
their simplicity and the efficiency of the associated numerical methods.
Although obtaining a unique solution is appealing, these methods do
not provide a reliable assessment of uncertainty.

For a finite set of model parameters, a general formulation of the
inverse problem is found in the work of Tarantola and Valette (1982),
wherein the solution of the problem is described as the conjunction of
two states of information: (i) a density function describing the prior
information about the system, including both the outputs of measure-
ment instruments (i.e., the data) and prior assumptions about model
parameter values; and (ii) a density function describing theoretical re-
lationships between model parameters and data. This framework,
which naturally accounts for forward modeling errors, makes it possible
to solve the majority of non-linear inverse problems provided that ap-
propriate density functions and the necessary computing resources are
available.

Here we focus on the case when ¢ is deterministic and we follow a
classical Bayesian approach, which is extendable to infinite-dimensional
model parameter spaces. This approach consists in combining a prior
probability distribution p, of u with observed data in order to obtain
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Fig. 2. Considering water flooding of a saturated petroleum reservoir, Miiller et al. (2014) evaluated the performance of MLMC strategies. (a) MC estimation of the mean saturation field
at time t; and (b) plots showing the number of evaluations at each level, M;, the computation time for one evaluation at each level, w;, and the variance between levels, gf. Note that there
is only one level for the MC case. Corresponding results for MLMC with (c-d) grid and (e-f) solver hierarchy. Note that the mean solutions in (a), (¢) and (e) have the same numerical
accuracy, while the computational times and the distributions across different levels vary strongly.

the posterior distribution, ¢¥. In d-dimensional cases where o and the
probability distribution v, of the error term e have probability densities
po and p with respect to some given measures (e.g., Lebesgue measures
on R? with ¢ = d, n, respectively), one denotes by likelihood the func-
tion u ~ L(u;y): =p(y — Z(u)). Note that the likelihood is also often
noted L(uly), but should generally not be confused with the conditional
density of u  knowing y. Assuming further that
Z: = frap(y — ())py(w)du > 0 then ¥ has the posterior density
(Bayes’ theorem)

P (W) = Zp(y = Z@)py() = ZL(w: Y)p, (w), @
as recalled in Dashti and Stuart and generalized to the infinite-dimen-
sional case as follows. Provided that the translate of vy by (u), vy,
possesses a density C:’T:(y) = exp(—®(u; y)) with respect to vy for some
function @ referred to as potential, and assuming that
Z: = [ exp(—®(u; y))du,(u) > 0, then the posterior distribution u¥
possesses a density with respect to yo with:
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du¥y 1

—(w = —exp(—=2(u; y)).
du, z (4
In other words, the posterior distribution can be obtained from the prior
distribution via reweighting. Following Dashti and Stuart, in the case
where vy, = .#7(0, T') for some n X n invertible covariance matrix I', the
potential function is

. — 1 —1/2 17 2 1 —1 2
P(u;y) = 5 IT=2y — () llgn — 5 T2y g )
Analytical formulations for density values and more particularly den-
sity ratios make it possible to apply the Metropolis-Hastings algorithm
and to generalize it to infinite-dimensional settings. Quoting Dashti and
Stuart, it is expected that “formulating the theory and algorithms on the
underlying infinite dimensional space [...] enables constructing algo-
rithms which perform well under mesh refinement, since they are in-
herently well-defined in infinite dimensions.”

4.1. Likelihoods in geoscientific inverse problems

Two important components that must be specified before inferring
the posterior distribution i are the forward map ¢ and the noise dis-
tribution vo, which together determine the likelihood function L(-; y)
for the finite-dimensional case and/or the potential function @(-; y) for
the infinite-dimensional case. These functions are used to evaluate how
likely a given model realization is given the observed data and its noise
characteristics. To allow for a large number of forward simulations (as
needed for inverse-problem solving), it is often necessary to favor
computational speed and make concessions in terms of simulation ac-
curacy. The appropriate trade-off between time-consuming high-fidelity
simulations and many fast, but approximate, solutions is problem de-
pendent. Optimal determination of this trade-off is an important topic
that we do not treat herein. Presently, the vast majority of Bayesian
inversion studies in the geosciences implicitly assume that forward si-
mulators are perfect and hence that modeling errors are negligible (i.e.,
only observational errors are considered). When acknowledged, the
modeling errors are usually considered to be part of vy (Hansen et al.,
2014). Alternative approaches exist and formal ways to account for
proxy errors are discussed in Section 5.1. The latter often proceed by an
adaptation of the likelihood function by correcting proxy simulations
with an error model in order to obtain error-corrected simulations with
a quality similar to that of high-fidelity simulations (Fig. 3). There has
been limited use of MLMC techniques in Bayesian inversion. The works
(Dodwell et al., 2015; Hoang et al., 2013) have combined the multilevel
idea with Metropolis-Hastings-type MCMC and, very recently,
Giles et al. applied the multilevel idea to Langevin dynamics to sample
from a given distribution. An alternative approach to compute posterior
expectations of Qols, which does not resort to MCMC sampling but
rather relies on standard MLMC or Quasi-Monte-Carlo integration, was
proposed in Scheichl et al. (2016).

Observational errors are most often treated as independent and
identically distributed (iid) random variables with zero mean. These
errors are typically considered to stem from Gaussian or Laplace dis-
tributions, partly because the corresponding likelihood functions have
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simple forms that are easy to manipulate. More advanced likelihood
descriptions have been proposed. For example, Schoups and
Vrugt (2010) introduced and inverted for parameters describing a
likelihood function with residual errors that are heteroscedastic and
non-Gaussian with varying degrees of kurtosis and skewness. Hier-
archical Bayes includes approaches in which parameters describing the
likelihood function are considered uncertain. It can be a very powerful
approach to relax assumptions about parameter values describing the
likelihood function, but it still requires a certain class of noise model to
be selected for which the corresponding parameters are inferred. It is
common to account for the combined effects of model and data errors in
the likelihood function. For instance, Dettmer et al. (2012) estimated
hierarchical autoregressive error models that enable efficient handling
of correlated errors at low computational costs (e.g., no need to invert
the covariance matrix or compute its determinant in order to evaluate
the likelihood function). In Cordua et al. (2009), the authors estimated
a correlated error model and used it in the likelihood function to ac-
count for errors related to local heterogeneities close to GPR antennas.
Using crosshole GPR data, Hansen et al. (2014) demonstrated how to
practically sample a model-error distribution, which was found to be
well described by a correlated multivariate Gaussian distribution. They
demonstrated severe bias in the inferred posterior distributions when
modeling errors were ignored.

4.2. Sampling: Markov chain Monte Carlo and particle filters

When performing Bayesian inference for complex statistical models,
it is necessary to approximate numerically the resulting posterior dis-
tribution as it is typically intractable to compute analytically. For more
than half a century, much effort has been placed on deriving sampling
schemes for posterior distributions by relying on Markov chain Monte
Carlo (MCMC) methods (see Liu (2008) and Robert and Casella (2013)
for comprehensive reviews of the literature and Hansen et al. (2016) for
the specific case of informed spatial priors). These schemes generally
consist of sequential perturbations to candidate inputs u followed by
either acceptance or rejection of the proposed perturbations with a
probability that involves the likelihood ratio between the new and the
old u and their prior probability ratio. Standard algorithms such as the
Metropolis-Hastings algorithm and the Gibbs sampler have become
very popular but they can be highly inefficient if the proposal dis-
tributions are not well-chosen and/or if the target (posterior) dis-
tribution exhibits complex patterns of dependence. A substantial re-
search effort has thus been placed on making MCMC approaches more
efficient, for instance, via parallel tempering (Earl and Deem, 2005),
population MCMC (Ter Braak, 2006) and/or through derivative-based
perturbations with Metropolis-adjusted Langevin algorithms and Ha-
miltonian MCMC (Neal, 2011). In infinite-dimensional settings, adap-
tations of MCMC schemes have been touched upon, notably in
Cotter et al. (2013), and the links between performance and the spectral
gap that controls the rate of exponential decay to i’ have been estab-
lished in Hairer et al. (2014).

MCMC methods for Bayesian inverse problems are suitable when we
are interested in inferring parameters, for example, a hidden

a) Proxy space b) Exact space

@ Leaming set
Proxy responses
@ Exactresponses

Fig. 3. By considering a learning set of contaminant breakthrough
curves consisting of proxy responses based on single-phase saline
transport simulations “exact” responses obtained using a two-phase
solver (purple dots in (a) and (b)), Josset et al. (2015b) used func-

tional principal components analysis (FPCA) to develop an error
model that allows proxy simulations (orange dots in (a)) to be mapped
into “exact” responses (blue dots in (b)). Using a learning set based on
20 geostatistical realizations, they demonstrated for a fluvial aquifer
with five distinct facies how error-corrected proxy modeling leads to
error-corrected predictions that are similar (correlation coefficient of
0.97) to the full physics responses. (For interpretation of the refer-
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(unobserved) static random field from data. However, there is also a
wealth of data assimilation problems in hydrogeological and geophy-
sical applications that can be recast as statistical inference problems for
non-linear and non-Gaussian state-space models (Chang et al., 2012;
Evensen, 2009; Manoli et al., 2015; Montzka et al., 2011; Oliver and
Chen, 2011; Schoniger et al., 2012), with some of the published
methods (e.g., Andrieu et al. (2010), Finke et al. (2016)) being ap-
plicable to complex prior information (e.g., MPS). We discuss below
sampling techniques that have been developed in this context. These
methods do not make any distributional assumptions on the prior dis-
tribution, but we highlight that it still remains to be investigated how
they would perform within a MPS context.

Formally, a state-space model is defined by a discrete-time
R"—valued hidden Markov process (X)), - 1 such that X; ~ pg(-) and
X;|(Xi—1 = x) ~ fo(-|x) for t = 2 and we collect R"»—valued observations
(Y), =1 which are conditionally independent given (X,),- 1 and dis-
tributed according to Y;|(X; = X) ~ g,(-|x). For example, if we assume
that Y; = ¢(X;) + ¢, where ¢, is a multivariate standard normal noise
then g(y|x) is the multivariate normal density of argument y, mean ¢(x)
and identity covariance. Here 6 € © denotes the parameters of the
model. In the case of a static random field to be inferred, & = u. When 6
is known, inference about (X)), = 1 is referred to as state estimation. On-
line inference (filtering) refers to sequential assimilation of the data as
they become available. In batch/off-line inference (smoothing), the
estimated states are also affected by the data acquired at later times.
When 0 also needs to be estimated/calibrated from observations, this is
referred to as parameter estimation and it can also be performed either
on-line or off-line. In hydrogeology, Y, could represent salinity mea-
surements within a coastal aquifer at some specific time, X, the corre-
sponding salinity distribution throughout the same aquifer, and 6 an
unknown hydraulic conductivity distribution and boundary conditions.

Standard MCMC methods can be used in this context, but it is often
difficult to build efficient algorithms. In many fields such as computer
vision, econometrics and robotics, particle methods, also known as
Sequential Monte Carlo (SMC) methods, have emerged as the most
successful class of techniques to address state estimation problems as
they are easy to implement, suitable for both filtering and smoothing,
admit parallel implementation and additionally provide asymptotically
consistent state estimates. In its most generic form, SMC consists of
initiating particles from an importance distribution at time zero, re-
sampling them to ensure that they have the same weight, using the state
associated with each particle to run a forward solver and analyze the
resulting particle weight, and resampling until the particles at the new
time have the same weight (Doucet and Johansen, 2011). On- and off-
line parameter estimation procedures building upon these state-esti-
mation procedures have also been proposed; see Kantas et al. (2015) for
a recent comprehensive review. An illustration of hydrogeophysical
fully-coupled inversion using a particle filter (Manoli et al., 2015) is
given in Fig. 4. Other low-dimensional applications to hydrogeological
and hydrogeophysical problems include Chang et al. (2012),
Rings et al. (2010), Pasetto et al. (2012) and Montzka et al. (2011).

Nevertheless, SMC methods have not yet become prominent in hy-
drogeology. This is because X; often corresponds to a high-dimensional
spatial field and the variance of SMC state estimates is typically ex-
ponential in the state dimension nx where routinely ny > 10°. This
problem is often referred to in the literature as the curse of dimension-
ality for particle methods (Bengtsson et al., 2008). Hence, practitioners
rely on alternative approximation techniques such as the Ensemble
Kalman filter (EnKF) (Evensen, 2009; Oliver and Chen, 2011; Schoniger
et al., 2012). Empirically, the EnKF scales much better with ny than
particle methods, but relies on potentially crude Gaussian approxima-
tions of the posterior distributions of interest. A non-standard particle
method known as the equivalent weights particle filter has also been
proposed and has shown empirical success in addressing high-dimen-
sional data assimilation problems (Ades and Van Leeuwen, 2013).
However, it does not provide consistent state estimates and it is unclear
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how to control the error introduced by this scheme. The need for novel
particle methods that can scale to high-dimensional settings has been
recognized and there is a fast emerging literature addressing these
problems in data assimilation and statistics (Penny and Miyoshi, 2015;
Poterjoy, 2016; Poterjoy and Anderson, 2016; Robert and Kiinsch,
2016). A detailed theoretical analysis of such a scheme has been pro-
posed in Rebeschini and Van Handel (2015) where it was shown ri-
gourously that it can overcome the curse of dimensionality. These
methods provide asymptotically biased state and parameter estimates,
the bias being controlled under suitable regularity assumptions, or
consistent estimates whose mean square errors go to zero at a slower
rate than the usual 1/N Monte Carlo rate (Finke and Singh, 2016;
Rebeschini and Van Handel, 2015). The main idea behind these tech-
niques is to ignore long-range dependencies when performing Bayes
updates in a filtering procedure, an idea borrowed from the ensemble
Kalman filter literature where it is referred to as localization
(Evensen, 2009). The components of the state are partitioned into
blocks and resampled using only the corresponding observations. Some
of these methods are promising for high-dimensional hydrogeological
and hydrogeophysical state and parameter estimation although several
challenges remain to be addressed. First, these methods introduce a
non-homogeneous bias amongst state component estimates, which is
damaging as X, often corresponds to a spatial field (e.g., salinity or soil
moisture distribution) in hydrogeological applications (Robert and
Kiinsch, 2016). Second, the smoothing and parameter estimation pro-
cedures developed in Finke and Singh (2016) cannot be applied when
only forward simulation of (X)), - 1 is feasible. Third, while consistent
estimates can be obtained by scaling the size of the blocks with N, the
resulting rate of convergence is low and new efficient approaches are
required.

An alternative class of particle-based techniques that provides
consistent state and parameter estimates in high-dimensional settings
are off-line procedures which build on particle MCMC methods, a class
of MCMC methods relying on particle proposals introduced in
Andrieu et al. (2010). For example, Shestopaloff and Neal (2016) pre-
sented a modification of the conditional SMC algorithm of
Andrieu et al. (2010) which performs empirically significantly better in
high-dimensional settings by introducing positive correlation between
particles (Finke et al., 2016). Murphy and Godsill (2016) proposed a
block Gibbs sampling scheme by updating the path of one state com-
ponent at a time conditional on the other component paths. Although
these techniques are not yet well-understood theoretically, they are
highly promising. However, when they are used to perform parameter
estimation, they alternate between updating 0 conditional to (X,); =1
and (X)), = 1 conditional to 0. As the parameter and states are very often
strongly correlated under the posterior distribution, this can result in an
inefficient scheme. Alternative techniques such as the particle marginal
Metropolis-Hastings algorithm that update parameters and states si-
multaneously scale very poorly in a data-rich environment (Andrieu
et al., 2010; Doucet et al., 2015) but various improved schemes have
been  recently proposed to  mitigate these  problems
(Deligiannidis et al. (2015), Jacob et al.).

5. Selected challenges

Below, we highlight two important topics for future research:
namely, how to best account for modeling errors in hydrogeological
Bayesian inversion (Section 5.1) and for petrophysical errors in hy-
drogeophysical inversion (Section 5.2). We describe existing work in
these domains and possible paths forward.

5.1. Accounting for modeling errors in Bayesian inverse problems
Proxy models (Section 3.2) are increasingly used in Bayesian in-

ference for geoscientific problems, where it is not uncommon to require
millions of forward model runs when dealing with high-dimensional
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Fig. 4. An iterated particle filter method was developed by Manoli et al. (2015) to infer the hydraulic conductivity of four zones of known geometry given geophysical data. (a) A
synthetic infiltration experiment in the vadose zone led to a (b) water plume evolving over time that was sensed by electrical resistivity tomography data under the assumption of a known
and perfect petrophysical relationship. (d-f) The inferred hydraulic conductivities converged to the true values.

parameter spaces. In Looms et al. (2008) and Scholer et al. (2012), for
example, a 1D Richards equation is used to approximate 3D unsaturated
flow when estimating soil hydraulic properties from time-lapse geo-
physical data. Coarsened discretization proxies are employed in
Dostert et al. (2009) and O’Sullivan and Christie (2005) for unsaturated
parameter estimation and reservoir history matching, respectively.
There has also been increasing recent use of PCE surrogates for Baye-
sian parameter estimation (Balakrishnan et al., 2003; Bazargan et al.,
2015; Laloy et al., 2013; Ma and Zabaras, 2009; Marzouk et al., 2007;
Zhang et al., 2013). It is critical that modeling errors arising from the
use of proxy models are properly taken into account when solving
Bayesian inverse problems; not doing so can easily lead to biased pos-
terior parameter estimates that have little to no predictive value
(Brynjarsdéttir and O’Hagan, 2014). While the latter finding is now
relatively well understood in hydrology and reservoir engineering
(e.g., Beven and Freer, 2001; Cooley and Christensen, 2006; Doherty
and Welter, 2010; Gupta et al., 2012; O’Sullivan and Christie, 2005),
few workable approaches (see below) for dealing with modeling errors
are yet in view. As mentioned previously, a formal and general inverse
problem formulation that accounts for modeling errors (described by a
probability density function) has existed for 35 years (Tarantola and
Valette, 1982). A practical challenge, however, is how to accurately
quantify and efficiently account for this probability density function
when dealing with high-dimensional parameter fields, large data sets,

and highly non-linear physical processes.

In hydrogeology and geophysics, work to address modeling errors
for high-dimensional and data-rich inverse problems includes (i) studies
where the errors are assumed to be multivariate Gaussian distributed
and the corresponding means and covariances are determined either
empirically prior to inversion based on a small number of stochastic
model-error realizations (Hansen et al., 2014; O’Sullivan and Christie,
2005) or during the inversion by means of sequential data assimilation
(Calvetti et al., 2014; Erdal et al., 2014; Lehikoinen et al., 2010); and
(ii) applications of the two-stage MCMC approach, whereby the proxy is
employed as a first “filter” to improve the acceptance rate of parameter
configurations that are tested using the high-fidelity forward model
(Cui et al., 2011; Efendiev et al., 2006; Josset et al., 2015a). A key
challenge with respect to (i) is that modeling errors in real-world non-
linear problems may be strongly non-Gaussian with characteristics that
vary significantly over the input parameter space, meaning that the
underlying assumptions are too simple and cannot be easily fixed by,
for example, consideration of a more appropriate parametric distribu-
tion or formalized likelihood (e.g., Schoups and Vrugt, 2010; Smith
et al., 2010). With regard to (ii), there is limited computational savings
because each posterior sample acquired using two-stage MCMC must be
tested with respect to the high-fidelity forward model.

In the field of statistics, one of the most influential works on model
error is Kennedy and O’Hagan (2001), whereby the discrepancy
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between the proxy and the high-fidelity simulation model is described
by a GP. The approach is flexible as the parameters governing the GP
are estimated as a part of the inversion procedure. Nevertheless, one
issue with such an approach is that it is not guaranteed that the inferred
model parameters and error model can be used for predictive forward
modeling with different boundary conditions and forcing terms. An-
other key concern in the context of geoscience applications is model
dimensionality. The vast majority of applications of Kennedy and
O’Hagan (2001) and its variants (e.g., Bayarri et al. (2007);
Brynjarsdéttir and O’Hagan (2014); Higdon et al. (2004); Tuo and Wu
(2015a)) have focused on small numbers of data and low-dimensional
parameter spaces. In contrast, spatially-distributed inverse problems in
hydrogeology and geophysics may involve hundreds or thousands of
data, often measured over both space and time and under different
source conditions, and many thousands of unknowns. Nevertheless,
when solving inverse problems over spatial domains, it is important to
realize that the number of independent model parameters is typically
much smaller than the number of grid elements on which the model
realizations are mapped. This is indeed a major motivation for in-
troducing spatial priors (Gaussian-random-field or based on MPS) as
they help to make intractable inverse sampling problems tractable (see
discussion in Hansen et al. (2016)).

In terms of practical applications, open questions include: (i) Can a
GP model be used to effectively represent model discrepancy in pro-
blems where spatial and temporal correlations between model para-
meters and data are complex, the statistical nature of the modeling
errors changes significantly over the input parameter space, and/or the
model discrepancy is not smoothly varying? (ii) How can hydro-
geological and geophysical data be transformed and/or spatially orga-
nized to enable appropriate representation of modeling errors using a
GP model? (iii) How computationally burdensome does the approach of
Kennedy and O’Hagan (2001) become in high-dimensional data spaces,
and how may this be alleviated? Work by Higdon et al. (2008) suggests
that basis representations can be exploited to significantly reduce di-
mensionality and help in the latter regard. Promising recent research by
Xu and Valocchi (2015) shows that a data-driven GP construction can
be used for effective inference under modeling errors in a moderate-
dimensional hydrological problem (Fig. 5). From a more theoretical
point of view, mathematical properties of Kennedy and O’Hagan’s ap-
proach and variations thereof have been investigated in Tuo and Wu
(2015b); 2016), tackling in particular parameter identifiability and
estimation issues.

One recent idea to account for model errors is that of
Sargsyan et al. (2015), whereby modeling errors are accounted for by
model parameters that are intrinsically uncertain. That is, each model
parameter is described by a mean value and, for example, a standard
deviation that is inferred as part of the inversion process. Another
avenue to be explored is the question of whether we are best to focus on
“correcting” the simulated data from proxy forward models to better fit
the high-fidelity forward simulations, or whether we should aim to
transform measured data into quantities that are more consistent with
the proxy. A related approach involving the use of data summary sta-
tistics (i.e., using statistics of the data set instead of likelihood functions
that are based on pair-wise comparisons of observed and simulated
data) is employed in approximate Bayesian computation to address si-
milar issues (e.g., Beaumont et al., 2002; Marjoram et al., 2003). Fi-
nally, it is possible to ignore modeling error altogether when per-
forming MCMC posterior inference using a proxy if one subsequently
corrects the corresponding pseudo-posterior using importance sampling
based on the high-fidelity forward model (Vihola et al., 2016). The
advantage of this approach is that, unlike two-stage MCMC, the use of
the high-fidelity forward model can be parallelized.

5.2. Hydrogeophysics and uncertain petrophysical relationships

Since the early 1990s (Copty et al., 1993; Hyndman et al., 1994;
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Rubin et al., 1992), hydrogeology has seen an ever-increasing use (and
acceptance) of geophysics. Geophysics offers non-invasive imaging of
lithology and monitoring of mass transfer without the need for borehole
access (even though such infrastructure is very helpful). It is well es-
tablished that geophysical data offer complementary information to
traditional hydrogeological data (Binley et al., 2015) (e.g., different
sensitivity patterns and scales of investigation, no need to inject or
pump water and solutes in the subsurface). Currently, there is a push
towards so-called fully-coupled hydrogeological and geophysical mod-
eling and inversion aiming at seamless integration of hydrogeological
and geophysical data (Ferré et al., 2009; Linde and Doetsch, 2016). In a
fully-coupled approach, the hydrogeological model and its predicted
states define, together with a petrophysical relationship, the geophy-
sical model. Discrepancies between associated geophysical forward
model predictions and observed data can then be used in the inversion
to guide, possibly together with hydrogeological data, the update of the
hydrogeological model parameters. This research field at the interface
of hydrogeology and geophysics is often referred to as hydrogeophysics.
Despite its promise, petrophysical relationships that link geophysical
properties with hydrogeological properties and state variables are un-
certain and we are not aware of hydrogeophysical inversion studies that
fully account for this uncertainty. By referring to hydrogeophysical
inversion, we exclude the extensive literature in hydrogeophysics on
sequential approaches in which geophysical models are first obtained
by inversion before these models are treated as “data” in a second stage
to predict hydrological target variables given an uncertain petrophy-
sical relationship and available hydrological data (Chen et al., 2001;
Copty et al., 1993). The risk for strong bias when applying such ap-
proaches is well demonstrated (Day-Lewis et al., 2005). Ignoring pet-
rophysical uncertainty in hydrogeophysical inversion leads to over-
confident predictions and the risk that hydrogeological colleagues
become disenchanted with geophysics (Carrera Ramirez et al., 2012). In
terms of methodology, the petrophysical relationship is the only major
difference in hydrogeophysical inversion compared with classical hy-
drogeological inversion.

Before discussing the general non-linear case, we illustrate the
strong impact of petrophysical uncertainty by considering the simple
synthetic case of a linear forward model and a linear petrophysical
relationship. For linear theory, a Gaussian-random-field prior model,
Gaussian noise and petrophysical errors, one can propagate petrophy-
sical uncertainties into the data covariance matrix and rely on well-
known analytical solutions for the posterior mean and standard de-
viation (Tarantola, 2005). Fig. 6a is the true porosity field. Assuming a
total of 729 first-arrival ground-penetrating radar travel times acquired
for various source and receiver positions at the left and right side of the
model domain (contaminated with 0.5 ns of uncorrelated Gaussian
noise) and a perfect petrophysical relationship (black line in Fig. 6e)
leads to the mean porosity field in Fig. 6b. The information content in
the data is high and there is an important decrease in posterior porosity
uncertainty (Fig. 6¢) compared to the standard deviation of 0.04 in the
prior model. Fig. 6d confirms that the resulting data covariance matrix
is the conventional diagonal matrix. When accounting for uncorrelated
petrophysical errors with strong (correlation coefficient of 0.85; Fig. 6e)
and moderately strong (correlation coefficient of 0.59; Fig. 6i) petro-
physical relationships, we find that the resulting mean porosity field is
smoother (Fig. 6f and j), and that the posterior standard deviations are
larger (Fig. 6g and k) compared to the case of no petrophysical error.
Importantly, the data covariance matrix that accounts for both data and
petrophysical errors is no longer a diagonal matrix (Fig. 6h and 1i).
Clearly, petrophysical uncertainty decreases the information content of
the geophysical data for hydrogeological inference and broadens the
likelihood function (for the true model, the noise-contaminated data
have a log-likelihood of —508 when there is no petrophysical errors,
—944 for the strong petrophysical relationship and —1259 for the
moderately strong petrophysical relationship). The impact of petro-
physical errors is even stronger when considering spatial correlations
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(not shown). Unfortunately, the inference problem is much more
complicated for the general non-linear case as discussed below.
Geophysical data (e.g., electrical resistances, electromagnetic
transfer functions, waveform recordings) are related to subsurface
physical properties (e.g., electrical conductivity, seismic wave speeds).
In most applications, these properties represent hidden variables v of
limited practical interest, while the underlying goals of geophysical
surveys are often to infer state variables (e.g., temperature, pressure,
water content, gas saturation) or lithological properties (e.g., porosity,
permeability) of, for example, aquifers. For conciseness, we refer to all
such target variables and properties as u. When forward solvers take the
hidden variables v rather than u as input, for example, via a non-linear
geophysical “forward map” %,: v — %,(v), some knowledge of the
petrophysical (rock physics) relationships that link u and v is required
to infer u from geophysical observables y = %, (v) + €. These re-
lationships are typically non-linear, uncertain, and non-stationary
(Mavko et al., 2009). A possible description of such a relationship is
v=2%(u)+ep, 6)

where the residual ep may exhibit non-stationarity and spatial depen-
dence. Spatial dependence of €p is expected because of the common

Stream gain-and-loss [m 3/d] Stream gain-and-loss [m 3Id]

Stream gain-and-loss [m 3/d]
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Fig. 5. Xu and Valocchi (2015) considered a
synthetic test example involving a “true” 2-
D Gaussian hydraulic conductivity field in
contact with a river. The inverse problem
was parameterized in terms of 12 pilot
points. Ignoring model errors caused by this
smooth representation leads to biased pre-
dictions in terms of (a-b) drawdown at two
locations and (c) river-groundwater ex-
change and unrealistically low uncertainty
bounds. By inferring a Gaussian process
model describing model errors during the
calibration period, the authors obtained (d-
f) significantly improved predictions and
more realistic uncertainty bounds. Un-
fortunately, this approach lead to predic-
tions that are unphysical (e.g., not honoring
mass constraints). To circumvent this, they
considered inversion with a data covariance

o = N W

4

w

2 matrix that include both the observational
1 and the previously inferred model errors. (g-
i) The corresponding predictions based on
0 the resulting inversion model are physically-
consistent and the bias is low.
-1
-2
0 10 20
Year
<104 (1)
2 @ deldoss

10
Year

20

Validation data
Calibration observations

simplifying assumption of constant petrophysical model parameters in
hydrogeophysical inversions (Kowalsky et al., 2004; Lochbiihler et al.,
2015). In nature, the most appropriate petrophysical parameter values
will be different for different lithologies, which suggests that the scales
of spatial dependence correspond to those of geological bodies. An al-
ternative is to infer for geological bodies with different petrophysical
parameters, but this has its own problems in terms of non-uniqueness,
assumptions of low variability within each lithological unit
(McLaughlin and Townley, 1996) and a much more non-linear inverse
problem than for the continuous case. Assuming here for simplicity fi-
nite-dimensional settings with continuous distributions and denoting pp
the probability density of ep, we obtain a joint prior on (u, v) with
density
Pjoint0 (Ws V) = p(@)pp(V — 7 (w)). %)
In geophysics, inference of the joint conditional distribution of (u,
v) given geophysical data y is referred to as lithological tomography
(Bosch, 1999). A recent tutorial (Bosch, 2016) describes how to for-
mulate Bayesian networks (using direct acyclic graphs) for arbitrarily
complicated situations involving multiple data and parameter types, as
well as a hierarchy of hidden variables. For simplicity, we focus our
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Fig. 6. Synthetic example of porosity inference from crosshole GPR travel time data under assumptions of linear theory, a known Gaussian-random-field model, and uncorrelated data and
petrophysical errors. (a) True porosity field, (b) inferred mean model, (c) standard deviation and (d) structure of the data covariance matrix under the assumption of a perfect
petrophysical relationship (black line in (e)). (e) Strong petrophysical relationship and resulting (f) mean model, (g) standard deviation and (h) structure of the data covariance matrix. (j-

1) corresponding results for a (i) rather strong petrophysical relationship.

discussion on a single hidden variable v. The standard approach (no-
tably advocated by Bosch (2016)) for posterior simulations of u consists
in applying (variations of) the Metropolis-Hastings algorithm to (u, v),
where at each iteration the model perturbation consist in (i) drawing u,
and then (ii) drawing v conditionally on u. Unfortunately, such a
sampling strategy can be very inefficient when confronted with high
parameter dimensions, large data sets with small errors €, and uncertain
petrophysical relationships. The main reason for this is that the like-
lihood Ly (v; y) = p(y — %, (v)) is very peaked, which implies that the
geophysical data need to be fit in great detail even for cases when
petrophysical uncertainty is significant (see discussion surrounding
Fig. 6).

As alternatives, we suggest two approaches to directly sample from
p¥(u) without needing to sample from p}%im (u, v). The underlying mo-
tivation is to take advantage of the uncertainty of petrophysical re-
lationships and work directly with approximations of
Ly(u;y) = [ Ly(v; y)pp(v — Z (u))dv, which is expected to be less
informative (i.e., less peaked) than Ly(v; y). These approximations are
needed as there are generally no closed-form expressions to evaluate
Ly(u; y).

The first approach builds on the pseudo-marginal MCMC method
(Andrieu and Roberts, 2009; Beaumont, 2003) and the recent corre-
lated pseudo-marginal method (Deligiannidis et al.). These methods are
based on the remarkable property identified by Beaumont (2003) that a
Metropolis-Hastings algorithm that uses a non-negative unbiased esti-
mate Ly (u; y) of Ly(u; y) will sample the same target distribution as an
ideal marginal Metropolis-Hastings algorithm that uses Ly(u; y). Since
the expression needed to evaluate Ly(u; y) during MCMC sampling is
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unknown, it is convenient to estimate Ly (u;y) by Monte Carlo aver-
aging of Ly(-; y) over samples of v conditional on u. Clearly, Ly(-; y)
can be evaluated using standard likelihood expressions. The correlated
pseudo-marginal method improves on the pseudo-marginal MCMC
method by using correlated random samples to estimate the ratios be-
tween Ly (-;y) values of the present and proposed models in the Me-
tropolis-Hastings algorithm. This leads to lower variance estimates of
the ratios, which results in significant performance improvements (e.g.,
two orders of magnitude).

The second approach relies on a linearized Gaussian approximation.
A first-order expansion of %, around .7 (u) delivers
G (F W) + &) % % (F W) + (V& (F W), &). ®)

From there it is straightforward to derive the data covariance matrix
of y given u by adding two distinct contributions: one related to the
observational errors and the other one related to the petrophysical er-
rors (after appropriate scaling with the Jacobian matrix). Assuming
further Gaussian distributions for ep and € leads to a completely de-
termined Gaussian approximation for L. In essence, this is an extension
of the linear analysis in Fig. 6 to the weakly non-linear case. We expect
this approach, which is similar to the so-called multivariate delta
method (van der Vaart, 2000), to be efficient when the Jacobian matrix
is comparatively cheap to calculate. The accuracy of the method is
expected to degrade with increasing non-linearity and degree of pet-
rophysical uncertainty.
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6. Concluding remarks

It is only recently that computational resources have enabled rou-
tine forward UQ and Bayesian sampling-based inversion for non-trivial
problems involving high-parameter dimensions and complex prior
distributions. In this review, we argue that (1) multi-resolution mod-
eling using MLMC approaches is suitable for effective forward UQ given
a distribution of material properties, while their role in inverse mod-
eling remains to be explored; (2) general formulations of data assim-
ilation problems based on particle methods (Sequential Monte Carlo)
that are valid under strong non-linearity and non-Gaussianity are still
underused in hydrogeology and geophysics and that more work is
needed to enable accurate inference of posterior parameter distribu-
tions for such state-space models; (3) the use of low-fidelity (proxy)
forward models are inevitable both for forward UQ and large-scale
Bayesian inversion problems, while the question of how to quantify and
efficiently account for modeling errors remains an important research
topic; (4) that new approaches, such as the pseudo-marginal MCMC
method, are needed to effectively incorporate petrophysical uncertainty
in hydrogeophysical inversion and, thereby, to allow for proper
weighting of hydrogeological and geophysical data in joint inversions
and to avoid overly optimistic UQ. The high dimensionality and data
rich environments encountered in modern hydrogeology and geo-
physics, together with complex spatial parameter relations, call for
advanced mathematical and statistical methods that work well in high
parameter and data dimensions. We hope that this review on selected
topics on UQ will contribute in stimulating such research.
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