
On Event-Chain Monte Carlo Methods.

Nicholas Galbraith

Mansfield College

University of Oxford

September 2016

A dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science in Applied Statistics

Abstract

In this dissertation we consider a pair of continuous-time, non-reversible, rejection-

free, and piecewise deterministic MCMC methods, referred to as Event-Chain Monte

Carlo methods; respectively reflect-ECMC and flip-ECMC. We compare the two

methods in a handful of settings, and find that in all cases the performance of

the reflect-ECMC algorithm is superior. We consider extensions of the algorithms

proposed in the context of large-scale Bayesian analysis, and combine various im-

provements proposed in the literature yielding a method which we demonstrate to

outperform all previously considered methods for Bayesian logistic regression. Still

in a Bayesian context, we show how the reflection algorithm scales in the limit as

the number of observations n→∞, and find that - as was previously demonstrated

for the flip algorithm - that it is possible, using a combination of sub-sampling and

control variate ideas, to obtain a reflect-ECMC method for which the cost of obtain-

ing an independent point is O(1) in n. Furthermore, we present the first detailed

discussion concerning the tuning of the parameters of these two methods, and we

demonstrate empirically the considerable efficiency gains which are made possible by

the use of a non-diagonal ‘mass matrix’ for the reflect algorithm; this we do using a

real-data logistic regression example, and an example in which the target distribution

is that of a latent field in a Poisson-Gaussian Markov random field model.

I dedicate this work

to Grandpa and Grand-papa,

who did not live to see me fully grown

- how I wish I could see you now.

to Grandma,

who would have been proud to send a grandson off to Oxford,

as she did her son many years ago;

whose unwavering cheer was constantly uplifting, until the very end,

- how dearly I miss you.

and, to Mormor,

whom I will call as soon as I submit,

- if my writing is not up to Desbarats standard,

I will try harder next time.

And finally, to my father,

who might (I hope) at last bury his fears that I should end up working at Canadian Tire.

Acknowledgements.

Special thanks to my supervisor Professor Arnaud Doucet, without whose direction I

would not have discovered this beautiful topic, without whose invaluable guidance and

insightful suggestions this work would not have been possible, and without whose con-

versation I might have forgotten how to speak French. Thanks also to my father; I am

indebted to both he and Professor Doucet for having read an early draft and discovering

many errors which had escaped my notice. Naturally, I bear full responsibility for any

and all that remain.

Page 3 of 85

CONTENTS

Contents

1 Introduction. 5

2 Two Event-Chain Monte Carlo Methods. 8

2.1 Reflection ECMC. 8

2.2 Flip ECMC. 11

3 Simulation in Practice. 13

3.1 Example: Gaussian Distributions . 14

4 Numerical Comparisons for Gaussian Targets. 16

4.1 A Two-Dimensional Example. 16

4.2 A first 100-Dimensional Example. 17

4.3 A second 100-Dimensional Example. 21

5 Improvements for Handling Large-Scale Inference. 23

5.1 Sub-Sampling and the Alias Method. 24

5.1.1 Example: Bayesian Logistic Regression. 26

5.2 Control Variates. 29

5.2.1 Lipschitz Bounds for Logistic Regression. 31

5.3 Numerical Experiments. 31

5.4 Informed Sub-Sampling with Control Variates. 34

5.5 Further Experiments. 36

5.6 On Scaling, and the Advantages of Informed Sub-Sampling. 37

5.6.1 Scaling of the Reflection Algorithm. 37

5.6.2 Scaling of the Reflection Algorithm with Control Variates. 38

5.7 Limitations. 41

6 On Tuning Parameters and Exploiting Problem Geometry. 43

6.1 Tuning of Flip-ECMC. 43

6.1.1 The Speed Parameters. 43

6.1.2 The Gamma Parameters. 44

6.2 Tuning of Reflect-ECMC. 45

6.2.1 The Refreshment Parameter. 46

6.2.2 The Mass Matrix. 47

6.3 Example: Real Data. 49

6.4 Example: Poisson-Gaussian Markov Random Field. 50

7 Conclusions and Further Work. 54

8 Appendix A: Expectations and ESS. 59

8.1 On Estimating Expectations and the Effective Sample Size. 59

9 Appendix B: Python Code. 61

Page 4 of 85

1 INTRODUCTION.

“I am thinking of something much more important than bombs. I am

thinking about computers.”

- John von Neumann

1 Introduction.

Despite the (comparatively) recent explosion of interest in Markov chain Monte Carlo

methods, heralded by the seminal papers Geman and Geman [16] and Gelfand and Smith

[15] - the annals of history will testify to the fact that the first Markov-chain Monte

Carlo (MCMC) algorithm was developed by physicists. Motivated by the need to simu-

late configurations of particle systems, in 1953 a group of researchers at the Los Alamos

laboratories (including Nicholas Metropolis, the algorithm’s namesake) employed a sim-

ple random-walk sampler to explore the distribution of the states [26]. An extension

of this method proposed in Hastings [18] - known as the Metropolis-Hastings algorithm

- has enjoyed widespread popularity and success, although it is not without its limita-

tions. Hampered in practice by the slow exploration of the state space which results from

random-walks, the MH method has been shown to be dramatically inferior in many ap-

plications to more sophisticated MCMC algorithms which employ some device to avoid

random-walk behaviour. A well-known example being the Hamiltonian Monte Carlo

(HMC) algorithm, another MCMC method introduced by physicists, originally proposed

in Duane et al. [14], where it was successfully used for lattice field theory simulations of

quantum chromodynamics; it was not until Neal [29, 30] that the method was brought to

the attention of the statistical community - for an excellent review, see Neal [31]. HMC

is an MCMC method which operates on a state space augmented to include velocity vari-

ables, the joint density of these and the variables of interest is expressed as a function

of the Hamiltonian which encodes the total energy of the system. Leveraging knowledge

of the gradient of the Hamiltonian, proposal moves are designed by approximating the

Newtonian dynamics of the system and using a Metropolis-Hastings correction [31]; us-

ing such transition kernels markedly reduces the number of iterations needed to reach an

independent point, and thus effectively suppresses random-walks [31].

In this dissertation, we will consider a novel type of MCMC algorithm - once again

proposed by physicists. The algorithm was originally introduced in Peters and de With

[33] and used to simulate molecular dynamics under general forms of pairwise potential

energies, where its effectiveness was demonstrated in simulating a system governed by

Lennard-Jones interactions. The method has since been successfully implemented in a

range of other settings, such as hard-sphere systems, ferromagnetic Heisenberg models,

continuous-spin systems, and many more; in each case showing marked efficiency gains

over local random-walk Metropolis algorithms and often outperforming other state-of-the-

art methods as well, see e.g. [22, 27, 28, 32, 33]. Despite the manifest utility and versatility

of these event-chain Monte Carlo (ECMC) algorithms, no notice of them was taken by

statisticians until Bouchard-Côté et al. [8] very recently expounded and generalized the

Page 5 of 85

1 INTRODUCTION.

algorithm of Peters and de With [33]; even more recently, Bierkens et al. [7] propose a

very similar method and elaborate on its remarkable properties.

Both the classical Metropolis-Hastings (MH) algorithm and HMC adhere to a common

framework for constructing MCMC algorithms in which candidate moves are generated

according to some proposal distribution and then accepted or rejected with probability

given by the MH ratio, creating a discrete-time reversible Markov chain on the state space

which converges to its invariant distribution which is by construction the target distri-

bution of interest. By contrast, algorithms which we will consider break free from this

restrictive paradigm. These ECMC methods exploit continuous-time Markov processes

to generate a ‘continuum of samples’ from the distribution of interest; furthermore, they

are non-reversible and rejection-free. The condition of detailed balance that is habitu-

ally invoked to demonstrate that particular MCMC samplers have the correct invariant

distribution is broken, and proofs of correctness rely on showing that the weaker global

balance condition is satisfied [33]. Simulation of the process is carried out by a simulation

of a succession of events, in between which the process is deterministic; whence the name

event-chain Monte Carlo (ECMC).

In this dissertation, we will present, compare, analyse, and where possible improve

two ECMC algorithms: namely those proposed in Bouchard-Côté et al. [8] and Bierkens

et al. [7], respectively. As mentioned above, these are non-reversible and rejection-free

MCMC methods. Theoretical vindication of the use of non-reversible MCMC methods

is well established, having been shown to yield significantly faster mixing Markov chains

in some simple examples, see e.g. Diaconis et al. [13] or Hwang et al. [20]. Empirical

results are in many cases equally encouraging - a small selection of examples include

[22, 27, 28, 32, 33, 8, 7]. A humorous and yet perspicacious analogy which we take

the liberty of quoting is drawn in Turitsyn et al. [38] between the use of non-reversible

sampling and a real-life scenario with which many of us will no doubt be all too familiar:

the mixing of a cup of coffee. They percipiently state it thus: “Consider mixing sugar

into a cup of coffee, which is similar to sampling, as long as the sugar particles have

to explore the entire interior of the cup. [Standard MCMC] dynamics corresponds to

diffusion taking an enormous mixing time. This is certainly not the best way to mix;

moreover, our everyday experience suggests a better solution - enhance mixing with a

spoon. Spoon stirring... significantly accelerates mixing, while achieving the same result:

uniform distribution of sugar concentration over the cup.” The methods we consider

employ the expedient of a ‘lifted’ state space - first introduced and analysed in Diaconis

et al. [13] and generalized in Turitsyn et al. [38] - in which introducing variables which

guide the dynamics of the non-reversible processes and curb the diffusive behaviour which

is so detrimental to rapid mixing. In the continuous state-space settings which will be

our focus, this lifting variables correspond to velocities which determine the speed and

direction of motion through the support of the target. While similar in nature to the

velocity variables of HMC, these are purely synthetic and no physical interpretation is

forthcoming [38].

The structure of this paper is as follows: in Section 2, we introduce two ECMC meth-

Page 6 of 85

1 INTRODUCTION.

ods which we refer to respectively as the reflection method (of Bouchard-Côté et al. [8])

and the flip method (of Bierkens et al. [7]). In Section 3, we discuss certain practical con-

siderations involved in the use of these methods; of chief concern will be efficient methods

of simulating the event times. In Section 4, we compare the empirical performance of

these two methods in various simple scenarios in which the target follows a Gaussian

distribution. In Section 5, we discuss the use of these methods for large-scale Bayesian

analysis, and demonstrate using logistic regression as an example that large gains over

the vanilla algorithms are possible using sub-sampling ideas, as first shown in both [8, 7];

furthermore, we show that the various improvements suggested in [8, 7] can be combined,

yielding a strategy which outperforms all previous implementations. Additionally, we

show that the arguments of [7] concerning the scaling for large numbers of data points

are applicable in the context of the reflection algorithm, and we leverage this analysis to

glean an understanding of the potential efficiency gains made possible by the ‘informed’

sub-sampling method introduced in [8]. In Section 6, we discuss the issue of tuning the

various parameters of the two algorithms, and in particular give an indication by means

of examples on synthetic and real data of the potential for large improvement - partic-

ularly in the context of the reflection algorithm. Finally, in Section 7, we present our

conclusions, discuss the scope and limitations of the algorithms, and suggest directions

for further research.

Page 7 of 85

2 TWO EVENT-CHAIN MONTE CARLO METHODS.

“Come Watson, come! The game is afoot.”

- Sherlock Holmes, The Adventure of the Abbey Grange

2 Two Event-Chain Monte Carlo Methods.

Consider the general problem of drawing samples from a probability measure µ on

(R,B(Rd)) - that is, d-dimensional Euclidean space with the Borel σ-algebra - in or-

der to evaluate expectations Eµ[φ] =
∫
φ(x) dµ of arbitrary functions φ: Rd → R. In

the ECMC framework, this is accomplished via the construction of a continuous-time

Markov ‘switching’ process (see, e.g. [3]) on an extended state space which, as we shall

see shortly, possesses the usual desired properties of invariance and ergodicity. For our

purposes we may assume that µ admits a density with respect to the Lesbesgue measure

which we will denote by π; thus:

µ(dx) = π(x) dx;

furthermore, we assume that π : Rd → R is continuously differentiable. We let U(x) =

− log π(x), which we refer to as the associated energy. In the following subsections, we

describe two ECMC methods which marginally produce samples from π, first defining

them through their generators, then describing informally how they evolve with time and

finally giving an algorithmic description of how to simulate them. We follow the work of

Bouchard-Côté et al. [8] and Bierkens et al. [7] respectively.

2.1 Reflection ECMC.

Consider the space ER = Rd × Rd, and let C1(ER) denote the space of continuously

differentiable real-valued functions on ER. Let ψ be a density for a probability measure

on Rd, and let ρ(x, v) = π(x)ψ(v) for x ∈ Rd and v ∈ Rd be a density on ER. Now, for

h ∈ C1(ER) and λ0 ≥ 0, consider the stochastic process {Ξ(t)}t≥0 = {(X(t), V (t))}t≥0

with infinitesimal generator given by

Lh(x, v) = 〈∇xh, v〉+λ(x, v) (h(x,R[x]v)− h(x, v)) +λ0

∫
(h(x, s)−h(x, v))ψ(s) ds, (1)

where 〈·, ·〉 denotes the Euclidean inner product and ∇x =
(

∂
∂x1

, . . . , ∂
∂xd

)
denotes the

gradient operator with respect to the x variables. Finally, R[x] denotes the following

reflection operator at x:

R[x]v =

(
Id − 2

∇U(x)∇U(x)t

〈∇U(x),∇U(x)〉

)
v = v − 2

〈∇U(x), v〉
||U(x)||2

∇U(x), (2)

where Id is the d× d identity matrix and || · || the Euclidean norm. This operator models

an elastic collision of a particle of velocity v against an energy barrier orthogonal to

the gradient vector ∇U(x), and is what drives the dynamics of the process, along with

Page 8 of 85

2 TWO EVENT-CHAIN MONTE CARLO METHODS.

the intensity function λ(·, ·) which determines the rate at which reflections occur; this is

defined to be

λ(x, v) = (〈∇U(x), v〉)+ (3)

where (a)+ denotes, for a ∈ R, the positive part of a, that is, (a)+ := max(0, a). It can

be shown that the operator in (1) is the generator of a piecewise-deterministic Markov

process, which evolves linearly in between random ‘switching’ events, and satisfies the

strong Markov property; see Davis [11].

Given an initial state Ξ(0) = Ξ(0) = (X(0), V (0)) = (x(0), v(0)) ∈ ER, the process may

be described as follows: for t ∈ [0, τ), the velocity remains constant while the position

variables move in a straight line determined by v0, thus Ξ(t) = (x(0) + tv(0), v(0)). The

first event time τ (0) is defined to be the minimum of τ1, τ2 - the first arrival times of two

Poisson processes, respectively the first arrival of a homogeneous Poisson process with

rate λ0 and the first arrival of an inhomogeneous process with rate

λ(x(t), v(t)) = λ(x(0) + tv(0), v(0)) =
(
〈∇U(x(0) + tv(0)), v(0)〉

)+
.

If τ (0) = τ1, then x(1) = x(0)+τ (0)v(0) and v(1) ∼ ψ is drawn from its marginal distribution

which will usually be an isotropic Gaussian or the uniform distribution on the (d − 1)-

sphere, so that Ξ(τ (0)) = Ξ(1) = (x(1), v(1)); in this case we say that τ (0) is a ‘refreshment’

event. If τ (0) = τ2, then again x(1) = x(0) + τ (0)v(0), but now v(1) = R[x(1)]v(0) so that

Ξ(τ (0)) = Ξ(1) = (x(1), v(1)), and we say that τ (0) is a reflection event. The process now

begins anew with initial state Ξ(1), yielding a sequence {Ξ(n), τ (n)}n≥0 consisting of the

event times and the corresponding values of the position and velocity; clearly it suffices

to store only the (x, v) coordinates at the times when events occur, as the state at any

intermediary time can easily be interpolated from them. Pseudocode for the algorithm

is given in Algorithm 1 below.

The following result (Theorem 1 from [8]) allows us to use the reflection algorithm in

practice.

Theorem 2.1 For any λ0 ≥ 0, the Markov kernel associated to the generator in (1)

is non-reversible with invariant distribution ρ, where ρ(x, v) = π(x)ψ(v). Furthermore,

if λ0 > 0, then ρ is the unique invariant measure of the transition kernel specified by

(1), and the corresponding process satisfies the following strong law of large numbers: for

ρ-almost every Ξ(0) and h ∈ L1(ρ), we have that

lim
T→∞

1

T

∫ T

0
h(Ξ(t)) dt =

∫
ER

h(ξ)ρ(ξ) dξ a.s.

Note that the condition λ0 > 0 cannot be dropped - see [8] for an example where the

reflection algorithm fails to produce an ergodic chain when λ0 = 0. Figure 1 shows a

sample trajectory from a reflection ECMC run.

Page 9 of 85

2 TWO EVENT-CHAIN MONTE CARLO METHODS.

Algorithm 1 Basic reflection algorithm

1: Arbitrarily initialize (x(0), v(0)) ∈ Rd × Rd.
2: Let T = 0.
3: for i = 1, 2 . . . do
4: Simulate τreflect as the first arrival time of a Poisson process of rate(
〈∇U(x(i−1) + tv(i−1)), v(i−1)〉

)+
.

5: Simulate τrefresh ∼ Exp(λ0).
6: Set τ (i) ← min(τrefresh, τreflect).
7: Set x(i) ← x(i−1) + τ (i)v(i−1).
8: if τ (i) = τrefresh then
9: Set v(i) ∼ ψ.

10: end if
11: if τ (i) = τreflect then
12: Set v(i) ← R[x(i)]v(i−1).
13: end if
14: Set T ← T + τ (i).
15: Return (x(i), v(i), T).
16: end for

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Reflection ECMC Trajectory

Figure 1: Trajectory constructed from 100 events from a reflection-ECMC algorithm with
a bivariate-normal invariant distribution with mean µ = (0, 0)T ; the marginal variances
are both set to 1 and the two components have correlation equal to 0.6. The refreshment
parameter was set to λ0 = 0.2.

Page 10 of 85

2 TWO EVENT-CHAIN MONTE CARLO METHODS.

2.2 Flip ECMC.

Rather than using continuous velocities, the flip algorithm allows only a finite number

of velocity vectors. Consider the space EF = Rd × {−1, 1}d, and let C1(EF) denote the

set of real-valued functions on EF which are continuously differentiable in their first d

arguments, i.e. f ∈ C1(EF) if f(·, v) is continuously differentiable for each v ∈ {−1, 1}d.
Let ψ denote the density of the uniform distribution on {−1, 1}d, so that ρ0(x, v) :=

ψ(v)π(x) ∝ π(x). Now, for h ∈ C1(EF), consider the stochastic process {Ξ(t)}t≥0 =

{(X(t), V (t))}t≥0 with infinitesimal generator given by

Lh(x, v) = 〈∇xh, v〉+
d∑
i=1

λi(x, v) (h(x, Fi[v])− h(x, v)) (4)

where Fi[x] denotes the i-th flip operator at x:

(Fi[v])j :=

vj if i 6= j

−vj if i = j.
(5)

for j = 1, . . . , d, and λi(x, v) denotes the i-th flip rate, which is defined to be

λi(x, v) = (vi∂iU(x))+ + γi(x, v) (6)

where γi(x, v) is an arbitrary non-negative bounded function which satisfies γi(x, v) =

γi(x, Fi[v]) and ∂i is the partial derivative with respect to the i-th component. Just as

was the case for the reflection algorithm, it can be shown (again, see Davis [11]) that the

generator in (4) determines a piecewise-deterministic Markov process which is linear in

between switching events and satisfies the strong Markov property. The trajectories of

the process can be described in much the same way as those for the reflection algorithm;

in between flipping events, the velocity is constant while the position is linear in t with
d
dtX(t) = V (t). In this case however, only one component of the velocity is altered when

an event occurs, and it is simply reversed. Each dimension has an individual flipping

rate, and the first arrival among the d point processes determines which component flips.

Pseudocode for the algorithm is given in algorithm 2 below.

The following results allow us to use the flipping algorithm in practice (Theorems 2.2

and 2.11 from [7]).

Theorem 2.2 The Markov kernel associated to the generator in (4) is non-reversible

with invariant distribution ρ, where ρ(x, v) ∝ π(x). Furthermore, if the functions γi in

(6) are positive and bounded everywhere, then ρ is the unique invariant measure of the

transition kernel specified by (4), and the corresponding process satisfies the following

strong law of large numbers: for ρ-almost every Ξ(0) and h ∈ L1(ρ), we have that

lim
T→∞

1

T

∫ T

0
h(Ξ(t)) dt =

∫
EF

h(ξ)ρ(ξ) dξ a.s.

Page 11 of 85

2 TWO EVENT-CHAIN MONTE CARLO METHODS.

Algorithm 2 Basic flipping algorithm

1: Arbitrarily initialize (x(0), v(0)) ∈ Rd × Rd.
2: Let T = 0.
3: for i = 1, 2 . . . do
4: for j = 1, 2 . . . , d do
5: Simulate τj as the first arrival time of a Poisson process of rate(

v
(i−1)
j ∂jU(x(i−1) + tv(i−1))

)+
.

6: end for
7: Set τ (i) ← minj=1,2...d(τj).
8: Set x(i) ← x(i−1) + τ (i)v(i−1).
9: Set v(i) ← Fj(v

(i−1)).
10: Set T ← T + τ (i).
11: Return (x(i), v(i), T).
12: end for

See Figure 2 for a sample trajectory from a flip ECMC run.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Flip ECMC Trajectory

Figure 2: Trajectory constructed from 100 events from a flip-ECMC algorithm with a
bivariate-normal invariant distribution with mean µ = (0, 0)T . The marginal variances
are both set to 1 and the components have correlation equal to 0.6.

Page 12 of 85

3 SIMULATION IN PRACTICE.

“When a coin is tossed, it does not necessarily fall heads or tails; it can

roll away or stand on its edge.”

- William Feller

3 Simulation in Practice.

The need to simulate the first arrival times of the inhomogeneous Poisson processes in

Algorithms 1.4 and 2.5 is the only practical impediment to the implementation of the

two algorithms outlined in the previous section. To simplify our notation in this section,

we will suppress the dependence on the x, v variables and simply express the rates as

functions of time, i.e. λ(x(t), v(t)) = λ(t). Letting Λ(t) =
∫ t

0 λ(t) dt denote the integrated

rate function and τ the first arrival time, we have that

P(τ > t) = exp{−Λ(t)} (7)

and so we may simulate τ by letting

τ = Λ−1(− logU) (8)

where U is uniformly distributed on (0, 1) and Λ−1(p) = inf{t : p ≤ Λ(t)} is the gener-

alized inverse function. This inverse will usually not be analytically tractable, however

there exist a number of methods which allow one to circumvent this problem. Perhaps

the most useful is the thinning method due to Lewis and Shedler [23]:

Proposition 3.1 Let λ : R+ → R+ and M : R+ → R+ be continuous functions such

that λ(t) ≤ M(t) for 0 ≤ t. Suppose that τ1, τ2, . . . are a (finite or infinite) sequence

of arrival times of a Poisson process with rate function M(t). If for each i = 1, 2 . . .

the point τi is deleted from the sequence with probability λ(τi)/M(τi), then the remaining

points correspond to the arrival times of a Poisson process with rate function λ(t).

This will be especially useful when we can find affine (or piecewise affine) bounds for the

rate function, i.e. λ(t) ≤ a + bt = M(t) for some a, b ∈ R+, as in this case the inversion

(8) will be available analytically for M(t).

One scenario in which we need not rely on recourse to the above method is when

the distribution of interest has a strictly log-concave density function. Observe that the

inversion in (8) amounts to finding τ such that∫ τ

0
λ(t) dt = − logU∫ τ

0
〈∇U(x+ tv), v〉+ = − logU∫ τ

0

(
dU(x+ tv)

dt

)+

= − logU.

Page 13 of 85

3 SIMULATION IN PRACTICE.

Now, if f is strictly log-concave, then − log f is strictly convex, and so there exists a

unique τ∗ such that τ∗ = arg mint≥0 U(x + tv). On [0, τ∗) (possibly empty) we have

dU/dt < 0 and dU/dt ≥ 0 on [τ∗,∞), and so we have∫ τ

τ∗

dU(x+ tv)

dt
dt = U(x+ τv)− U(x+ τ∗v) = − logU. (9)

In many cases this equation will be easily solvable; if not we may solve using line search

with arbitrary precision. Frequently, we will use this method in conjunction with the

above thinning method.

Another useful method for simulation is the superposition method ([8]). Supposing

that the energy function can be expressed as a sum U(x) =
∑n

i=1 Ui(x), then we have

λ(t) = 〈v(t), U(x(t))〉+ ≤
n∑
i=1

〈v(t), Ui(x(t))〉+ =
n∑
i=1

mi(t) = m(t). (10)

If we can simulate τ1, τ2, . . . , τn with intensities mi(t), then we simulate τ with intensity

m(t) by letting τ = mini τi, and then we using thinning to generate the first arrival

time from the process with intensity λ(t). This will be useful, for example, for Bayesian

applications in which the energy is the sum of the likelihood and a prior which can be

handled analytically, e.g. a multivariate Gaussian (see below).

Additionally, if the distribution of interest is from an exponential family, then (8) may

typically be solved analytically; see Bouchard-Côté et al. [8] for details.

3.1 Example: Gaussian Distributions

As we will frequently make use of the ECMC algorithms to sample from Gaussian dis-

tributions in our experiments, we demonstrate here how the arrival times (8) may be

computed in this setting; we will only illustrate the case of the arrival times in the reflec-

tion algorithm, as those from the flip algorithm may be computed in the same way.

Suppose our target distribution is a d-dimensional multivariate Gaussian with variance-

covariance matrix Σ. For simplicity - and without loss of generality - we let the mean be

equal to zero. The density function is thus:

π(x) = (2π)−d/2 |Σ|−1/2 exp

(
−1

2
xTΣ−1x

)
and so U(x) = − log π(x) = 1

2 log(2π)d|Σ|+ 1
2x

TΣ−1x. We find that ∇U(x) = Σ−1x, and

so

λ(x, v) = 〈v,∇U(x)〉+ =
(
vTΣ−1x

)+
.

We now look to solve for τ∗ such that τ∗ = arg mint≥0 U(x+ tv). We have

τ∗ = arg min
t≥0

U(x+ tv)

= arg min
t≥0

1

2
(x+ tv)TΣ−1(x+ tv)

Page 14 of 85

3 SIMULATION IN PRACTICE.

= arg min
t≥0

xTΣ−1x+ 2t xTΣ−1v + t2 vTΣ−1v.

The third term in the final line is increasing in t by the positive-definiteness of Σ−1,

and so we see that if xTΣ−1v ≥ 0 then τ∗ = 0, otherwise, one easily finds that τ∗ =

−xTΣ−1v/vTΣ−1v so that finally

τ∗ =

(
−x

TΣ−1v

vTΣ−1v

)+

.

We may now solve for τ using (9). Suppose first that τ∗ = 0. Then the expression

U(x+ τv)− U(x) = − logU is a quadratic in τ , taking the positive root yields

τ =
(
vTΣ−1v

)−1
(
−xTΣ−1v +

√
(xTΣ−1v)2 − 2 vTΣ−1v logU

)
. (11)

Suppose now that τ∗ = −xTΣ−1v/vTΣ−1v. Once again, U(x+ τv)− U(x+ τ∗v) = − logU

is a quadratic in τ , and after some convenient cancellations of terms one finds the positive

root

τ =
(
vTΣ−1v

)−1
(
−xTΣ−1v +

√
−2 vTΣ−1v logU

)
. (12)

Equations (11) and (12) may be compactly expressed as

τ =
(
vTΣ−1v

)−1
(
−xTΣ−1v +

√
((xTΣ−1v)+)2 − 2 vTΣ−1v logU

)
. (13)

This expression allows us to simulate exactly the event times for the reflection algorithm

- analogous expressions exist for the flip algorithm, which we omit.

Page 15 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

“I think that it is a relatively good approximation to truth — which is much

too complicated to allow anything but approximations — that mathematical

ideas originate in empirics.”

- John von Neumann

4 Numerical Comparisons for Gaussian Targets.

In this section, we will compare the performance of the two basic ECMC methods from

Section 2 in a handful of simple settings. In these numerical experiments, we will restrict

ourselves to sampling from multivariate Gaussian distributions. Although these will of

course be simpler than the distributions one would usually wish to sample from in prac-

tice, there are a number of advantages that make them appealing to use as toy problems.

Firstly, we will be able to avail ourselves of the results from the previous section to sim-

ulate the trajectories cheaply and exactly. Although results like these will not typically

be available in practice, it is nonetheless useful to see how the algorithms fare in these

‘best-case’ settings. Secondly, they offer a straightforward way of ascertaining how the

performance is linked to the covariance structure of the target distribution. Thirdly, as it

is common for Gaussians to be used to demonstrate MCMC samplers, one may compare

results with the performance of a wide variety of methods. In the following three subsec-

tions, we consider sampling from, respectively, a two-dimensional Gaussian with variable

correlation, a 100-dimensional Gaussian with a diagonal variance-covariance matrix with

different marginal variances, and a 100-dimensional Gaussian with a randomly generated

variance-covariance matrix.

4.1 A Two-Dimensional Example.

We first consider a two dimensional Gaussian distribution with mean zero and both

marginal variances set to one. We expect that, as is usually the case for MCMC algo-

rithms, the performance of both the flip method and the reflection method will suffer in

the presence of strong correlation in the target distribution; however, it is not a priori

clear to what extent the performances will deteriorate as correlation increases, nor which

method will suffer the most heavily.

Consider Figure 3 below, which shows the estimated autocorrelation functions for both

flip-ECMC and reflect-ECMC across four different correlation settings - ρ = 0, 0.75, 0.9

and 0.99. The target distribution is in this case symmetric in its components, and so we

restrict our attention to the first. As expected, we see from Figure 3 that each algorithm

suffers from increased correlation - the ACFs take longer to reach zero, and the integrated

autocorrelation increases commensurately (not shown). The Figure also indicates that

(note that the dark shades are from the reflection algorithm) the flip algorithm suffers

more heavily from increased correlation - indeed, the ratio of the integrated autocorre-

lation time (IACT) between the flip and reflect methods grows as correlation increases

(or, put another way, the ratio of effective sample sizes (ESS) decreases), and performs

Page 16 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

considerably worse overall in this setting that the reflection algorithm (and drastically

worse when correlation is very high). A possible exception occurs when the components

are independent (red/salmon ACFs); in this case, we see that the autocorrelation for

flip-ECMC is negative for a few lags, which will lower the IACT.

0 5 10 15 20

Lag

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
st

im
a
te

d
 A

u
to

co
rr

e
la

ti
o
n

ACF functions for various ECMC trajectories

Figure 3: Estimated autocorrelation functions for both flip-ECMC and reflect-ECMC at
four different correlation levels: 0 - red / salmon, 0.75 - green / light green, 0.9 - violet /
light violet and 0.99 - blue / turquoise. The darker shades are from the reflection method
and the lighter shades from the flip method. In each case, the ECMC samplers were run
for 100000 events. Refreshment rates for the reflection method were set at 0.02, 0.04, 0.06
and 0.1 respectively.

4.2 A first 100-Dimensional Example.

We now consider a one-hundred dimensional Gaussian distribution with mean zero and a

diagonal covariance matrix, the marginal standard deviations being given by 0.01, 0.02, . . . , 1.

This example was used in Neal [31] to compare the performance of the Hamiltonian Monte

Carlo to that of classical random-walk Metropolis algorithms, and again in Bouchard-Côté

et al. [8] to compare the performance of the reflection-ECMC algorithm to HMC.

Figure 4 shows the results of applying the flip and reflection algorithm to this distri-

bution for 50000 events each. From the two left-hand panels we see that the reflection

algorithm has estimated the means much more accurately than the flip algorithm; the

right-hand panels suggest that neither method particularly outshines the other at esti-

mating the marginal variances - the reflect method does a bit better, but it is barely

perceptible. However, this does not quite accurately reflect the practical potential of

these algorithms, as the running time was significantly longer for flip-ECMC (specifically,

70.63 seconds to 4.72 seconds for reflect-ECMC). To account for this, below in Figure 5

we display the same plots from trajectories of 10000 flipping events and 200000 reflection

events, which took 23.80 and 18.58 seconds respectively.

Page 17 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

E
st

im
a
te

Mean Estimates

0.0

0.2

0.4

0.6

0.8

1.0

Standard Deviation Estimates

0 20 40 60 80 100

Index

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

E
rr

o
r

Absolute Mean Error

0 20 40 60 80 100

Index

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Absolute Std. Dev. Error

Figure 4: Clockwise from top left: estimates of the mean, estimates of the standard
deviation, absolute error of standard deviation estimates, and absolute error of mean
estimates for each component of a one-hundred dimensional Gaussian target distribution
from trajectories of 50000 events for the flip method (red dots) and the reflect method
(blue dots). The black lines in the top figures show the true means/standard deviations
respectively. The running times were 73.80 seconds for the flip method and 4.23 seconds
for the reflection method. The refreshment rate was λ0 = 0.65.

Page 18 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

E
st

im
a
te

Mean Estimates

0.0

0.2

0.4

0.6

0.8

1.0

Standard Deviation Estimates

0 20 40 60 80 100

Index

0.00

0.05

0.10

0.15

0.20

E
rr

o
r

Absolute Mean Error

0 20 40 60 80 100

Index

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Absolute Std. Dev. Error

Figure 5: Clockwise from top left: estimates of the mean, estimates of the standard
deviation, absolute error of standard deviation estimates, and absolute error of mean
estimates for each component of a one-hundred dimensional Gaussian target distribution
from trajectories of 50000 events for the flip algorithm (red) and 750000 events for the
reflection algorithm (blue). The former ran for 72.99 seconds and the latter for 67.11
seconds. Refreshment rate was λ0 = .65.

As one might have expected, Figure 5 shows that when the two algorithms are allowed

to run for similar lengths of time, the performance is no longer comparable - the flip

algorithm simply takes too much time sweeping through the d dimensions generating a

candidate flip time for each component in turn. Below, we compare the performance of

the reflection algorithm with HMC, using the implementation described in Neal [31].

Page 19 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

0.15

0.10

0.05

0.00

0.05

0.10
E
st

im
a
te

Mean Estimates

0.0

0.2

0.4

0.6

0.8

1.0

Standard Deviation Estimates

0 20 40 60 80 100

Index

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

Absolute Mean Error

0 20 40 60 80 100

Index

0.00

0.02

0.04

0.06

0.08

0.10
Absolute Std. Dev. Error

Figure 6: Clockwise from top left: estimates of the mean, estimates of the standard
deviation, absolute error of standard deviation estimates, and absolute error of mean
estimates for each component of a one-hundred dimensional Gaussian target distribution
from trajectories of 30000 events for the reflection algorithm (blue) and 1500 iterations of
HMC (purple). The former took 2.63 seconds and the latter 2.56s. Black lines indicate the
true means and standard deviations. Refreshment rate for the reflection algorithm was
λ0 = .65, while HMC used L = 150 steps per iteration with stepsizes ε chosen uniformly
on (0.0104, 0.0156).

As we see from Figure 6 above, the performance of the reflection algorithm compares

reasonably well with that of HMC for this problem when both methods are allowed to run

for comparable amounts of time. The mean estimates are worse for dimensions 50-100,

although it can be seen that HMC suffers at components around index 30; this is due to

an issue with periodicity in the Hamiltonian trajectories [31], and would be significantly

worse were the stepsize not randomly selected at each iteration - naturally this is not a

problem from which the ECMC algorithms suffer as, unlike HMC, the entire trajectory

may be used to compute Monte Carlo averages, rather than simply the points at which

events occur [8]. Neither method dominates when it comes to estimating the standard

deviations, though HMC is perhaps marginally more effective. We emphasize however

that in this example, HMC is run with near optimal settings for the tuning parameters,

which are in many cases extremely difficult to find. On the other hand, the λ0 parameter

was chosen based on a cursory examination of a few preliminary runs and is therefore

almost certainly not optimal - and therefore the relative performance to HMC seen above

could almost certainly be improved. The extreme sensitivity to the tuning parameters

is one of the primary impediments to the widespread use of HMC in practice [31, 40]

- see Hoffman and Gelman [19], Girolami and Calderhead [17] and Wang et al. [40] for

some useful strategies developed to facilitate this task. For further details concerning

Page 20 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

the tuning of the ECMC algorithms, see Section 6. Furthermore, the energy function

in this (and any Gaussian) example is particularly simple: U(x) = xTΣ−1x/2 up to a

constant, and may be computed very quickly, while in other settings, such as sampling

from a posterior distribution over a large number of datapoints, HMC will suffer from

the large amount of computation required to calculate the MH acceptance probability,

whereas the exact sub-sampling methods for ECMC (see Section 5) will not, and will

therefore be likely to iterate much more quickly than HMC. In Bouchard-Côté et al. [8],

the authors exhibit a number of scenarios in which the reflection algorithm outperforms

even state-of-the-art HMC methods. Finally, we note that for this simple example, the

trajectories of the Hamiltonian flow could be computed exactly, precluding the need for

a Metropolis-Hastings correction, however we have used the Stormer-Verlet (leapfrog)

integrator (see [31, 17]) to ensure a fair comparison indicative of the relative performance

of the methods in other settings.

In passing, we observe that - like HMC ([31]) - the reflection algorithm is invariant

to rotation, which means that the above example can be seen as a demonstration of

how it would perform on any Gaussian distribution in which the square roots of the

eigenvalues of the covariance matrix were equal to 0.01, 0.02, . . . , 1; on the other hand,

the flipping method is not, and so its performance will vary under different rotation of

the variables. To see this, suppose that Q is a rotation matrix, and consider a rotation

x′ = Qx of the original variables x. Then π′(x′) = π(Q−1x)/|detQ| = π(Q−1x) and so

∇U ′(x′) = Q−1∇U(Q−1x). The dynamics of the original process at (x, v) will be governed

by 〈v,∇U(x)〉 = vT∇U(x); these will be identical to the dynamics of the rotated variables

starting with initial velocity w = Qv, because wT∇U ′(x′) = vTQtQ−1∇U(Q−1x′) =

vT∇U(x), and so the invariance follows because ψ(v) = ψ(Qv), i.e. because ψ is itself

rotationally invariant. The flip algorithm will only be invariant under rotations Q which,

for all v ∈ EF = {−1, 1}d, satisfy Qv ∈ EF (for example, if d = 2, the only non-trivial

rotations under which the process remains invariant are those of π/2, π, and 3π/2 about

the origin). Of course, both methods are invariant under translations of the x variables.

4.3 A second 100-Dimensional Example.

We now consider another one-hundred dimensional Gaussian target distribution - with

mean zero and using the covariance matrix Σ used in Roberts and Rosenthal [35] to assess

the performance of an adaptive Metropolis-Hastings algorithm; we simulate such a matrix

by letting M be such that for each i, j = 1, . . . 100 we have Mij ∼ i.i.d.N(0, 1), and taking

Σ = MMT , the idea being to generate a covariance matrix sufficiently “erratic, so that

sampling from π(·) represents a significant challenge if the dimension is at all high” [35].

Page 21 of 85

4 NUMERICAL COMPARISONS FOR GAUSSIAN TARGETS.

6

4

2

0

2

4

6
E
st

im
a
te

Mean Estimates

0
20
40
60
80

100
120
140
160
180

Variance Estimates

0 20 40 60 80 100

Index

0

1

2

3

4

5

6

E
rr

o
r

Absolute Mean Error

0 20 40 60 80 100

Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Absolute Relative Variance Error

Figure 7: Clockwise from top left: estimates of the mean, estimates of the variance, ab-
solute relative error of the variance estimates, and absolute error of mean estimates for
each component of a one-hundred dimensional Gaussian target distribution with covari-
ance matrix Σ from trajectories of 500000 events for the flip method (red dots) and the
reflect method (blue dots). The black lines/dots in the top figures show the true means/-
variances respectively. The running times were 1061.71 seconds for the flip method and
46.03 seconds for the reflection method. The refreshment rate was λ0 = 0.65.

As we see above in Figure 7, even after 500000 events, the estimates from the flip

algorithm are still well off target; those from the reflection algorithm are considerably

better. Once again, we draw attention to the running times - again, of course, had the

reflection algorithm been allowed to run as long as the flip-ECMC method, then the gulf

in performance would be immense. We do not labour this point however, as in other

scenarios there will usually be a need to use methods - e.g. superposition - that will

reduce the discrepancy in computation time.

Page 22 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

“It is quite a three-pipe problem. Pray do not speak to me for fifty min-

utes.”

- Sherlock Holmes, The Adventure of the Red-Headed League

5 Improvements for Handling Large-Scale Inference.

Owing to the high demands imposed upon statistical methodology by ever increasing

volumes of available data, it has in recent times become imperative that improvements

be made so as to increase the computational efficiency of algorithms used for statistical

inference. The computations required in Bayesian statistics are especially intense, and

Markov chain Monte Carlo methods - the most commonly used tools to perform them -

are known to suffer immensely as the dimension and number of observations in datasets

increase. Accordingly, there has been a considerable amount of work done to address

this, so that Bayesian methods depending on MCMC will be able to keep pace with the

ever expanding frontiers of data science.

While, naturally, the performance of traditional MCMC methods degrade as the di-

mension of the target distribution d increases, they are for practical purposes almost

unusable in situations where the number of observations in a dataset n is large, due

to the need to compute at each iteration of the chain an acceptance probability which

depends on a likelihood ratio involving each of the individual observations. A large pro-

portion of the developments in scalable MCMC algorithms have directly addressed this

- see Bardenet et al. [4] for a review of some of the methods that have been proposed.

As these authors indicate, these can be broadly categorized as “divide and conquer”

and “sub-sampling” methods - in the former, the dataset is divided in to batches and

then MCMC is run on each batch in turn and then the results are combined to get

an approximation of the posterior distribution, while in the latter the emphasis is on

methods which reduce the number of data points required in likelihood calculations at

each iteration. Unfortunately, divide and conquer approaches rely on inchoate methods

for combining posterior approximations lacking firm theoretical justification, scale poorly

with the number of batches, and often rely on results which are asymptotic in batch size

[4]. Meanwhile, with a few notable exceptions (e.g. ‘Firefly Monte Carlo’ - see MacLau-

rin and Adams [25] and ‘pseudo-marginal MCMC’ - see Andrieu and Roberts [1]) such

methods are inexact, that is to say that even in the limit as n → ∞ they sample from

an approximation to the posterior distribution. In what follows, we present an ‘exact

approximate scheme’ which was employed in Bouchard-Côté et al. [8] and then again in

Bierkens et al. [7] which functions by replacing a full evaluation of the gradient of the

log-likelihood of all n observations with an unbiased estimator while nonetheless sampling

from the exact posterior distribution. Furthermore, we will discuss two powerful ways in

which the efficiency of this exact sub-sampling method can be improved, namely: a tech-

nique invoking an alias sampling idea (see Devroye [12]) which was used in this context

independently by Bouchard-Côté et al. [8] and Kapfer and Krauth [22], and the use of

control variates to reduce the variance of the unbiased estimator of the gradient of the

Page 23 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

log-likelihood, which was used to great effect in Bierkens et al. [7] and has appeared in

similar contexts as well, see e.g. Bardenet et al. [4]. Using Bayesian logistic regression as

a running example, we present a number of numerical comparisons between the various

methods.

5.1 Sub-Sampling and the Alias Method.

It is often the case that MCMC methods can be modified or extended so as to capitalize

on certain structural properties of the target distribution of interest. The most well

known example is perhaps the Gibbs sampler which exploits conditional independences

between variables, although there are many other instances of structural exploitation in

MCMC - see for example Shariff et al. [37] where symmetries in the target are used to

design efficient MCMC proposals. Bouchard-Côté et al. [8] propose a ‘local’ extension of

the reflection algorithm which requires the target density to admit a representation of

the form

π(x) =
∏
f∈F

πf (xf) (14)

where xf is the subset of the variables x given by Nf ⊂ {1, 2, . . . , d} and F is an index

set called the set of factors. In this setting, the energy associated to the density π can be

expressed as

U(x) =
∑
f∈F

Uf (x), (15)

and we have that ∂Uf (x)/∂xk = 0 for k ∈ {1, 2, . . . , d}\Nf . This framework “can be for-

malized using factor graphs, ...and generalizes undirected graphical models” [8]. Observe

that in the setting in which the target is a Bayesian posterior distribution arising from

a prior and the likelihood of R data points which are conditionally independent given

variables x, the energy can be written as

U(x) = U0(x) +

R∑
r=1

Ur(x), (16)

and thus is incorporated into the framework given by (15) with one factor being the

prior likelihood and R subsequent factors which are the individual likelihoods of the data

points, and Nf = {1, 2, . . . , d} for all f ∈ F . In this setting, the algorithm reduces to the

sub-sampling approach outlined in Bierkens et al. [7]; we refer the reader to [8] for details

of the local algorithm in full generality, and in what follows we present only the special

case which corresponds to what is found in [7]; furthermore, we present details only for

the reflection algorithm as the details for the flipping algorithm are entirely analogous.

The method proceeds by defining, for each of R factors, a reflection operator akin to

(2) and an intensity akin to (3); that is, for j = 1, 2, . . . R, let

λj(x, v) = 〈v,∇Uj(x)〉+ (17)

Page 24 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

and let

Rj [x]v =

(
Id − 2

∇Uj(x)∇Uj(x)t

〈∇Uj(x),∇Uj(x)〉

)
v = v − 2

〈∇Uj(x), v〉
||Uj(x)||2

∇Uj(x). (18)

Supposing then that we have access to bounds Mj for the intensities, i.e. λj(x(t), v(t)) =

λj(t) ≤Mj(t) for all j = 1, 2, . . . , R, we let τ be the first arrival time of a nonhomogeneous

Poisson process of intensity M(t) =
∑R

j=1Mj(t), and then rather than using the full

energy to determine whether to reflect at time τ , instead we choose factor r by letting

P(r = s) =
Ms(τ)

M(τ)
, (19)

and then a reflection occurs if

u <
λr(τ)

Mr(τ)
, (20)

where u ∼ U(0, 1), in which case we set v′ = Rj [x(τ)]v. Pseudocode for the sub-sampling

reflection algorithm is given in Algorithm (3) below.

Algorithm 3 Reflection ECMC with sub-sampling.

1: Arbitrarily initialize (x(0), v(0)) ∈ Rd × Rd.
2: Let T = 0.
3: for i = 1, 2 . . . do
4: Simulate τreflect as the first arrival time of a Poisson process of rate M(t) =∑

jMj(t), where Mj(t) ≥ λj(x(t), v(t)) for each j.
5: Simulate τrefresh ∼ Exp(λ0).
6: Set τ (i) ← min(τrefresh, τreflect).
7: Set x(i) ← x(i−1) + τ (i)v(i−1).
8: if τ (i) = τrefresh then
9: Set v(i) ∼ ψ.

10: end if
11: if τ (i) = τreflect then
12: Choose factor r with probability Mj(τ

(i))/M(τ (i)).
13: if u < λj(τ

(i))/Mj(τ
(i)) where u ∼ U(0, 1), then

14: Set v(i) ← R[x(i)]v(i−1).
15: else
16: Set v(i) ← v(i−1).
17: end if
18: end if
19: Set T ← T + τ (i).
20: Return (x(i), v(i), T).
21: end for

Proofs of correctness (i.e. correct invariant distribution and ergodicity of resulting

Markov chain) for the sub-sampling algorithm for flip-ECMC and reflect-ECMC are given

as Theorem 4.1 in Bierkens et al. [7], and as an extension to Proposition 1 in Appendix

3 of Bouchard-Côté et al. [8]. When Mj(t) = M(t) for all j = 1, 2, . . . , R so that (19)

reduces to sampling uniformly from {1, 2, . . . , R}; we shall refer to this procedure as naive

sub-sampling.

Page 25 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

In general, the need to evaluate only one of the intensities (17) at each iteration,

coupled with the fact that the sum M(t) =
∑

jMj(t) =
∑

jM(t) = RM(t) can be

computed in O(1) time will mean that the algorithmic complexity of an iteration will

be reduced by a factor of O(n) [7]; however, the requirement of using the ‘worst case’

bound M means that the efficiency of the naive algorithm may be dramatically reduced,

as the ratio in (20) will be typically be extremely small, and so most iterations will fail

to produce a reflection. However, in scenarios in which - usually by recourse to pre-

computed data structures - one can loop over the factors implicitly to compute the sum∑
jMj(t) and perform the sampling step (19) in constant time, then it will be possible to

enjoy the computational parsimony of the naive method without suffering from the loss

of efficiency due to the loose bounds. This will be made possible by the alias sampling

method, given as Theorem 4.1 in Chapter 3 of Devroye [12]:

Proposition 5.1 Every probability vector p1, p2, . . . , pk (i.e. pi ≥ 0 and
∑

i pi = 1) can

be expressed as an equiprobable mixture of k two-point distributions.

Proposition 5.1 will make it possible to compute the sampling in (19) in constant

time by first sampling uniformly from {1, 2, . . . , R} and then sampling from the corre-

sponding two-point distribution; note that the alias method requires a set-up which can

be performed in O(k).

At this point, it is convenient to introduce an example that will be used to illustrate

the sub-sampling method and the alias method.

5.1.1 Example: Bayesian Logistic Regression.

Consider a dataset consisting of binary outcomes yr ∈ {0, 1} associated to d-dimensional

covariates ξr ∈ Rd and parameter x ∈ Rd, where the outcomes are assumed to been

generated from the logistic regression model

P(y = 1|ξ, x) =
1

1 + exp(−
∑d

i=1 xiξi)
. (21)

With a flat prior for x, which we assume for simplicity, the likelihood function is given

by

π(x) =

R∏
r=1

exp(yr
∑d

i=1 xiξi)

1 + exp(
∑d

i=1 xiξi)
(22)

and so the energy function (plus a constant) is

U(x) =
R∑
r=1

{
log

(
1 + exp

(
d∑
i=1

xiξ
r
i

))
− yj

d∑
i=1

xiξ
r
i

}
, (23)

and so the i-th component of the gradient is easily seen to be

∂iU(x) =
R∑
r=1

 ξri exp
(∑d

j=1 xjξ
r
j

)
1 + exp

(∑d
j=1 xjξ

r
j

) − yrξri
 . (24)

Page 26 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

Now we seek to bound the intensities (17) uniformly in r. We have

λr(x(t), v(t)) = 〈v,∇Ur(x+ tv)〉+

=

 d∑
i=1

vi

 ξri exp
(∑d

j=1(xj + tvj)ξ
r
j

)
1 + exp

(∑d
j=1(xj + tvj)ξrj

) − yrξri
+

≤
d∑
i=1

vi
 ξri exp

(∑d
j=1(xj + tvj)ξ

r
j

)
1 + exp

(∑d
j=1(xj + tvj)ξrj

) − yrξri
+

≤
d∑
i=1

∥∥∥∥∥∥vi
 ξri exp

(∑d
j=1(xj + tvj)ξ

r
j

)
1 + exp

(∑d
j=1(xj + tvj)ξrj

) − yrξri
∥∥∥∥∥∥

≤
d∑
i=1

|vi||ξri |

≤
d∑
i=1

|vi|max
r
|ξri |,

where the third inequality follows from 0 < exp(a)/(1 + exp(a) < 1 for a ∈ R. Hence, if

ξi = maxr |ξri |, we may implement the naive sub-sampling method with M(t) =
∑

i |vi||ξi.
Now we revisit the above calculations in order to construct bounds in such a way that

the sampling in (19) is amenable to the alias method. We follow calculations from Section

4.6 and Appendix B of Bouchard-Côté et al. [8], and extend their presentation to allow

for the possibility of negative covariates. This will require that various computations be

performed before the sampling can begin. First, for each i = 1, 2, . . . , d we let

(ξi)
+,1 + (ξi)

−,0 =
r∑
r=1

{
(ξri)

+[yr = 1] + (ξri)
−[yr = 0]

}
(25)

and

(ξi)
+,0 + (ξi)

−,1 =

r∑
r=1

{
(ξri)

+[yr = 0] + (ξri)
−[yr = 1]

}
. (26)

Then we create, for each i = 1, 2, . . . , d the following two probability vectors of length R,

with r-th entries given by
(ξri)

+,1 + (ξri)
−,0

(ξi)+,1 + (ξi)−,0
(27)

and
(ξri)

+,0 + (ξri)
−,1

(ξi)+,0 + (ξi)−,1
, (28)

where the denominators above are given by (25) and (26) respectively, and then conclude

the pre-computation by constructing alias sampling tables according to the scheme out-

lined in Section 3.4 of Devroye [12]. Now, recall that for a ∈ R, (a)+ = max(0, a) denotes

the positive part of a, and let (a)− = −min(0, a) denote the negative part of a so that

a = (a)+ − (a)−. Let s : R → R+ denote the logistic function a 7→ exp(a)/(1 + exp(a),

Page 27 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

with 0 < s(a) < 1 for all a ∈ R. Let [·] be a shorthand for the indicator function, i.e.

[A](x) = 1 if x ∈ A and [A](x) = 0 if x /∈ A; we will abuse the notation and write [A] for

[A](x) when the context is clear. By (24), for r ∈ {1, 2, . . . , R} with yr = 0 we have

λr(t) =

(
d∑
i=1

viξ
r
i s (〈ξr, x(t)〉)

)+

≤

(
d∑
i=1

viξ
r
i

)+

≤
d∑
i=1

(viξ
r
i)

+

=
d∑
i=1

|vi|
(
[vi ≥ 0](ξri)

+ + [vi < 0](ξri)
−) .

Likewise, for r ∈ {1, 2, . . . , R} with yr = 1 we have

λr(t) =

(
d∑
i=1

viξ
r
i (s (〈ξr, x(t)〉)− 1)

)+

=

(
d∑
i=1

−viξri (1− s (〈ξr, x(t)〉))

)+

≤

(
d∑
i=1

−viξri

)+

≤
d∑
i=1

(−viξri)
+

=

d∑
i=1

|vi|
(
[vi < 0](ξri)

+ + [vi ≥ 0](ξri)
−) .

Combining these expressions yields

λr(t) ≤
d∑
i=1

|vi|
([
vi(−1)y

r ≥ 0
]

(ξri)
+ +

[
vi(−1)y

r
< 0
]

(ξri)
−) = Mr(t) = Mr. (29)

Summing over the data points gives

M(t) =

R∑
r=1

Mr(t) =

R∑
r=1

d∑
i=1

|vi|
([
vi(−1)y

r ≥ 0
]

(ξri)
+ +

[
vi(−1)y

r
< 0
]

(ξri)
−)

=
d∑
i=1

|vi|

{
R∑
r=1

([
vi(−1)y

r ≥ 0
]

(ξri)
+ +

[
vi(−1)y

r
< 0
]

(ξri)
−)}

where, depending on the signs of the vi’s, the inner sums can be computed in constant

time by recourse to either (25) or (26). Now, to implement the sampling in (19) efficiently,

we consider (see [8]) a contrived distribution over the data points and dimension indices

Page 28 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

with mass function given by

P(r, i) =
1

M

{
|vi|
([
vi(−1)y

r ≥ 0
]

(ξri)
+ +

[
vi(−1)y

r
< 0
]

(ξri)
−)} (30)

where M =
∑

rMr. The marginal distribution of i is given by

P(i) =
1

M

R∑
r=1

|vi|
([
vi(−1)y

r ≥ 0
]

(ξri)
+ +

[
vi(−1)y

r
< 0
]

(ξri)
−) (31)

=
1

M
|vi|
(

(ξi)
+,[vi<0] + (ξi)

−,[vi≥0]
)
, (32)

where the term in brackets is either (25) or (26), again depending on the sign of vi. By

construction, the marginal distribution of r is given by (19), and so to sample from P(r)

we may sample first from P(i) and then from the conditional P(r|i) which is given by

P(r|i) =
P(r, i)

P(i)
=

(ξri)
+,[vi<0] + (ξri)

−,[vi≥0]

(ξi)+,[vi<0] + (ξi)−,[vi≥0]
; (33)

this we achieve in O(1) using the alias tables.

5.2 Control Variates.

The most promising improvement to the basic flipping algorithm suggested in Bierkens

et al. [7] according to their simulations seems to be the method of control variates.

After deriving the method for the flip algorithm, they demonstrate its effectiveness using

Gaussians and posterior distributions arising from Bayesian logistic regression models. In

what follows we show that the technique can be used for the reflection algorithm as well,

and in the next section we undertake some numerical comparisons between the reflect

algorithm with control variates and the flip method with control variates presented in [7].

We also compare its effectiveness against the alias method presented above.

The control variate method relies on the assumption that the components of the

gradient of the energy function are globally and uniformly Lipschitz ([7]), that is, that

there exist constants Ci for i = 1, 2, . . . , d such that for some p ∈ [1,∞], we have for all

x1, x2 ∈ Rd and for each i = 1, 2, . . . , d, j = 1, 2, . . . , R we have

|∂iU j(x1)− ∂iU j(x2)| ≤ Ci||x1 − x2||p, (34)

where || · ||p is the Lp norm. Proceeding under this assumption, we select a reference

point x∗ ∈ Rd, and we observe that, when (16) holds, for all x ∈ Rd we have

∂iU(x) = ∂iU(x∗) +
R∑
j=1

(
∂iU

j(x)− ∂iU j(x∗)
)
. (35)

We define

Ũ j(x) =
1

R
U(x∗) + U j(x)− U j(x∗), (36)

Page 29 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

and we consider a process identical to the subsampling method, except rather than using

(17) and (18) for the intensity function and reflection operators respectively, we replace

U j(x) with Ũ j(x) and instead use the intensity

λ̃j(x, v) = 〈v,∇Ũ j(x)〉+ (37)

and the reflection operator

R̃j [x]v =

(
Id − 2

∇Ũ j(x)∇Ũ j(x)t

〈∇Ũ j(x),∇Ũ j(x)〉

)
v = v − 2

〈∇Ũ j(x), v〉
||Ũ j(x)||2

∇Ũ j(x). (38)

Now, for this intensity, we have

λ̃j(x, v) = 〈v,∇Ũ j(x)〉+

=
1

R
〈v,∇U(x∗) +

(
U j(x)− U j(x∗)

)
〉+

≤ 1

R
〈v,∇U(x∗)〉+ + 〈v,

(
U j(x)− U j(x∗)

)
〉+

≤ 1

R
〈v,∇U(x∗)〉+ +

d∑
i=1

(
vi∂iU

j(x)− ∂iU j(x∗)
)+

≤ 1

R
〈v,∇U(x∗)〉+ +

d∑
i=1

|vi||∂iU j(x)− ∂iU j(x∗)|,

where we have used that for a, b ∈ R, (a+ b)+ ≤ (a)+ + (b)+. To bound the intensity as

a function of t, we note that

λ̃r(t) = λ̃j(x+ tv, v) ≤ 1

R
〈v, U(x∗)〉+ +

d∑
i=1

|vi||∂iU j(x+ tv)− ∂iU j(x∗)|

=
1

R
〈v,∇U(x∗)〉+ +

d∑
i=1

|vi||∂iU j(x+ tv)− ∂iU j(x) + ∂iU
j(x)− ∂iU j(x∗)|

≤ 1

R
〈v,∇U(x∗)〉+ +

d∑
i=1

|vi|
(
|∂iU j(x+ tv)− ∂iU j(x)|+ |∂iU j(x)− ∂iU j(x∗)|

)
≤ 1

R
〈v,∇U(x∗)〉+ +

d∑
i=1

|vi|Ci (t ||v||p + ||x− x∗||p)

= a+ b t = M(t),

which follows from (34) and the triangle inequality; this is an affine bound, and thus

the process with intensity RM(t) may be simulated exactly. In order to guarantee that

these bounds work well in practice, we will usually choose x∗ to be a point around which

much of the probability mass of the posterior is concentrated, such as the posterior

mode or the maximum likelihood estimate. Finding such a reference point will require a

computational overhead before the algorithm may begin, although the time spent on this

phase will usually be negligible.

Page 30 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

The validity of this method follows from a straightforward modification of the theorem

in Appendix A.1 of Bouchard-Côté et al. [8].

5.2.1 Lipschitz Bounds for Logistic Regression.

In the logistic regression example from above, we have from (24) that the i-th component

of the gradient for the r-th observation is given by

∂iU
r(x) =

ξri exp
(∑d

j=1 xjξ
r
j

)
1 + exp

(∑d
j=1 xjξ

r
j

) − yrξri (39)

and so for k = 1, . . . , d the k, i-th entry of the Hessian matrix is given by

∂k∂iU
r(x) =

ξrkξ
r
i exp

(∑d
j=1 xjξ

r
j

)
(

1 + exp
(∑d

j=1 xjξ
r
j

))2 . (40)

Using the bounds 0 < exp(a)/(1+exp(a)) < 1 and 0 < exp(a)/(1+exp(a))2 ≤ 1/4 yields

|∂iU r(x)| ≤ |ξri | (41)

and

|∂k∂iU r(x)| ≤ 1

4
|ξrkξri |, (42)

and thus we have that (34) holds for p = 2 with

Ci = max
r=1,...,R

1

4
|ξri | ‖ξr‖2 , (43)

which follows from the mean value theorem along the line from x1 and x2 [7]. These

expressions will be used to implement the control variate method for both the flip and

the reflection algorithms.

5.3 Numerical Experiments.

In this section we perform a sequence of experiments comparing the performance of the

two ECMC methods and their variants described above for Bayesian logistic regression;

for simplicity we use flat priors for the parameters. Figures 8 and 9 below show, re-

spectively, boxplots of the time-normalized effective sample sizes (ESS per second) and

raw effective sample sizes (ESS) for 10 runs of the various methods repeated on each of

four different types of datasets, one for each combination of low/high dimension (d = 5,

d = 20), and small/large number of observations (R = 500, R = 10000). We remark

that none of the ESS/s figures include the pre-computation times for the informed sub-

sampling or control variate methods - in long runs such as these they are negligible. Note

that as dimension and observation count increased, we ran the chains for larger number

of iterations to ensure that the approximations involved in estimating the ESS remained

Page 31 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

reasonable (see Appendix 8.1), and so raw ESS totals across the settings are inflated for

the longer runs, while the values of ESS/s across settings must be interpreted with care.

Thus when we discuss changes in performance across the four settings, we will largely be

referring to performance relative to the other methods .

FN RN FA RA Fcv Rcv
0

1

2

3

4

5

6

7

8

lo
g
 E

S
S
/s

R = 500, d = 5

FN RN FA RA Fcv Rcv
6

4

2

0

2

4

6
R = 500, d = 20

FN RN FA RA Fcv Rcv
4

2

0

2

4

6

lo
g
 E

S
S
/s

R = 10000, d = 5

FN RN FA RA Fcv Rcv
7

6

5

4

3

2

1

0
R = 10000, d = 20

Figure 8: Boxplots showing the Effective Sample Size per CPU second for 10 exper-
iments of flip-ECMC and reflect-ECMC in four different settings: R = 500, d = 5,
R = 500, d = 20, R = 10000, d = 5 and R = 10000, d = 20. The red dashes indicate the
median, and the red boxes show the mean. The horizontal axis indexes the method that
was used: FN and RN for the naive subsampling variants of the flip/reflect algorithms
respectively, FA/RA for the alias sampling variants, and Fcv/Rcv for the control variate
variants. Each experiment consisted of, respectively, 106, 2× 106, 3× 106 and 107 events,
and was carried out on a synthetic binary dataset in which the true parameters were
randomly generated from a d-dimensional standard normal distribution, and covariates
were randomly generated as the absolute values of d-dimensional standard normals for
each observation. For each experiment, various methods were carried out on the same
dataset. The refreshment parameter for the reflection algorithm was set (without any
preliminary tuning) to λ0 = 1, 2, 3, 6 for the four scenarios listed above, respectively. All
experiments are initialized at the MLE, with randomly drawn velocities.

Page 32 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

FN RN FA RA Fcv Rcv
5

6

7

8

9

10

11

12
ra

w
 E

S
S

R = 500, d = 5

FN RN FA RA Fcv Rcv
0

2

4

6

8

10

12
R = 500, d = 20

FN RN FA RA Fcv Rcv
0

2

4

6

8

10

12

ra
w

 E
S
S

R = 10000, d = 5

FN RN FA RA Fcv Rcv
0

1

2

3

4

5

6

7
R = 10000, d = 20

Figure 9: Boxplots showing the corresponding raw Effective Sample Sizes for the 10
experiments of flip-ECMC and reflect-ECMC shown above; that is, for four different
settings: R = 500, d = 5, R = 500, d = 20, R = 10000, d = 5 and R = 10000, d =
20. Each experiment consisted of, respectively, 106, 2 × 106, 3 × 106 and 107 events,
and was carried out on a synthetic binary dataset in which the true parameters were
randomly generated from a d-dimensional standard normal distribution, and covariates
were randomly generated as the absolute values of d-dimensional standard normals for
each observation. For each experiment, various methods were carried out on the same
dataset.

Several features revealed in Figures 8 and 9 are immediately striking. As expected,

we note the poor performance of the naive sub-sampling methods relative to the alias

sampling methods, which use the same technique to bound the intensity for a given

observation but do not require a uniform bound for all j ∈ {1, . . . , R}. In the low-

dimension setting, the naive methods are the least effective, although at d = 20 they

are seen to outperform their control variate counterparts (that is, Fn outperforms Fcv

and Rn outperforms Rcv). This rectifies itself as the number of observations increases

however, and at d = 20, R = 10000, we see that they are again inferior to the control

variate methods. The sharp decline in the performance of the control variate methods as

the dimension increases will be largely due to the presence in the Lipschitz bound (34)

of the distance term ‖x− x∗‖p. This will cause the intensity to be quite high (and the

bound quite loose) whenever the chain moves away from the reference point (which is

usually a region of high probability) regardless of the direction of the velocity, and so large

numbers of candidate event times will be drawn (and rejected) even if the chain is moving

to regions of lower energy; it is likely that this behaviour is also partly responsible for

Page 33 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

the much larger variability in the performance of the CV methods relative to the others.

This problem may be alleviated somewhat if a Lipschitz bound may be found with a

higher value of p, (as for p, q ∈ [1,∞] such that p < q, we have ‖·‖p ≥ ‖·‖q) although

there is a trade-off between p and the constants Ci in (34) that must be considered (see

Bierkens et al. [7] for a brief discussion of the trade-off; in particular they find that p =∞
is optimal when the target is Gaussian and recommend p = 2 as a sensible choice when

no knowledge of the optimal value is available). Another possible solution would be to

periodically reset the reference point x∗ after an event to be the current position x of the

chain, and to continually reset it after some fixed number of iterations, setting it back to

its original value should the chain pass within some tolerable distance; this is similar to

the ‘drop proxies along the way’ idea proposed in Bardenet et al. [4]. The bounds used

for the simulation via thinning affect only the algorithmic efficiency - not the invariance

or ergodicity properties of the chain, and so this is easily seen to be valid. We do not

pursue this possibility however, as it is not possible to implement simultaneously with

another improvement which we propose in the next subsection.

Another salient point that we see from the figures concerns the difference between the

flip method and the reflection method; we have already seen evidence for the superiority

of the reflection method in Section (4). These experiments strengthen that evidence, as

in each case, across each setting, the reflection method is superior (both in terms of raw

ESS and ESS/s) to the flip method, which indicates that it both mixes more quickly (raw

ESS) and iterates more quickly (as, at least for the control variate method, the gulf in

ESS/s greater on the log scale than the gulf in ESS). This is least pronounced for the

alias method, because the additional step in the reflection algorithm required to sample

from the marginal distribution of the dimension indices (see (31)) will increase the time

required for an event-time to be computed; this step reduces the speed advantage that

the reflection algorithm has over the flip algorithm in situations where the event-times

can be simulated in a more straightforward fashion (e.g. for Gaussians - c.f. Figures

4,7). Of course, regardless of whether this step is implemented or not, both methods will

require O(d) steps to compute an event-time, although this will noticeably increase the

constant factor for the reflection method.

5.4 Informed Sub-Sampling with Control Variates.

In the previous section, we saw the vast improvements in the performance of both the

flip method and the reflection method that came as a result of using the informed sub-

sampling method of Bouchard-Côté et al. [8], which achieves the factor selection step

(19) in the same O(1) time as the naive uniform sub-sampling of [7] without suffering the

inefficiencies which result from having to use the same bound for each factor, which may

dramatically reduce the number of events that lead to a flip or a reflection. Naturally,

the magnitude of this gulf in performance depends on the nature of the data in question;

the bounds will be worse in cases where the covariates tend to vary largely (in relative

scale) from the means of their absolute values, e.g. when the covariates are drawn from

heavy-tailed distributions or have large outliers. Additionally, the naive bounds will of

Page 34 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

course be extremely sensitive to outliers. We also saw in the previous section, especially

in low dimensions, the benefits to be gained by using the control variate technique to

reduce the variance of the gradient estimators used by the sub-sampling methods. These

improvements motivate the consideration of a method which combines both improve-

ments, i.e. uses the control variate bounds and implements the informed sub-sampling

via the alias method; this we introduce below.

Consider again the case of the reflection algorithm for logistic regression, and recall

the Lipschitz bounds (43). For an individual observation j ∈ {1, . . . , R}, we have then

that

|∂iU j(x1)− ∂iU j(x2)| ≤ Cji ‖x1 − x2‖ (44)

holds with

Cji =
1

4
|ξji |

∥∥ξj∥∥
2
, (45)

and so, following the same steps as in Section 5.2 we have the bound

λ̃j(x(t), v(t)) ≤ 1

R
〈v,∇U(x∗)〉+ +

d∑
i=1

Cji |vi| (t ||v||2 + ||x− x∗||2) = Mr(t), (46)

where, as before, x∗ ∈ Rd is an arbitrary reference point. Making the further assumption

that x∗ = x̂ is the maximum likelihood estimate yields

Mr(t) =

d∑
i=1

Cji |vi| (t ||v||2 + ||x− x∗||2) . (47)

Once again, we consider a contrived distribution over the observation indices j ∈ {1, . . . , R}
and the variable indices i ∈ {1, . . . , d}. Let P(i, j) be given by

P(i, j) ∝ Cji |vi|, (48)

so that the marginal distribution of i is given by

P(i) =
∑
j

P(i, j) ∝ Ci|vi| (49)

where Ci =
∑

j C
j
i . By design, we see that the informed sub-sampling (19) that we wish

to carry out may be achieved by sampling the marginal distribution of j, which is given

by

P(j) =
Mr(t)∑
rMr(t)

. (50)

This we may sample from by letting i ∼ Pi(·) and then taking j ∼ Pj|i(·|i) from the

conditional which by (48) and (49) is given by

Pj|i(j|i) =
Cji
Ci
. (51)

Page 35 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

After constructing the alias table dictated by (51), we may thus carry out informed

sub-sampling using control-variate bounds in O(1) time in R. We do not derive the

procedure in the case of the flipping algorithm; the procedure is identical save for the fact

that there is no need to recourse to the synthetic distribution as the events are determined

on a component-by-component basis, and the required alias tables are the same.

5.5 Further Experiments.

In this section we reconsider the experiments discussed above, and compare the results

that we observed with the performance of the control variate method with informed

sub-sampling.

FN RN FA RA Fcv Rcv FAcvRAcv
0

2

4

6

8

10

12

14

lo
g
 E

S
S
/s

R = 500, d = 5

FN RN FA RA Fcv Rcv FAcvRAcv
6

4

2

0

2

4

6
R = 500, d = 20

FN RN FA RA Fcv Rcv FAcvRAcv
4

2

0

2

4

6

8

10

12

lo
g
 E

S
S
/s

R = 10000, d = 5

FN RN FA RA Fcv Rcv FAcvRAcv
8

6

4

2

0

2

4
R = 10000, d = 20

Figure 10: Same as Figure 8 above, except two boxplots for each scenario have been
added to display the results of the Flip/Reflect algorithms using informed-subsampling
with control variates (respectively FAcv and RAcv).

Figure 10 displays the results. As expected, we see that the use of informed sub-

sampling leads to substantial gains in efficiency. Of course, as we saw earlier, this new

method still suffers a severe drop in performance as the dimension increases due to the

control variate bound, though with informed sub-sampling we see that they outperform

all the other methods, except in the R = 500, d = 20 case, where R is not yet high enough

relative to d for the benefits of the use of control variates to be decisive. Note that once

again the reflection algorithm has outperformed its flip counterpart in each setting.

Page 36 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

5.6 On Scaling, and the Advantages of Informed Sub-Sampling.

In this section, we will consider how the reflection algorithms presented above scale for big

data, i.e. as the number n of data points becomes large, and we quantify the difference

between naive sub-sampling and informed sub-sampling using the alias method in the

control variate setting, which we illustrate with an example. Throughout, we will closely

follow the analysis shown in Bierkens et al. [7], where analogous arguments are laid out

for the flip algorithm.

5.6.1 Scaling of the Reflection Algorithm.

Let n ∈ N and suppose that the energy function may be expressed as

U(θ) = −
n∑
j=1

log f(yj |θ)

= −
n∑
j=1

U j(θ),

where the observations yj are drawn independently from the data generating distribution

f(yj |θ0). Letting θ̂ denote the maximum likelihood estimator of θ based on observations

y1, . . . , yn, and let φ(θ) =
√
n(θ − θ̂), so that θ(φ) = n−1/2φ + θ̂. Now, in the limit as

n → ∞, the posterior distribution with respect to the variable φ will converge to a zero

mean multivariate normal distribution with covariance given by I(θ0)−1, the inverse of

the expected Fisher information [7, 21]. To analyse the limit of the event rate, we expand

the gradient of the energy function around θ̂, yielding

∇iU(θ) = ∇iU(θ̂) +
n∑
j=1

d∑
k=1

∂i∂k U
j(θ̂)(θk − θ̂k) +O(|θ − θ̂|2)

=
n∑
j=1

d∑
k=1

∂i∂k U
j(θ̂)(θk − θ̂k) +O(|θ − θ̂|2)

where ∂iU(θ) = ∂/∂θi U(θ), which follows from the multivariate analogue of Taylor’s

theorem and the fact that θ̂ is the maximum likelihood estimate. The intensity of the non-

homogeneous Poisson process which determines the event times can thus be expressed,

in terms of φ, as

〈v,∇U(θ)〉+ = n−1/2

 d∑
i=1

vi

 n∑
j=1

d∑
k=1

∂i∂k U
j(θ̂)φk

+

+O

(
‖φ‖2

n

)
; (52)

note that the first term on the left-hand side is O(n1/2) by the law of large numbers (note

that φ is O(1) - e.g. [36]). Arguing as in [7], we observe that in terms of φ, the process

has velocity given by n1/2v, and so after a time-scale transformation by n1/2, we recover

Page 37 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

a velocity of v and the intensity becomes 1

n

d∑
i=1

vi

 n∑
j=1

d∑
k=1

∂i∂k U
j(θ̂)φk

+

+O(n−1/2), (53)

as ‖φ‖ is O(1). By the strong law of large numbers, the above converges to

λ̃(φ, v) = 〈v, I(θ0)φ〉+ (54)

with probability 1, which is precisely the intensity arising from a Gaussian distribution

with zero mean and covariance matrix I(θ0)−1. Now, as this expression is now free from

dependence on n, we see, assuming we are starting from the stationary distribution, that

an approximately independent point will be reached within a time interval of O(1); in

the original time scale, this corresponds to a time interval of O(n−1/2). Provided that

the bound on the intensity is of order no greater than O(n1/2), this interval will be

realized after O(1) candidate event-times are proposed. If the algorithm is implemented

without sub-sampling, then the cost of accepting or rejecting an event-time is O(n), as

the energy gradient must be calculated with respect to all of the data points; thus, the

computational complexity of obtaining an independent point using the basic reflection

algorithm is O(n) as long as the bound on the intensity is O(n1/2). The same is true for

the flipping algorithm [7].

5.6.2 Scaling of the Reflection Algorithm with Control Variates.

Consider now the case in which Lipschitz bounds are used to bound the intensity given

by (36) and (37). Suppose, for now, that there exist Lipschitz bounds such that the

constants Ci (as in (34)) are uniformly O(1) in j = 1, . . . , n (more on this later), with

p = 2 for definiteness. Suppose further that the reference points θ∗ in (35) are such that∥∥∥θ∗ − θ̂∥∥∥ is O(n−1/2). Recall the expression for the estimate of the energy:

Ũ j(θ) =
1

n
U(θ∗) + U j(θ)− U j(θ∗). (55)

Taking the gradient and examining the i-th component yields∥∥∥∇iŨ j(θ)∥∥∥ =

∥∥∥∥ 1

n
∂iU(θ∗) + ∂iU

j(θ)− ∂iU j(θ∗)
∥∥∥∥

=

∥∥∥∥ 1

n
∂iU(θ∗)− 1

n
∂iU(θ̂) + ∂iU

j(θ)− ∂iU j(θ∗)
∥∥∥∥

≤ Ci
∥∥∥θ∗ − θ̂∥∥∥

2
+ Ci

∥∥∥θ − θ̂∥∥∥
2

= O(1)×O(n−1/2) +O(1)×O(n−1/2)

= O(n−1/2),

Page 38 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

where the second equality follows because θ̂ is the MLE, the first inequality follows from

the Lipschitz assumption, and the third follows from the reference point assumption

and standard MLE asymptotics (see e.g. Shao [36]). Assume now, for simplicity of

presentation (and because the informed sub-sampling requires it), that θ∗ = θ̂, i.e. that

the reference point is the MLE. As above, we want an expression for the limiting intensity

as n→∞. Observe that in this case, after rescaling by n1/2, we have that

n1/2∂iŨ
j(θ) = n1/2

(
∂iU

j(θ)− ∂iU j(θ̂)
)

= n1/2
d∑

k=1

∂i∂k U
j(θ̂)(θk − θ̂k) +O(n1/2|θ − θ̂|2)

=
d∑

k=1

∂i∂k U
j(θ̂)φk +O(n−1/2).

where we have used a multivariate Taylor expansion, φ as above, and the fact that

(θ− θ̂) is O(n−1/2). Before we proceed, we will require the following result, which follows

from the proof of the validity of the sub-sampling reflection algorithm (see appendix of

Bouchard-Côté et al. [8]), although we present a self-contained version:

Lemma 5.2 Let λj(t) denote the true intensity from the j-th observation, and let λj(t) ≤
mj(t) be an upper bound used for thinning; let M(t) =

∑
jm

j(t). Then the event-times

of the sub-sampling algorithm are generated according to the effective rate function

λ(t) =

n∑
j=1

λj(t). (56)

Proof Let τ denote a candidate event time resulting from the sub-sampling algorithm.

Then conditional on τ , the probability of a reflection event occuring at that point is easily

seen to be

EJ
[
λj(τ)

mj(τ)

]
=

n∑
j=1

λj(τ)

mj(τ)

mj(τ)

M(τ)
=

∑n
j=1 λ

j(τ)

M(τ)
. (57)

Since τ was generated as the first arrival time of the process with intensity M(t), the

result follows by Proposition 3.1.

Using this result, the effective time re-scaled intensity function is given, in terms of

φ, by

λ̃(φ, v) = n−1/2λ(φ, v) =
1

n

n∑
j=1

n1/2〈v, Ũ j(θ(φ)〉+

=
1

n

n∑
j=1

(
d∑
i=1

vi

d∑
k=1

∂i∂kU
j(θ̂)φk

)+

+O(n−1/2)

→ EY

−(d∑
i=1

vi

d∑
k=1

∂i∂k log f(Y |θ0)

)+
 = O(1),

Page 39 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

where the third equality follows from the expression for n1/2Ũ j(θ) derived above, and

the convergence follows from the bound on
∥∥∥Ũ j(θ)∥∥∥. Once again, all dependence on n

has vanished in the limiting intensity, and so following the arguments given above we see

an approximately independent point will be reached by the process after O(1) proposed

events, in this case however, the sub-sampling ensures that the cost of an iteration is

O(1), and so provided the Lipschitz constants satisfy Cji = O(1) then we see that the

computational complexity per independent sample of the reflection algorithm with control

variates is O(1) - an order-n increase in efficiency compared to the basic algorithm; the

same holds for the flip algorithm [7]. This allows us to conclude, remarkably, quoting

Bierkens et al. [7], that we have “an unbiased algorithm for which the computational cost

of obtaining an independent sample does not depend on the size of the data” .

Using the above, it is not hard to perceive the advantages offered by the alias sub-

sampling method. Consider for example the Lipschitz constants Ci for the logistic regres-

sion example (43); in this case, the need to take a maximum over the observations means

that depending on the distribution from which the covariates are drawn, the bound may

not be O(1) - indeed, while trivially it will be O(1) if the covariates are taken from a

bounded set, if they are drawn, for example, from a (sub) Gaussian distribution, then

we will have Ci = O(log n) [7]; distributions with heavier tails will result in even worse

scaling. However, using the alias method will always preclude the need to take a maxi-

mum over n, ensuring that no matter the distribution of the covariates the O(1) bound

will hold and the above analysis will be valid. Thus we see that when Ci = O(1), the

increase in efficiency due to the use of informed sub-sampling method will be a constant

factor, although when Ci are of higher order, the relative efficiency will increase with n.

We illustrate this with a series of experiments below. Figure 11 shows the results of the

control variate method both with and without informed sub-sampling on four settings

on datasets of increasing dimension. In the first case, the covariates are drawn from a

Gaussian, in the second they are drawn from a Student-t distribution with 3 degrees of

freedom, and in the third and fourth they are drawn from a uniform distribution on (0, 1)

- the fourth setting has a single outlier drawn from U(0, 10).

Page 40 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

5

0

5

10

15

20

lo
g
_2

 E
S
S
/s

Gaussian

20
15
10
5
0
5

10
15

Student-t

1 2 3 4 5 6

log_2(n/200)

8

10

12

14

16

lo
g
_2

 E
S
S
/s

Uniform

1 2 3 4 5 6

log_2(n/200)

10

5

0

5

10

15

20
Uniform (outlier)

Figure 11: Mean ESS/s with error bars over 6 runs of the reflection algorithm using
control variates (green) and control variates with alias sub-sampling (red). Covariates
are generated as the absolute values of (clockwise from top left): standard Gaussian,
Student-t with df = 3, Uniform (0, 1) with an outlier that is U(0, 10), and Uniform (0, 1).
In each case the method was run for 106 iterations.

The above figure clearly illustrates the advantages of the alias sub-sampling method.

The top two plots demonstrate that the efficiency gain from the alias method grows with

n when the bounds Ci are of order 1 in n. As expected, the gain is greater when the

tails are heavier, being hardly perceptible when the covariates are Gaussian, and marked

when they are Student-t distributed. We are reminded however of the limitations of the

above analysis, as the decreasing ESS/s with increasing n indicates that the mixing time

does decrease substantially as the size of the dataset grows - recall that the arguments

presented above hold under the condition that the processes have reached the stationary

distribution. The bottom row displays another serious pitfall of naive sub-sampling,

namely, the susceptibility to outliers. The need to take a bound uniform in n (see (43))

means that even a single outlier can dramatically worsen the performance of the method,

while the alias method of course does not suffer.

5.7 Limitations.

While the performance seen above is encouraging, it is important to carefully consider

the scope and limitations of these methods. As mentioned above, a key advantage of the

ECMC algorithms that we have considered here is their amenability to exact sub-sampling

for Bayesian applications - unlike MH algorithms for which sub-sampling methods are

Page 41 of 85

5 IMPROVEMENTS FOR HANDLING LARGE-SCALE INFERENCE.

usually inexact [4]. A notable exception is the FlyMC algorithm of MacLaurin and Adams

[25] mentioned above; however, this was shown in Bouchard-Côté et al. [8] to be less

efficient in terms of ESS/s than the reflection algorithm using the alias sampling method

by roughly an order of magnitude for logistic regression, and as we have shown, the alias

sampling method can be improved dramatically by using control variates. However, we

note that the alias method suffers from several drawbacks. Firstly, in the context of the

reflection algorithm, the need to sample from a distribution over the d components of

the density (see (31), (49)) will markedly reduce the speed in high dimensions, although

it will still be superior to naive sub-sampling. Secondly and more importantly, the alias

set-up is problem dependent, and in many instances it will not be possible to implement.

However, provided the maximum likelihood estimator exists and can be computed, it will

always be possible to implement informed-sub-sampling via the alias method while using

the control variate bounds. This can be seen by inspection of (47), as only the Cji terms

are problem-dependent; these are constants, so the set-up for informed sub-sampling will

be identical (the choice of Lp norm will also be problem dependent, although again,

this difference will not affect the derivation of the set-up). This brings us to the next

limitation: namely, the assumption that the control variate estimators are good. This will

usually only be the case when the posterior distribution is approximately normal - i.e.,

when the posterior resembles its Bernstein-von Mises approximation [39, 4]. When the

posterior is highly complex and/or multi-modal, this approximation will be poor, and the

control variate method will fail. This is a problem shared by many MCMC methods that

have been proposed to handle tall (large n) data sets; see Bardenet et al. [4] for further

discussion. For multi-modal distributions, it may be possible to implement a procedure

such as described above in which new reference points are computed at certain intervals,

although they would have to be local posterior maxima for the alias method to work, and

in any case the performance would likely be poor nonetheless.

Page 42 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

“With four parameters I can fit an elephant. With five I can make him

wiggle his trunk.”

- John von Neumann

6 On Tuning Parameters and Exploiting Problem Geome-

try.

We have thus far remained aloof from any discussion regarding the tuning of the param-

eters of the algorithms which we have presented; indeed, the literature of event-chain

Monte Carlo is unforthcoming on the subject. There is no mention at all of tuning in

much of the physics literature - e.g. [22, 27, 28], while Peters and de With [33] briefly

mention the inclusion of a mass matrix (see below) in the expression for the collision

operator but then use the identity matrix for their experiments. Of the two papers con-

cerning ECMC in the statistics literature, Bierkens et al. [7] state the possibility of using

velocities of different scales for each component but do not elaborate, and though their

proof of ergodicity relies on the presence of non-negative γi terms that we saw in (6)

in the flipping rates, they do not make any further mention of them, and there is no

indication as to what values they used for their experiments. Meanwhile, the coverage in

Bouchard-Côté et al. [8] is more satisfying - they display a handful of figures indicating

that the performance of the reflection algorithm is robust at low values (roughly between

0 and 1) of the refreshment parameter λ0, and that performance degrades sharply at

values of higher orders of magnitude; apart from one terse comment in their final ex-

ample, they do not mention the mass matrix (again, see below) at all. In this section,

we discuss the problem of tuning the parameters of the flip and reflection algorithms,

and through numerical experiments give an indication of the gains that are achievable

through thoughtful tuning, especially for the reflection algorithm.

6.1 Tuning of Flip-ECMC.

For a d-dimensional target distribution, the vanilla flip method uses velocities defined on

{−1, 1}d to guide the variables of interest through the state-space. However, the algorithm

remains valid if the unit velocities are scaled by factors αi for i = 1, 2, . . . , d, which means

d tuning parameters. Furthermore, the functions γi(x, v) alluded to above make for an

additional d tuning functions, although the twin conditions γi(x, v) = γi(x, Fi[v]) and

γi > 0, along with considerations involving convenience of simulation suggest that it will

usually be best to select constant functions γi(·, ·) ≡ γi > 0; thus we will say that the flip

method has 2d tuning parameters in all.

6.1.1 The Speed Parameters.

As can be seen by in Figure 4, the flip method will struggle when the variables of the target

distribution differ greatly in scale. With unit speeds in each direction, the components

Page 43 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

with small variance will flip much more often than those with large variance, leading to

poor mixing for the latter. Below in Figure (refthisfigure) we show an extreme example of

this. The (top row) trace plots clearly demonstrate the contrast in mixing speeds between

the smallest and the largest component. Naturally, when the components of the target are

independent, the obvious way to mitigate this problem is simply to let the parameters αi

vary in proportion to the marginal standard deviations of the variables they are associated

to, so that the length of time that it takes to cross the distribution is roughly the same for

each coordinate. This will ensure that the flipping events are evenly distributed across

the d components, and will ensure that mixing times are comparable; of course, this will

mean that the components of smaller variance will mix more slowly relative to the case

when unit speeds are used. Figure 12 below illustrates this phenomenon.

Figure 12: Trace plots for the 1st and 100th components of a 100-d Gaussian distribution
with standard deviations 0.01, 0.02, . . . , 1.00 for two runs of the flip algorithm, each run
consisting of 20000 events. Top row shows results with unit speed in every direction (1st
component - blue, 100th component - orange) and bottom row with speed proportional
to standard deviation (1st - red, 100th - green).

When the variables are highly correlated as well as being of different scales, the

solution is by no means so obvious, and setting speeds in proportion to the standard

deviations may not be the optimal thing to do (see Neal [31]), although it will likely still

be an improvement over using the same speed for each component.

6.1.2 The Gamma Parameters.

The optimal values for the parameters γi are less clear. For reasons that we shall now

discuss, in our simulations we used small values, so that γi = γ ≈ 0 for all i = 1, . . . , d; we

suspect that Bierkens et al. [7] either did the same or simply set γi = 0 - their theorem on

the ergodicity of the flipping algorithm requires γi > 0, although they conjecture that this

condition is not necessary in many cases. Furthermore, unlike the case of the reflection

algorithm in which the refreshment parameter λ0 is essential to avoid spending too much

time going in ’bad directions’ - for an extreme example see Figure 3 of Bouchard-Côté

Page 44 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

et al. [8] - in the flip algorithm the directions of motion are fixed in a discrete set and

the relative magnitudes of the speeds are fixed. Therefore it seems likely that higher

values of γi will simply result in a larger degree of random-walk behaviour, which it is of

course desirable to avoid; without the incentive to refresh more often that is a factor in

the reflect method, we see no reason to choose anything other than very small values of

γ. Indeed, in a recent preprint Bierkens and Duncan [6], in the one-dimensional case the

authors show that for large γ the process does resemble a random-walk, and in the limit

as γ →∞ the (time-rescaled) process converges to an over-damped Langevin diffusion.

6.2 Tuning of Reflect-ECMC.

We have already briefly mentioned the λ0 parameter, which determines the rate at which

the velocity variables are re-sampled, and thus the ratio of re-sampling events to reflection

events. Above we allude to another set of parameters: the mass matrix M - the presen-

tation of the reflection algorithm given in Section 2 and all of our experiments conducted

thus far have used the special case M = Id, however, the algorithm remains valid if we

select M to be a symmetric positive-definite matrix, and let the marginal distribution

of the velocity variables given by v ∼ N(0,M) and use the following modification of the

reflection operator:

R[x]v =

(
Id − 2

M∇U(x)∇U(x)t

∇U(x)TM∇U(x)

)
v. (58)

The properties of the reflection operator which are required to ensure the correctness

of the reflection algorithm are that R[x]T∇U(x) = −∇U(x) and that ψ(v) = ψ(R[x]v).

These are straightforward to verify - indeed, we have

R[x]∇U(x) =

(
Id − 2

M∇U(x)∇U(x)t

∇U(x)TM∇U(x)

)T
∇U(x)

= ∇U(x)− 2
∇U(x)∇U(x)tMT∇U(x)

∇U(x)TM∇U(x)

= ∇U(x)− 2∇U(x)

= ∇U(x).

where we have used the symmetry of M . To see that ψ is preserved under R[·], we let

v′ = R[x]v and observe that

v′TM−1v′ =

(
vT − 2

〈v,∇U(x)〉∇U(x)tM

∇U(x)TM∇U(x)

)
M−1

(
v − 2

M∇U(x)〈v,∇U(x)〉
∇U(x)TM∇U(x)

)
= vTM−1v − 2

〈v,∇U(x)〉2

∇U(x)TM∇U(x)

− 2
〈v,∇U(x)〉2

∇U(x)TM∇U(x)
+ 4
〈v,∇U(x)〉2∇U(x)TM∇U(x)

(∇U(x)TM∇U(x))2

= vTM−1v,

and since ψ(v) = f(vTM−1v), the result follows.

Page 45 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

Since M is symmetric, this makes for d+ (d2− d)/2 = (d2 + d)/2 parameters to tune.

6.2.1 The Refreshment Parameter.

To gain insight into how the value of λ0 affects the dynamics of the reflection algorithm,

it helps to understand how it interacts with another quantity: ‖v‖, the magnitude of the

velocity. It is easy to see that what matters is not the size of either of these quantities,

but rather their ratio. To see this, let v = ‖v‖u, where u is a unit vector. In general, the

intensity of the non-homogeneous Poisson process that determines the time until the next

event can be expressed as λ(t) = λ0 + 〈v,∇U(x(t))〉+ = λ0 + ‖v‖ 〈u,∇U(x + t ‖v‖u)〉+.

If we scale both λ0 and ‖v‖ by the same constant α > 0, then the intensity becomes

λα(s) = α(λ0 + ‖v‖ 〈u,∇U(x + s ‖v‖u)〉+) = αλ(tα), where s = αt. By (8), the first

arrival time of the scaled process is the solution τ to the equation
∫ τ ′

0 λα(s) ds = − log(U)

where U ∼ U(0, 1). Making the substitution s = t/α yields

− log(U) =

∫ τ ′

0
λα(s) ds

=

∫ ατ ′

0

1

α
λα(t/α) dt

=

∫ ατ ′

0
λ(t) dt =

∫ τ

0
λ(t) dt,

where the last line expresses the equation for the first arrival time of the process with

intensity λ(t). Thus we see that if τ ′ is the first arrival time of the scaled process, then

τ = ατ ′ is the first arrival time of the original process. We have x+ τ ′v′ = x+ (τ/α)v′ =

x+ τv, and so the trajectories of the two processes are identical. When an event occurs,

it corresponds to either a re-sampling event or a reflection event. Using standard results

concerning the Poisson process, we have that the probability that an event occurring at

time τ is a re-sampling event is given by

λ0

λ0 + 〈v,∇U(x(τ))〉+
=

1

1 + ‖v‖
λ0
〈u,∇U(x(τ)〉+

, (59)

which again only depends on the ratio ‖v‖ /λ0 and is unchanged under rescaling by α.

This insight does not guide us in the selection of λ0, although it does help to explain

the fact that the algorithm in most cases highly robust to this selection, even for values

differing by orders of magnitude. When the velocity variables are drawn from a distribu-

tion like a multivariate Gaussian, ‖v‖ is not fixed, and so the ratio ‖v‖ /λ0 will change

after every event. This is similar in flavour to contexts involving other algorithms where

parameters are chosen randomly from some interval (e.g. when using HMC, it is common

to randomly select the number of leapfrog steps per iteration from some integer lattice,

i.e. l uniformly in {L − H,L + H} for some integers H < L). This would lead us to

expect that if the distribution ψ of v is such that ‖v‖ is fixed, (say, if ψ is the uniform

distribution on Sd−1, the d-dimensional hypersphere) then the reflection algorithm will

Page 46 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

be more sensitive to choice of λ0, and indeed this does prove to be the case - see Figure

5 of Bouchard-Côté et al. [8]. We note that when v ∼ N(0, Id), then ‖v‖ ∼ χd, a Chi

distribution with d degrees of freedom. As d→∞, the variance of this distribution sta-

bilizes, never exceeding 1/2, and so if we increase λ0 with d to make the expectation of

the ratio ‖v‖ /λ0 constant, the variance of this quantity will tend to zero; thus we might

expect the sensitivity to λ0 to increase with dimension. In any particular case, this may

be corrected for by introducing a different marginal distribution for the velocities, for

example one could draw v as usual, and draw a quantity s ∼ U(E ‖v‖ − α,E ‖v‖+ α) for

some 0 < α < E ‖v‖ and then scale v to have norm s; in this case one could alter α to

give ‖v‖ /λ0 the desired variance. As long as the same scheme were observed at every

re-sampling event, the algorithm would be correct.

We note that while the reflection algorithm is usually quite insensitive to small val-

ues of λ0, performance generally degrades sharply for values above a certain problem-

dependent threshold, above which the velocity variables will be re-sampled often and the

dynamics of the chain will tend towards random-walk behaviour; c.f. Figures 5 and 13

of Bouchard-Côté et al. [8]. In our experience we have found that one or two trial runs

often suffice to find a value of λ0 which will yield near-optimal performance and thus,

unlike other algorithms that are highly sensitive to parameter settings, e.g. HMC, where

performance can vary drastically even under small perturbations of the tuning parame-

ters (ε, L), it is unnecessary to devote much (if any) computation time to determining

acceptable settings.

6.2.2 The Mass Matrix.

The mass matrix of the reflection algorithm plays a role very similar to the mass matrix

in HMC; choosing M to be other than the identity will lead to certain direction of motion

being favoured much more highly than others. In the case of HMC, it is known [31, 17]

that careful tuning of the mass matrix can often lead to significant improvement. While in

many cases HMC will perform very well with an identity mass matrix, for problems with

high correlation between variables choosing a non-diagonal M is often essential. In Figure

13 below, we demonstrate the potential efficiency gains that are obtainable when M is

properly chosen. Figure 13 shows the results of repeating the experiment from Section 4

with a 100-dimensional Gaussian target with a noisy covariance matrix Σ = LLT where

Lij ∼ N(0, 1) using the reflection algorithm with an identity mass matrix, and with a

mass matrix Σ, which corresponds to the inverse of the Hessian matrix of the energy

function.

Page 47 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

4
3
2
1
0
1
2
3
4

E
st

im
a
te

Mean Estimates

0
20
40
60
80

100
120
140
160
180

Variance Estimates

0 20 40 60 80 100

Index

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

E
rr

o
r

Absolute Mean Error

0 20 40 60 80 100

Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Absolute Relative Variance Error

Figure 13: Clockwise from top left: estimates of the mean, estimates of the variance,
absolute relative error of variance estimates, and absolute error of mean estimates for each
component of a one-hundred dimensional Gaussian target distribution from trajectories
of 50000 events for the reflection method with identity mass matrix (blue) and mass
matrix given by the true covariance matrix (red).

As we see, using M = Σ led to dramatic improvement in performance. Of course,

this is an ideal scenario; in practice we will not have such precise knowledge of the true

covariance matrix of the target. For the HMC algorithm, much work has been done with

the goal of selecting M when knowledge of the target density is unavailable. Heuristics

have been proposed, see for example Liu [24] and Neal [29, 30, 31], although these are

not wholly satisfactory, as they rely upon knowledge of the scales of the variables, which

will usually require preliminary runs of the algorithm to obtain [17]. Adaptive methods

(see e.g. Andrieu and Thoms [2]) may be provide hope of a solution, although while

setting parameters adaptively can often work well when the number of parameters is low,

adaptively setting a mass matrix with (d2 + d)/2 parameters is likely to be very costly

- see Roberts and Rosenthal [35] for an instance of a proposal covariance matrix being

set adaptively for a Metropolis-Hastings algorithm. In Girolami and Calderhead [17],

the authors implement a scheme which they call ‘Riemannian Manifold’ HMC, in which

the mass matrix is a function of the current position; specifically, inspired by geometric

ideas introduced in Rao [34], they employ the Fisher-Rao metric tensor at x as M(x).

This defines a distance on the Riemannian manifold of the parameter space, and is equal

to the expected Fisher information [17]. This induces a non-separable Hamiltonian, and

the corresponding equations driving the dynamics are more difficult to handle. In the

basic ECMC setting, this framework is infeasible, as the piecewise linear trajectories of

the algorithms would not leave the target distribution invariant if the position variables

were not marginally independent of the velocity variables; however, encouraged by the

Page 48 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

success of their approach, we may hope that using a constant approximation to the

expected information as a mass matrix for the reflection algorithm may yield significant

improvements over the identity. Below we investigate.

6.3 Example: Real Data.

In this section we consider the performance of the reflection algorithm with varying mass

matrix for logistic regression on two real datasets: the first consisting of steel plate faults

data, which can be found at https://archive.ics.uci.edu/ml/datasets/Steel+Plates

+Faults, and the second consisting of skin segmentation data, which can be found at

https:// archive.ics.uci.edu/ml/datasets/Skin+Segmentation. For details, we

refer the reader to the original papers: Buscema et al. [9] and Bhatt et al. [5]. The

faults data set exhibits quasi-complete separation, so we preprocessed by removing sev-

eral features; furthermore, we rescale both datasets so that each column of the design

matrix has unit variance. After preprocessing, the faults dataset had 1941 observations

with 23 covariates, while the skin dataset had 245057 observations with 3 covariates. We

use the alias method on the faults data, and the alias method with control variates on

the skin data.

As demonstrated in Girolami and Calderhead [17], the expected Fisher information

for logistic regression is given by

I(β) = XTΛX (60)

where Λ is a diagonal matrix with n-th diagonal entry given by Λn,n = s(βTXT
n)/(1 −

s(βTXT
n) where s(·) is the logistic function and Xn is the n-th row of the design matrix.

Since this is non-constant, we must make an approximation to it. Thus we consider the

three following matrices:

G1 = XTX,

G2 = I(β̂),

G3 = diag(I(β̂)),

and use the mass matrices Mi = G−1
i , and compare with M0 = Id. Note that it was

necessary to rescale the mass matrices so that the diagonal entries had mean one; this is

so that the expected ratio ‖v‖ /λ0 was of similar order of magnitude, which ensures that

keeping λ0 constant across methods is appropriate. The results are given in Tables 6.3

and 6.3 below.

Tables 1 and 2 show mixed results. For the faults data, we see that using a mass matrix

improves efficiency by a factor of at least 10 in each case, while the identity matrix works

Page 49 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

Mass Time (s) Min ESS Med
ESS

Max
ESS

Min ES-
S/s

Relative
Speed

Id 168.9 15410 15420 15780 91.2 1
M1 168.0 12990 18390 21770 77.3 0.85
M2 169.4 9300 10210 15510 54.9 0.60
M3 168.5 11550 13110 14280 68.5 0.75

Table 1: Effective Sample Sizes for the skin segmentation data. Each method ran for
2× 106 iterations.

Mass Time (s) Min ESS Med
ESS

Max
ESS

Min ES-
S/s

Relative
Speed

Id 325.7 28 30 37 0.0860 1
M1 325.1 384 387 406 1.18 13.7
M2 323.8 292 294 305 0.902 10.5
M3 329.5 286 290 307 0.868 10.1

Table 2: Effective Sample Sizes for the steel plates faults data. Each method ran for
2× 106 iterations.

best for the skin data. Naturally (as in this case we can only use an approximation to

the Fisher information), the closer the posterior is to a constant curvature surface, the

better we expect this method to work.

Since the mass matrix M1 = XTX is the top performing non-identity mass matrix in

each case, we recommend giving it a trial run when using ECMC for logistic regression in

practice. In cases when the Laplace approximation at the maximum likelihood estimator

is good, we would suggest trying M2.

6.4 Example: Poisson-Gaussian Markov Random Field.

We turn our attention to the problem of sampling from the distribution of a latent

Gaussian field arising from a Poisson-Gaussian Markov random field model (also referred

to as a log-Gaussian Cox point process). We use a lower-dimensional version of the model

previously analysed in Christensen et al. [10], Girolami and Calderhead [17] and Wang

et al. [40]. Specifically, we consider a dataset Y = {yij} consisting of counts at locations

(i, j) : i, j = 1, 2, . . . d on a d × d grid for d = 30; the problem is therefore of dimension

d2 = 900. The counts yij follow a Poisson distribution and are conditionally independent

given a latent intensity process Λ = {λij} with means given by sλij = s exp{xij} where

s = 1/d2, and X = {xij} is a Gaussian process with mean function EX = µ1 and

covariance function

Σ(i,j),(i′,j′) = σ2 exp
{
−δ(i, i′, j, j′)/30β

}
, (61)

where δ(i, i′, j, j′) =
√

(i− i′)2 + (j − j′)2. Following Christensen et al. [10], we set

σ2 = 1.91 and µ = log(126) − σ2/2, and we set β = 1/6; to ease the computational

demands of the problem, we treat these parameters as fixed. The energy function

Page 50 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

U(x) = − log(x|y, µ, σ, β) is easily seen to be proportional to

∑
i,j

(−yijxij + s exp{xij}) +
1

2
(x− µ1)TΣ−1(x− µ1) (62)

= U1(x) + U2(x). (63)

We have ∇U2(x) = Σ−1(x− µ1), while

∇ijU1(x) = −yij + s exp{xij}. (64)

To simulate from the non-homogeneous Poisson process with intensity given by 〈v, U(x(t))〉+,

we use the superposition principle (10) using U =
∑

ij(U
ij
11 + U ij12) + U2 with U ij11 = −yij

and U ij12 = d exp{xij}. We see that U2(x) is the energy function of a Gaussian distribu-

tion with mean µ1 and covariance matrix Σ, so we may simulate τ (2) using (13). The

intensities for U ij11 and U ij12 are given as functions of t by −vijyij and s exp{xij + tvij})
respectively, and so, using (8), we see that we may simulate τ

(11)
ij and τ

(12)
ij exactly by

letting

τ
(11)
ij =

log(U)
yijvij

if vij < 0

∞ else,

τ
(12)
ij =

1
vij

(
log
(
− log(U)

s + exp(xij)
)
− xij

)
if vij > 0

∞ else,

where U ∼ U(0, 1).

Below in Figure 14 we show the latent field, latent process, and observed data used

for our example.

Latent Field Latent Process Observed Data

Figure 14: From left: latent random field X, latent process Λ, and observed data Y with
d = 30.

For this problem, as demonstrated in [17], the expected Fisher information is constant

across the state space, and is given by

−Ex,y[∇2
xU(x)] = L+ Σ−1, (65)

Page 51 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

Method Time (s) Min ESS Med
ESS

Max
ESS

Min ES-
S/s

Relative
Speed

HMC 795.6 1070 4480 15910 1.34 1
RMHMC 783.5 6870 13780 20000 8.76 6.54
R-ECMC 1020.2 9640 10910 14160 9.44 7.04
R-ECMC (M) 1195.3 21340 23310 29280 17.85 13.3

Table 3: Effective Sample Sizes for a 30 × 30 random field. Row labels indicate HMC
(identity mass), RMHMC (mass as above), R-ECMC (reflection algorithm with identity
mass), R-ECMC (M) - with mass matrix as above.

where L is a diagonal matrix with entries Lii = m exp{µ + Σii}. Below we consider the

performance of the reflection algorithm for sampling from the distribution of the latent

field X using an identity mass matrix, and also using the matrix M = (L+Σ−1)−1. Table

1 below compares the performance of these two instances of the reflection algorithm with

the basic HMC algorithm, and with the RMHMC algorithm of Girolami and Calderhead

[17]; note that in this instance, because the metric tensor is flat, RMHMC corresponds

to an HMC algorithm with mass matrix M−1. For the HMC methods, 20000 iterations

were taken after 1000 iterations of burn-in, while the ECMC methods used 125000 events

after 25000 burn-in events. The refreshment intensity was set to λ0 = 10; the for the

HMC methods we chose l steps chosen uniformly from {1, . . . , L} with stepsize ε, using

(L, ε) = (100, 0.15) for HMC and (L, ε) = (50, 0.3) for RMHMC. These values were chosen

after numerous trial runs, using ESS/s to select L and acceptance ratio to select ε - though

we make no claim that these values are optimal.

Following Girolami and Calderhead [17], we use the minimum ESS/s across all variables

as the performance metric. As we see in Table 6.4, the ECMC methods are most effective,

although notably the reflection algorithm with identity mass yields the lowest maximum

ESS/s, which explains the regions of high posterior variance seen in Figure 15 below.

As expected, using the expected Fisher information as the mass matrix brings significant

improvement to the reflection algorithm, albeit at the price of a higher computation time.

This is of course no surprise, as the modified reflections (58) require a computation time

in O(d2), while with diagonal mass they require only O(d) time (see second equality in

(2)). Thus we expect that using a non-diagonal mass will bring less benefit in very-high

dimensions; however, it will still likely bring improvement if posterior correlations are

very high. In the latter case, the best option may be to seek a parametrization under

which variables are approximately independent in the posterior.

We close this section with the remark that, while the simulation recipe that we have

employed produces highly competitive results, it is possible that the computation time per

iteration could be significantly reduced by simulating the event times from the energy

component U1(x) using numerical optimization methods to find a solve the equations

(9). This would preclude the need to simulate d2 candidate event-times and take the

minimum of them, which is clearly the most computationally demanding step involved in

Page 52 of 85

6 ON TUNING PARAMETERS AND EXPLOITING PROBLEM GEOMETRY.

Latent Field Latent Process Variance
H

M
C

R
M

H
M

C
R

E
C

M
C

R
E
C

M
C

 (
M

)

Figure 15: From left: posterior means of the latent random field X,the latent process
Λ, and the posterior variances of the latent field for HMC, RMHMC, and the reflection
algorithm with identity mass (R-ECMC) and with mass as indicated in the text (R-ECMC
(M)). Top row shows true latent field, process, and observed data.

the simulation.

Page 53 of 85

7 CONCLUSIONS AND FURTHER WORK.

“We can see but a short distance ahead, but we can see plenty that there

needs to be done.”

- Alan Turing

7 Conclusions and Further Work.

We conclude by noting that for a method so young (in relative terms), event-chain Monte

Carlo methods are highly promising. They have been shown to be highly competitive

with state-of-the-art HMC methods in several scenarios (RMHMC in this work, and a

variety of HMC methods in Bouchard-Côté et al. [8]), and to be amenable to modifications

that greatly facilitate big-data inference (this work and [8, 7]). It is to be hoped that

with further study, new variants and modifications will be discovered that will bring

ECMC even closer to mainstream use. Being simple to tune (as we saw above), ECMC

has a great advantage over other efficient MCMC methods which require much labour

before they can be made to run efficiently, e.g. HMC; while our final examples show that

choosing an appropriate mass matrix can improve the algorithm significantly, in some

cases it performs well (or better) even without this tuning.

As for the two ECMC algorithms we have considered, based on our experiments we

conclude that the reflection algorithm is superior. It is in many cases considerably faster,

as it avoids the need to simulate a candidate event-time for each dimension. Furthermore,

it is more flexible, as the mass matrix allows for knowledge about the correlation between

variables to be taken into account, while the flip algorithm can account for at most relative

scale. We therefore recommend that future effort be directed towards the improvement

of the reflection algorithm.

Geometric type methods akin to those employed in Girolami and Calderhead [17]

are a promising avenue for future research, although the reflection algorithm would need

to be generalized to allow for a joint density of the form ρ(x, v) = ψ(v|x)π(x), which

will be a challenge. It is also appealing to extend the algorithm so as to be able to

sample efficiently from distributions arising from hierarchical models (indeed, work on

this is already underway). In our final example, it was seen that the reflection algorithm

performed exceedingly well on a Poisson-Gaussian Markov random field. However, the

example was simplified tremendously by the hyper-parameters being fixed - a method

to sample from the joint distribution of the latent field and the hyper-parameters is not

so evident. In the discrete-time MCMC setting, Gibbs sampler style algorithms are able

to handle such tasks; something similar could be achieved for ECMC by modifying the

marginal distribution of the velocity variables in ECMC. For example, if x′ = (x, α) where

α is a vector of hyper-parameters, then if there were positive probability of drawing

velocity vectors such as v′ = (v1, 0) and v′′ = (0, v2) where v1,v2 were of the same

dimension as x, α respectively; this would yield a Gibbs flavoured set-up that would

make sampling feasible for hierarchical models.

We finish by making some final comments on the limitations of the ECMC methods

and variants which we have considered. As mentioned at the end of Section 5, the control

Page 54 of 85

7 CONCLUSIONS AND FURTHER WORK.

variate method - so successful for logistic regression - will not work unless the posterior

resembles its Bernstein-von Mises approximation, which severely limits the usefulness of

the method. This approximation will generally be excellent for large n, while for smaller n

the sub-sampling methods are largely unnecessary; in other scenarios it may be altogether

inaccurate, e.g. for multi-modal distributions. The lack of structural flexibility (i.e. for

hierarchical models etc.) is another concern, although we expect that this will quickly

be addressed. Finally, an obvious difficulty is the need to simulate the non-homogeneous

Poisson process. This feature of the algorithm means that each new distribution en-

countered presents a potentially serious obstacle - in some cases there may simply be

no efficient way to draw the event-times. In some ways however, this is a less serious

drawback than the tuning difficulties of HMC, because once a method is devised to sam-

ple from an intensity arising from a given distribution, tweaking the parameters involved

will not alter the simulation method, whereas different model parameters/dimensions can

mean totally different optimal tuning parameter settings for HMC.

Page 55 of 85

REFERENCES

References

[1] C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte

Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

[2] C. Andrieu and J. Thoms. A turotial on adaptive MCMC. Statistics and Computing,

18:343–373, 2008.

[3] R. Azais, J.-B. Bardet, A. Génadot, N. Krell, and P.-A. Zitt. Piecewise deterministic

Markov processes - recent results. 2013. doi: http://www.arxiv.org/abs/1309.6061.

[4] R. Bardenet, A. Doucet, and C. Holmes. On Markov chain Monte Carlo methods

for tall data. 2015. doi: http://www.arxiv.org/abs/1505.02827v1.

[5] R. Bhatt, G. Sharma, A. Dhall, and S. Chaudhury. Efficient skin region segmentation

using low complexity fuzzy decision tree models. IEEE-INDICON, 2010.

[6] J. Bierkens and A. Duncan. Limit theorems for the zigzag process. 2016. doi:

http://arxiv.org/pdf/1607.08845v1.pdf.

[7] J. Bierkens, P. Fearnhead, and G. Roberts. The zig-zag process and

super-efficient sampling for Bayesian analysis of big data. 2016. doi:

http://www.arxiv.org/abs/1607.03188v1.

[8] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet. The bouncy particle sampler: A

non-reversible rejection-free Markov chain Monte Carlo method. 2016.

[9] M. Buscema, S. Terzi, and W. Tastle. A new meta-classifier. NAFIPS 2010, Toronto,

Canada.

[10] O. F. Christensen, G. O. Roberts, and J. S. Rosenthal. Scaling limits for the tran-

sient phase of local Metropolis-Hastings algorithms. Journal of the Royal Statistical

Society, Series B., 67(2):253–268, 2005.

[11] M. H. A. Davis. Piecewise-deterministic Markov processes: A general class of

non-diffusion stochastic models. Journal of the Royal Statistical Society. Series B

(Methodological), 46:353–388, 1984.

[12] L. Devroye. Non-uniform Random Variate Generation. Springer-Verlag, New York,

1986.

[13] P. Diaconis, S. Holmes, and R. Neal. Analysis of a non-reversible Markov chain

sampler. Annals of Applied Probability, 10:726–752, 2000.

[14] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.

Phys. Lett. B., 195:216–222, 1987.

[15] A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calcu-

lating marginal densities. J. Amer. Statist. Assoc., 85:398–409, 1990. doi:

http://www.ams.org/mathscinet-getitem?mr=1141740.

Page 56 of 85

REFERENCES

[16] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence, 6:

721–741, 1984.

[17] M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 73(2):

123–214, 2011.

[18] W. Hastings. Monte Carlo sampling methods using Markov chains and their appli-

cations. Biometrika, 57:97–109, 1970.

[19] M. D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively setting path

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:

1351–1381, 2014.

[20] C. Hwang, S. Hwang-Ma, and S. Sheu. Accelerating Gaussian diffusions. The Annals

of Applied Probability., 3:897 – 913, 1993.

[21] R. Johnson. Asymptotic expansions associated with posterior distributions. Annals

of Mathematical Statistics, 43:851–864, 1970.

[22] S. C. Kapfer and W. Krauth. Cell-veto Monte Carlo algorithm for long-range sys-

tems. 2016. doi: https://arxiv.org/abs/1606.06780.

[23] P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes

by thinning. Naval Res. Logist. Quart., 26:403–413, 1979.

[24] J. Liu. Monte Carlo strategies in scientific computing. New York: Springer, 2001.

[25] D. MacLaurin and R. P. Adams. Firefly Monte Carlo: Exact MCMC with subsets of

data. Proceedings of the conference on Uncertainty in Artificial Intelligence (UAI).,

2014.

[26] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of

state calculation by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

[27] M. Michel, S. C. Kapfer, and W. Krauth. Generalized event-chain Monte Carlo:

Constructing rejection-free global balance algorithms from infinitesimal steps. J.

Chem. Phys., 140(054116), 2014. doi: http://dx.doi.org/10.1063/1.4863991.

[28] M. Michel, J. Mayer, and W. Krauth. Event-chain Monte Carlo for classical contin-

uous spin models. 2015. doi: http://www.arxiv.org/abs/1508.06541.

[29] R. Neal. Probabilistic inference using Markov Chain Monte Carlo methods. Technical

Report., 1993.

[30] R. Neal. Bayesian Learning for Neural Networks. New York: Springer, 1996.

[31] R. Neal. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte

Carlo. Chapman & Hall/CRC, 2011.

Page 57 of 85

REFERENCES

[32] Y. Nishikawa, M. Michel, W. Krauth, and K. Hukushima. Event-chain algorithms

for the Heisenberg model: Evidence for z ≈ 1 dynamic scaling. Phys. Rev. E., 112,

2015.

[33] E. A. J. F. Peters and G. de With. Rejection free Monte Carlo sam-

pling for general potentials. Physical Review E, 85(026703), 2012. doi:

http://dx.doi.org/10.1103/PhysRevE.85.026703.

[34] C. R. Rao. Information and accuracy attainable in the estimation of statistical

parameters. Bull. Calc. Math. Soc., 37:81–91, 1945.

[35] G. Roberts and J. Rosenthal. Examples of adaptive MCMC. Techical Report, Uni-

versity of Toronto, 2006.

[36] J. Shao. Mathematical Statistics. Spriger-Verlag, New York., 2nd edition, 2003.

[37] R. Shariff, A. György, and C. Szepesvári. Exploiting symmetries to construct efficient

MCMC algorithms with an application to SLAM. AISTATS, 38, 2015.

[38] K. S. Turitsyn, M. Chertkov, and M. Vucelja. Irreversible Monte Carlo algorithms

for efficient sampling. Physica D.

[39] A. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

[40] Z. Wang, S. Mohamed, and N. D. Freitas. Adaptive Hamiltonian and Riemann

manifold Monte Carlo. Proceedings of the 30th International Conference on Machine

Learning, pages 1462–1470, 2013.

Page 58 of 85

8 APPENDIX A: EXPECTATIONS AND ESS.

8 Appendix A: Expectations and ESS.

8.1 On Estimating Expectations and the Effective Sample Size.

The main objective of performing MCMC is the calculation of expectations of arbitrary

functions with respect to the target distribution of interest. In our case the target distri-

bution will be the marginal of the position variables x - π(dx) - and so for a given ECMC

trajectory Ξ(t) = (X(t), V (t)) on [0, T] and function ϕ : Rd → R, the expectation that

we wish to evaluate can be expressed as

π(ϕ) = Eπ [ϕ] =

∫
Rd

ϕ(x)π(dx), (66)

and by the results in Theorems 2.1 and 2.2, we may estimate this using

π̂(ϕ) =
1

T

∫ T

0
ϕ(x(t)) dt. (67)

Given a ‘skeleton’ of n points consisting of the event times and the corresponding positions

and velocities
{
t(i), X(i), V (i)

}n
i≥0

, i.e. the output of the ECMC algorithms, the path

integral (67) may be expressed as the sum of integrals along straight line segments

1

T

n−1∑
i=1

∫ τ (i)

0
ϕ
(
x(i−1) + tv(i−1)

)
dt (68)

where τ (i) = T (i) − T (i−1). In many cases, such as when estimating the moments of a

component of x (i.e. ϕ : Rd → R, x 7→ xαi for α ∈ R), these integrals will be available in

closed form. When this is not the case, there are two options. The first is to approximate

the univariate integrals in (68) using numerical methods, e.g. quadrature. The alternative

is to approximate using an evenly spaced grid of time points, i.e. set

π̂(ϕ) =
1

L

L−1∑
l=0

ϕ(l∆), (69)

where ∆ > 0 is the width of the time intervals and L = 1+bT/∆c ([8]). Letting Pt((x, v), ·)
denote the continuous time Markov kernel of the ECMC algorithm, we remark ([7]) that

(69) effectively corresponds to a Monte Carlo estimate of the expectation with respect

to the discrete time Markov chain with transition kernel P̃ ((x, v), ·) = P∆((x, v), ·). We

echo Bierkens et al. [7] in emphasizing that (69) is no longer a Monte Carlo estimate if

the grid size is not uniform. In particular, it is invalid to simply use the event times and

positions as Monte Carlo samples - as pointed out in [7], these points are of course heavily

biased towards the tails of the distribution, where flipping/reflection events become more

likely.

These two approximation methods indicate two corresponding methods of estimating

the effective sample size of a trajectory. If one uses a discretely subsampled set of N

Page 59 of 85

8 APPENDIX A: EXPECTATIONS AND ESS.

points as Monte Carlo samples, then one may of course simply estimate the ESS as

Neff =
N(

1 + 2
∞∑
k=1

ρk

) , (70)

and use traditional methods to estimate (1 + 2
∑∞

k=1 ρk), the integrated autocorrelation

time (IACT). When the integral (67) is analytically tractable, it is convenient to estimate

the ESS using the following method, which is detailed in Bierkens et al. [7] - we closely

follow their exposition below.

Suppose that the central limit theorem holds for continuous trajectory {ϕ(x(t))}t≥0,

i.e. that for t→∞ we have

1√
t

∫ t

0
{ϕ(x(s))− π(ϕ)} ds →D Normal(0, σ2

ϕ), (71)

where the convergence is in distribution, and where σ2
ϕ denotes the asymptotic variance.

The quantity σ2
ϕ can be estimated by dividing an observed trajectory {ϕ(x(t))}0≤t≤τ into

B batches of length τ/B as follows: for sufficiently large batch length the quantity

Yb =

√
B

τ

∫ bτ/B

(b−1)τ/B
ϕ(x(s)) ds (72)

for b = 1, . . . , B is approximately distributed as N(
√
τ/Bπ(ϕ), σ2

ϕ). Assuming further

that the Yb’s are approximately independent, which is not unreasonable if the batch

lengths are large, then the estimate

σ̂2
ϕ =

1

B − 1

B∑
b=1

(
Yb − Ŷ

)2
(73)

where Ŷ =
(∑B

b=1 Yb

)
/B is consistent for σ2

ϕ. Using the mean and variance estimates of

ϕ

π̂(ϕ) =
1

τ

∫ τ

0
ϕ(x(s)) ds (74)

V̂arπ(ϕ) =
1

τ

∫ τ

0
ϕ(x(s))2 ds−

(
π̂(ϕ)

)2
, (75)

we may estimate the effective sample size using

Neff =
τ V̂arπ(ϕ)

σ̂2
ϕ

. (76)

Page 60 of 85

9 APPENDIX B: PYTHON CODE.

9 Appendix B: Python Code.

1

2

3 ### Fl ip a lgor i thm f o r Gaussian d i s t r i b u t i o n s

4 ### assumes mean i s ze ro

5 ### requ i r e s dimenson ’d ’ , i n v e r s e o f covar iance

6 ### matrix ’ Zinv ’ , and the gamma parameter ’gamma ’

7

8

9 ### i n i t i a l i z e the po s i t i o n

10 x 0 = np . array ([np . random . standard normal ((d ,))])

11 ## i n i t i a l i z e the ’ v e l o c i t y ’

12 v 0 = (2*np . f l o o r (2*np . random . random sample (d)) − 1) * speeds

13

14 ## keep track o f event t imes

15 T = 0

16 Time1 = np . array (np . z e r o s ((Ni te r +1 ,)))

17

18 ##i n i t i a l i z e a l l

19 X = np . array (np . z e r o s ((Ni te r+1,d)))

20 V = np . array (np . z e r o s ((Ni te r+1,d)))

21 X[0 , :] = x 0

22 V[0 , :] = v 0

23 x = x 0

24 v = v 0

25

26 ##i f des i r ed , keep track o f event types

27 f o r c eF l i p = 0

28 t ru eF l i p = 0

29

30 startTime = time . time ()

31

32 f o r i in range (1 , Ni te r+1) :

33

34 tauL i s t = np . array (np . z e r o s ((d ,)))

35 tau2L i s t = np . array (np . random . exponent i a l (1/gamma, d))

36 f o r j in range (0 , d) :

37

38 d i s c r im = max(0 , v [j]* np . dot (x , Zinv [j , :])) **2 −2*v [j]* np . dot (v , Zinv [j

, :]) *math . l og (np . random . rand (1))

39 i f d i s c r im > 0 :

40

41 tauL i s t [j] = (−np . dot (x , Zinv [j , :]) /np . dot (v , Zinv [j , :])

42 + 1/(v [j]* np . dot (v , Zinv [j , :])) *math . sq r t (d i s c r im))

43 e l s e :

44 tauL i s t [j] = tau2L i s t [j]

45 tau1 = min (tauL i s t)

46 tau2 = min (tau2L i s t)

47 tauL i s t = np .minimum(tauList , tau2L i s t)

48 i f tau1 < tau2 :

49 t ru eF l i p = t rueF l i p + 1

Page 61 of 85

9 APPENDIX B: PYTHON CODE.

50 e l s e :

51 f o r c eF l i p = f o r c eF l i p + 1

52 tau = min (tau1 , tau2)

53 x = x + tau*v

54 v = v*(1 − 2*(tauL i s t == min (tauL i s t)))

55

56 X[i , :] = x

57 V[i , :] = v

58 Time1 [i] = Time1 [i −1] + tau

59

60 ### compute the t o t a l computation time

61 t imeFl ip = time . time () − startTime

62

63 ### to t a l ’ time ’

64 t = Time1 [−1]

65

66 #### est imate f i r s t two moments from en t i r e chain

67 Lag time = Time1 [1 : Ni te r +1] − Time1 [0 : Ni te r]

68

69 f irstMoment = ((1/ t) *(np . dot (Lag time ,X[0 : Niter , :])

70 + (1/2) *np . dot (Lag time **2 ,V[0 : Ni te r])))

71

72 secondMoment = ((1/ t) * (np . dot (Lag time ,X[0 : Niter , :] * * 2)

73 + np . dot (Lag time **2 ,X[0 : Niter , :] *V[0 : Ni te r])

74 + (1/3) *np . dot (Lag time **3 ,V[0 : Ni te r]**2)))

75

76 mu hat1 = firstMoment

77 s i gSq hat1 = secondMoment − f irstMoment **2

78

79

80 ### Re f l e c t i o n a lgor i thm f o r Gaussian d i s t r i b u t i o n s

81 ### shown i s the ve r s i on that uses a non−d iagona l mass matrix

82 ### requ i r e s re f re shment parameter ’ Lre f ’ , i n v e r s e o f

83 ### targ e t covar iance matrix ’ Zinv ’ , mass matrix ’M’ , and Cholesky

84 ### decomposit ion o f M ’ rootM ’ .

85

86

87 ### i n i t i a l i z a t i o n

88 x 0 = np . array ([np . random . standard normal ((d ,))])

89 v 0 = np . dot (rootM , np . random . standard normal ((d ,)))

90 T = 0

91 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

92 X = np . z e ro s ((Ni te r +1,d))

93 V = np . z e ro s ((Ni te r +1,d))

94 X[0 , :] = x 0

95 V[0 , :] = v 0

96 x = x 0

97 v = v 0

98

99

100

101 ### keep track o f event types

Page 62 of 85

9 APPENDIX B: PYTHON CODE.

102 Refresh = 0

103 Bounce = 0

104 startTime = time . time ()

105

106 f o r i in range (1 , Ni te r+1) :

107

108

109 i f np . dot (v , np . dot (Zinv , x .T)) >= 0 :

110 t1 = ((−np . dot (v , np . dot (Zinv , x .T))

111 + math . s q r t (np . dot (v , np . dot (Zinv , x .T)) **2

112 − 2*np . dot (v , np . dot (Zinv , v .T)) *math . l og (np . random . rand (1))))

113 / np . dot (v , np . dot (Zinv , v .T)))

114 e l s e :

115 t1 = ((−np . dot (v , np . dot (Zinv , x .T))

116 + math . s q r t (−2*np . dot (v , np . dot (Zinv , v .T))

117 *math . l og (np . random . rand (1))))

118 / np . dot (v , np . dot (Zinv , v .T)))

119

120 t2 = np . random . exponent i a l (1/ Lre f)

121

122 t = min (t1 , t2)

123 x = x + t *v

124

125 i f t1 <= t2 :

126 Bounce = Bounce + 1

127 gradU = np . dot (x , Zinv)

128 v = v − 2*np . dot (gradU , v .T) *np . dot (gradU ,Z .T) /np . l i n a l g . norm(np . dot (

rootM .T, gradU .T)) **2

129

130 e l s e :

131 Refresh = Refresh + 1

132 v = np . dot (rootM , np . random . standard normal ((d ,)))

133

134 X[i , :] = x

135 V[i , :] = v

136 Time [i] = Time [i −1] + t

137

138

139 ### running time

140 t imeRef l = time . time () − startTime

141

142 ### to t a l ’ time ’

143 t = Time[−1]

144

145 ### compute a l l the moments

146 Lag time = Time [1 : Ni te r +1] − Time [0 : Ni te r]

147 f irstMoment = ((1/ t) *(np . dot (Lag time ,X[0 : Niter , :])

148 + (1/2) *np . dot (Lag time **2 ,V[0 : Ni te r])))

149 secondMoment = ((1/ t) * (np . dot (Lag time ,X[0 : Niter , :] * * 2)

150 + np . dot (Lag time **2 ,X[0 : Niter , :] *V[0 : Ni te r])

151 + (1/3) *np . dot (Lag time **3 ,V[0 : Ni te r]**2)))

152

Page 63 of 85

9 APPENDIX B: PYTHON CODE.

153 mu hat1 = firstMoment

154 s i gSq hat1 = secondMoment − f irstMoment **2

155

156

157 ### algor i thms f o r l o g i s t i c r e g r e s s i o n

158

159

160 import numpy as np

161 import numpy . random as npr

162 import math

163 import pandas as pd

164 import time

165 import matp lo t l i b . pyplot as p l t

166 import s ta t smode l s . ap i as sm

167 from matp lo t l i b . patches import Polygon

168

169

170 ### simulate from a Poisson proce s s with i n t e n s i t y a + bt

171 de f a f f i n eP o i s (a , b) :

172 re turn ((1/b)*(−a + math . s q r t (a**2 − 2*b*math . l og (np . random . rand (1)))))

173

174

175 de f l o g i s t i cFun (a) :

176 re turn math . exp (a) /(1 + math . exp (a))

177 ### grad i en t func t i on (obs J)

178 de f gradU (x , y , J , i o t a) :

179 re turn (i o t a [J , :] * (l o g i s t i cFun ((i o t a [J , :] * x) . sum()) − y [J]))

180

181 ### This code be longs to Ryan Adams , and can be found at

182 ## https : // h ips . s ea s . harvard . edu/ blog /2013/03/03/

183 ## the−a l i a s−method−e f f i c i e n t −sampling−with−many−d i s c r e t e−outcomes/

184 de f a l i a s s e t u p (probs) :

185 K = len (probs)

186 q = np . z e r o s (K)

187 J = np . z e r o s (K, dtype=np . i n t)

188

189 # Sort the data in to the outcomes with p r o b a b i l i t i e s

190 # that are l a r g e r and sma l l e r than 1/K.

191 sma l l e r = []

192 l a r g e r = []

193 f o r kk , prob in enumerate (probs) :

194 q [kk] = K*prob

195 i f q [kk] < 1 . 0 :

196 sma l l e r . append (kk)

197 e l s e :

198 l a r g e r . append (kk)

199

200 # Loop though and c r ea t e l i t t l e b inary mixtures that

201 # approp r i a t e l y a l l o c a t e the l a r g e r outcomes over the

202 # ov e r a l l uniform mixture .

203 whi le l en (sma l l e r) > 0 and l en (l a r g e r) > 0 :

204 smal l = sma l l e r . pop ()

Page 64 of 85

9 APPENDIX B: PYTHON CODE.

205 l a r g e = l a r g e r . pop ()

206

207 J [smal l] = l a r g e

208 q [l a r g e] = q [l a r g e] − (1 . 0 − q [smal l])

209

210 i f q [l a r g e] < 1 . 0 :

211 sma l l e r . append (l a r g e)

212 e l s e :

213 l a r g e r . append (l a r g e)

214

215 re turn J , q

216

217 de f a l i a s d raw (J , q) :

218 K = len (J)

219

220 # Draw from the o v e r a l l uniform mixture .

221 kk = in t (np . f l o o r (npr . rand () *K))

222

223 # Draw from the binary mixture , e i t h e r keeping the

224 # smal l one , or choos ing the a s s o c i a t ed l a r g e r one .

225 i f npr . rand () < q [kk] :

226 re turn kk

227 e l s e :

228 re turn J [kk]

229

230

231 ### f l i p method , na ive sub−sampling

232 ### parameters are as f o l l ow s :

233 ### R − num obs , d − dimension , Ni te r − num i t e r a t i o n s

234 ### y − observed data , i o t a − des ign matrix

235 ### x s t a r − mle , gamma − re f reshment parameter

236 ### parameters are the same f o r the other methods .

237

238 de f cyc leZZnaive (R, d , Niter , y , i o ta , x s ta r , gamma) :

239 gammas = np . ones ((d ,)) *gamma

240

241 bounds = np .max(iota , ax i s = 0)

242

243 x 0 = x s t a r

244 v 0 = 2*np . f l o o r (2*np . random . random sample (d)) − 1

245

246 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

247

248 X = np . array (np . z e r o s ((Ni te r+1,d)))

249 V = np . array (np . z e r o s ((Ni te r+1,d)))

250 X[0 , :] = x 0

251 V[0 , :] = v 0

252 x = x 0

253 v = v 0

254

255 startTime = time . time ()

256

Page 65 of 85

9 APPENDIX B: PYTHON CODE.

257 f o r i in range (1 , Ni te r + 1) :

258

259 tauL i s t = np . z e ro s ((d ,))

260 f o r j in range (0 , d) :

261 tauL i s t [j] = np . random . exponent i a l

262 (1/(R*bounds [j] + gammas [j]))

263

264 j 0 = in t (tauL i s t . argmin ())

265 tau = tauL i s t [j 0]

266 x = x + tau*v

267 Time [i] = Time [i −1] + tau

268 ### naive subsampling

269 i f np . random . random sample (1) < (R*bounds [j 0])

270 /((R*bounds [j 0] + gammas [j 0])) :

271 k = in t (np . f l o o r (np . random . rand (1) *R))

272

273 i f np . random . rand (1) < (max(0 , v [j 0]*

274 (gradU (x , y , k , i o t a) [j 0]))) /(bounds [j 0]) :

275 v = v*(1 − 2*(tauL i s t == min (tauL i s t)))

276 e l s e :

277 v [j 0] = −v [j 0]

278

279 X[i , :] = x

280 V[i , :] = v

281

282 tZZ = time . time () − startTime

283 ### the r e s t i s conta ined in each func t i on c a l l , but i s

284 ###shown only in t h i s example

285

286 t = Time[−1]

287

288 ## compute moments

289 Lag time = Time [1 : Ni te r +1] − Time [0 : Ni te r]

290

291 f irstMoment = ((1/ t) *(np . dot (Lag time ,X[0 : Niter , :])

292 + (1/2) *np . dot (Lag time **2 ,V[0 : Ni te r])))

293

294 secondMoment = ((1/ t) * (np . dot (Lag time ,X[0 : Niter , :] * * 2)

295 + np . dot (Lag time **2 ,X[0 : Niter , :] *V[0 : Ni te r])

296 + (1/3) *np . dot (Lag time **3 ,V[0 : Ni te r]**2)))

297

298

299 mu hat = firstMoment

300 s i gSq hat = secondMoment − f irstMoment **2

301

302 rea lVar = s i gSq hat

303

304 ### se t number o f batches

305 B = 200

306 batchTime = t /B

307

308

Page 66 of 85

9 APPENDIX B: PYTHON CODE.

309

310 batch Ind i c e s = np . z e ro s ((B+1 ,))

311 index = 0

312 f o r i in range (1 ,B+1) :

313 index = index + np . array ((Time [index :]

314 <= batchTime* i) . nonzero ()) .max()

315 batch Ind i c e s [i] = index

316

317

318 ## compute the mean in each batch

319

320 batchMeans = np . z e r o s ((B, d))

321

322

323 i f (ba t ch Ind i c e s [B] == Niter − 1) :

324 f o r j in range (0 ,B) :

325 f irstMoment = ((B/ t) *(np . dot (Lag time

326 [i n t (ba tch Ind i c e s [j]) : i n t (ba t ch Ind i c e s [j +1]) +1] ,

327 X[i n t (ba tch Ind i c e s [j]) : i n t (ba tch Ind i c e s [j +1]) +1 , :])

328 + (1/2) *np . dot (Lag time [i n t (ba tch Ind i c e s [j])

329 : i n t (ba tch Ind i c e s [j +1]) +1]**2 ,V[i n t (ba tch Ind i c e s [j])

330 : i n t (ba tch Ind i c e s [j +1]) +1])))

331 mu hat = firstMoment

332 batchMeans [j , :] = mu hat

333

334 e l s e :

335 f o r j in range (0 ,B) :

336

337 i f j < B−1:
338

339 f irstMoment = ((B/ t) *(np . dot (Lag time

340 [i n t (ba tch Ind i c e s [j]) : i n t (ba tch Ind i c e s [j +1])+1]

341 ,X[i n t (ba tch Ind i c e s [j]) : i n t (ba tch Ind i c e s [j +1]) +1 , :])

342 + (1/2) *np . dot (Lag time [i n t (ba tch Ind i c e s [j])

343 : i n t (ba tch Ind i c e s [j +1]) +1]**2 ,V[i n t (ba tch Ind i c e s [j])

344 : i n t (ba tch Ind i c e s [j +1]) +1])))

345 e l s e :

346 f irstMoment = ((B/ t) *(np . dot

347 (Lag time [i n t (ba tch Ind i c e s [j]) : i n t (ba t ch Ind i c e s [j +1])+1]

348 ,X[i n t (ba tch Ind i c e s [j]) : i n t (ba tch Ind i c e s [j +1]) , :])

349 + (1/2) *np . dot (Lag time [i n t (ba tch Ind i c e s [j])

350 : i n t (ba tch Ind i c e s [j +1]) +1]**2 ,V[i n t (ba tch Ind i c e s [j])

351 : i n t (ba tch Ind i c e s [j +1])])))

352

353

354 Yvec = math . s q r t (B/ t) *batchMeans

355 Ybar = np .mean(Yvec , ax i s = 0)

356 Y = (Yvec − Ybar) **2

357

358 s igHat = (1/(B−1)) *np . sum(Y, ax i s = 0)

359

360

Page 67 of 85

9 APPENDIX B: PYTHON CODE.

361 sampleS izes = t *(rea lVar / s igHat)

362 ESSs = np .mean(sampleS izes) /tZZ

363

364 re turn (ESSs , np .mean(sampleS izes) , tZZ)

365

366 ### f l i p method , informed sub−sampling

367 de f c y c l eZZa l i a s (R, d , Niter , y , i o ta , x s ta r , gamma) :

368 gammas = np . ones ((d ,)) *gamma

369

370 data = np . vstack ((y , i o t a .T)) .T

371

372 c0 = data [: , 0] == 0

373 c1 = data [: , 0] == 1

374

375 i o t a0 = data [c0 , 1 : (d+1)] . sum(ax i s = 0)

376 i o t a1 = data [c1 , 1 : (d+1)] . sum(ax i s = 0)

377

378 a l i a sVec t o r 0 = (i o t a / i o t a0)*(1−y . reshape (R, 1))

379 a l i a sVec t o r 1 = (i o t a / i o t a1) *y . reshape (R, 1)

380

381

382 J ze ro = np . z e ro s ([d ,R])

383 Q zero = np . z e ro s ([d ,R])

384

385 J one = np . z e ro s ([d ,R])

386 Q one = np . z e ro s ([d ,R])

387

388 f o r i i in range (d) :

389 J ze ro [i i , :] , Q zero [i i , :] = a l i a s s e t u p (a l i a sVec t o r 0 [: , i i])

390 J one [i i , :] , Q one [i i , :] = a l i a s s e t u p (a l i a sVec t o r 1 [: , i i])

391

392 x 0 = x s t a r

393 v 0 = 2*np . f l o o r (2*np . random . random sample (d)) − 1

394

395 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

396

397 X = np . array (np . z e r o s ((Ni te r+1,d)))

398 V = np . array (np . z e r o s ((Ni te r+1,d)))

399 X[0 , :] = x 0

400 V[0 , :] = v 0

401 x = x 0

402 v = v 0

403

404 startTime = time . time ()

405 f o r i in range (1 , Ni te r+1) :

406

407

408 ch i = np . array (np . z e r o s ([d]))

409 f o r i i in range (0 , d) :

410 i f v [i i] < 0 :

411 ch i [i i] = np . abs (v [i i]) * i o t a1 [i i]

412

Page 68 of 85

9 APPENDIX B: PYTHON CODE.

413 e l s e :

414 ch i [i i] = np . abs (v [i i]) * i o t a0 [i i]

415

416 tauL i s t1 = np . z e ro s ((d ,))

417 tauL i s t2 = np . z e ro s ((d ,))

418 f o r i i in range (0 , d) :

419 tauL i s t1 [i i] = np . random . exponent i a l (1/ ch i [i i])

420 tauL i s t2 [i i] = np . random . exponent i a l (1/gammas [i i])

421 j 0 = in t (tauL i s t1 . argmin ())

422 j 1 = in t (tauL i s t2 . argmin ())

423

424 tau = min (tauL i s t1 [j 0] , t auL i s t2 [j 1])

425 x = x + tau*v

426 Time [i] = Time [i −1] + tau

427

428 i f tau == tauL i s t2 [j 1] :

429 v [j 1] = −v [j 1]

430

431 e l s e :

432 i f v [j 0] < 0 :

433 r = in t (a l i a s d raw (J one [j 0 , :] , Q one [j 0 , :]))

434 e l s e :

435 r = in t (a l i a s d raw (J ze ro [j 0 , :] , Q zero [j 0 , :]))

436

437 i f np . random . random sample (1) < max(0 , v [j 0]* gradU (x , y , r , i o t a) [j 0])

/(abs (v [j 0]) * i o t a [r , j 0]) :

438 v [j 0] = −v [j 0]

439

440

441 X[i , :] = x

442 V[i , :] = v

443

444 tZZ = time . time () − startTime

445

446 ### here goes the r e s t

447

448 re turn (ESSs , np .mean(sampleS izes) , tZZ)

449

450

451 ### f l i p method , c on t r o l v a r i a t e s

452 de f cycleZZcv (R, d , Niter , y , i o ta , x s ta r , gamma) :

453 gammas = np . ones ((d ,)) *gamma

454

455 l ipKs = np . z e ro s ((d ,))

456 dataNorms = np . l i n a l g . norm(iota , ax i s =1)

457

458 boundMat = (dataNorms* i o t a .T) .T

459

460 f o r i in range (0 , d) :

461 l ipKs [i] = R* (1/4) *max(boundMat [: , i])

462

463 gradRefs = np . array (np . z e r o s ((R, d)))

Page 69 of 85

9 APPENDIX B: PYTHON CODE.

464

465 f o r i in range (0 ,R) :

466 gradRefs [i , :] = gradU (x s ta r , y , i , i o t a)

467

468 refGrad = np . sum(gradRefs , ax i s = 0)

469 #x 0 = x s t a r

470 x 0 = x s t a r

471 v 0 = 2*np . f l o o r (2*np . random . random sample (d)) − 1

472

473 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

474

475 X = np . array (np . z e r o s ((Ni te r+1,d)))

476 V = np . array (np . z e r o s ((Ni te r+1,d)))

477 X[0 , :] = x 0

478 V[0 , :] = v 0

479 x = x 0

480 v = v 0

481

482 startTime = time . time ()

483 f o r i in range (1 , Ni te r + 1) :

484

485 A = (v* refGrad) *(v* refGrad > 0) + np . l i n a l g . norm(x − x s t a r) * l ipKs

486 B = math . s q r t (d) * l ipKs

487 tauL i s t = np . z e ro s ((d ,))

488 tauL i s t2 = np . z e ro s ((d ,))

489 f o r j in range (0 , d) :

490 tauL i s t [j] = a f f i n eP o i s (A[j] ,B[j])

491 tauL i s t2 [j] = np . random . exponent i a l (1/gammas [j])

492

493 j 0 = in t (tauL i s t . argmin ())

494 j 1 = in t (tauL i s t2 . argmin ())

495

496 tau = min (tauL i s t [j 0] , t auL i s t2 [j 1])

497

498

499 x = x + tau*v

500 Time [i] = Time [i −1] + tau

501 ### naive subsampling

502

503 i f tau == tauL i s t [j 0] :

504 k = in t (np . f l o o r (np . random . rand (1) *R))

505

506 i f np . random . rand (1) < (R*max(0 , v [j 0] * (refGrad [j 0] /R

507 + gradU (x , y , k , i o t a) [j 0] − gradRefs [k , j 0]))) /(A[j 0] + tau*B[

j 0]) :

508

509 v [j 0] = −v [j 0]

510 e l s e :

511 v [j 1] = −v [j 1]

512

513 X[i , :] = x

514 V[i , :] = v

Page 70 of 85

9 APPENDIX B: PYTHON CODE.

515

516 tZZ = time . time () − startTime

517

518 re turn (ESSs , np .mean(sampleS izes) , tZZ)

519

520

521 ### f l i p method , informed sub−sampling , c on t r o l v a r i a t e s

522 de f cyc l eZZa lcv (R, d , Niter , y , i o ta , gamma, x s t a r) :

523

524 gammas = np . ones ((d ,)) *gamma

525

526 dataNorms = np . l i n a l g . norm(iota , ax i s =1)

527

528 C Mat = (1/4) *(dataNorms* i o t a .T) .T

529

530 C sums = np . sum(C Mat , ax i s = 0)

531

532 C probvec = C Mat/C sums

533

534 gradRefs = np . array (np . z e r o s ((R, d)))

535

536 f o r i in range (0 ,R) :

537 gradRefs [i , :] = gradU (x s ta r , y , i , i o t a)

538

539

540 J ze ro = np . z e ro s ([d ,R])

541 Q zero = np . z e ro s ([d ,R])

542

543

544 f o r i i in range (0 , d) :

545 J ze ro [i i , :] , Q zero [i i , :] = a l i a s s e t u p (C probvec [: , i i])

546

547

548 x 0 = x s t a r

549 v 0 = 2*np . f l o o r (2*np . random . random sample (d)) − 1

550

551 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

552

553 X = np . array (np . z e r o s ((Ni te r+1,d)))

554 V = np . array (np . z e r o s ((Ni te r+1,d)))

555 X[0 , :] = x 0

556 V[0 , :] = v 0

557 x = x 0

558 v = v 0

559

560 startTime = time . time ()

561 f o r i in range (1 , Ni te r+1) :

562

563 nx = np . l i n a l g . norm(x−x s t a r)

564 A = C sums*nx

565 B = C sums*math . sq r t (d)

566

Page 71 of 85

9 APPENDIX B: PYTHON CODE.

567 tauL i s t1 = np . z e ro s ((d ,))

568 tauL i s t2 = np . z e ro s ((d ,))

569 f o r i i in range (0 , d) :

570 tauL i s t1 [i i] = a f f i n eP o i s (A[i i] ,B[i i])

571 tauL i s t2 [i i] = np . random . exponent i a l (1/gammas [i i])

572 j 0 = in t (tauL i s t1 . argmin ())

573 j 1 = in t (tauL i s t2 . argmin ())

574

575 tau = min (tauL i s t1 [j 0] , t auL i s t2 [j 1])

576 x = x + tau*v

577 Time [i] = Time [i −1] + tau

578

579 i f tau == tauL i s t2 [j 1] :

580 v [j 1] = −v [j 1]

581

582 e l s e :

583 r = in t (a l i a s d raw (J ze ro [j 0 , :] , Q zero [j 0 , :]))

584

585 i f np . random . random sample (1) < max(0 , v [j 0] * (gradU (x , y , r , i o t a) [j 0]

− gradRefs [r , j 0])) /(nx*C Mat [r , j 0] + tau*math . s q r t (d) *C Mat [r , j 0]) :

586 v [j 0] = −v [j 0]

587

588

589 X[i , :] = x

590 V[i , :] = v

591

592 tZZ = time . time () − startTime

593

594

595 re turn (ESSs , np .mean(sampleS izes) , tZZ)

596

597

598 #### r e f l e c t i o n , na ive subsampling

599 de f cycleBPSnaive (R, d , Niter , y , io ta , x s ta r , Lre f) :

600

601 bounds = np .max(iota , ax i s = 0)

602

603 x 0 = x s t a r

604 v 0 = np . array (np . random . standard normal (d ,))

605 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

606 X = np . array (np . z e r o s ((Ni te r+1,d)))

607 V = np . array (np . z e r o s ((Ni te r+1,d)))

608 X[0 , :] = x 0

609 V[0 , :] = v 0

610 x = x 0

611 v = v 0

612

613 startTime = time . time ()

614 f o r i in range (1 , Ni te r + 1) :

615

616 tau = np . random . exponent i a l (1/(R*np . dot (abs (v) , bounds)))

617 tau2 = np . random . exponent i a l (1/ Lre f)

Page 72 of 85

9 APPENDIX B: PYTHON CODE.

618 tau = min (tau , tau2)

619 x = x + tau*v

620 Time [i] = Time [i −1] + tau

621 i f tau == tau2 :

622 v = np . array (np . random . standard normal (d ,))

623 e l s e :

624 k = in t (np . f l o o r (np . random . rand (1) *R))

625 gU = io t a [k , :] * (l o g i s t i cFun ((i o t a [k , :] * x) . sum()) − y [k])

626 i f np . random . rand (1) < max(0 , np . dot (v , gU)) /(np . dot (abs (v) , bounds

)) :

627 v = v − 2*np . dot (gU , v) /(np . l i n a l g . norm(gU) **2) *gU

628

629 X[i , :] = x

630 V[i , :] = v

631

632 tBPS = time . time () − startTime

633

634 re turn (ESSs , np .mean(sampleS izes) , tBPS)

635

636

637 ### r e f l e c t i o n , informed subsampling

638 de f cyc l eBPSa l ia s (R, d , Niter , y , io ta , x s ta r , Lre f) :

639

640 data = np . vstack ((y , i o t a .T)) .T

641

642 c0 = data [: , 0] == 0

643 c1 = data [: , 0] == 1

644

645 i o t a0 = data [c0 , 1 : (d+1)] . sum(ax i s = 0)

646 i o t a1 = data [c1 , 1 : (d+1)] . sum(ax i s = 0)

647

648 a l i a sVec t o r 0 = (i o t a / i o t a0)*(1−y . reshape (R, 1))

649 a l i a sVec t o r 1 = (i o t a / i o t a1) *y . reshape (R, 1)

650

651

652 J ze ro = np . z e ro s ([d ,R])

653 Q zero = np . z e ro s ([d ,R])

654

655 J one = np . z e ro s ([d ,R])

656 Q one = np . z e ro s ([d ,R])

657

658 f o r i i in range (d) :

659 J ze ro [i i , :] , Q zero [i i , :] = a l i a s s e t u p (a l i a sVec t o r 0 [: , i i])

660 J one [i i , :] , Q one [i i , :] = a l i a s s e t u p (a l i a sVec t o r 1 [: , i i])

661

662 x 0 = x s t a r

663 v 0 = np . random . standard normal ((d ,))

664

665 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

666

667 X = np . array (np . z e r o s ((Ni te r+1,d)))

668 V = np . array (np . z e r o s ((Ni te r+1,d)))

Page 73 of 85

9 APPENDIX B: PYTHON CODE.

669 X[0 , :] = x 0

670 V[0 , :] = v 0

671 x = x 0

672 v = v 0

673

674

675 startTime = time . time ()

676

677 f o r i in range (1 , Ni te r+1) :

678

679 ch i = 0

680 q = np . array (np . z e r o s ([d]))

681 f o r i i in range (0 , d) :

682 i f v [i i] < 0 :

683 ch i = ch i + np . abs (v [i i]) * i o t a1 [i i]

684 q [i i] = np . abs (v [i i]) * i o t a1 [i i]

685 e l s e :

686 ch i = ch i + np . abs (v [i i]) * i o t a0 [i i]

687 q [i i] = np . abs (v [i i]) * i o t a0 [i i]

688 q = q/q . sum()

689

690

691 tau = np . random . exponent i a l (1/(Lre f + ch i))

692

693 x = x + tau*v

694 Time [i] = Time [i −1] + tau

695 u = np . random . random sample (1)

696 i f u < ch i /(ch i + Lre f) : ## i i) i f j = 1

697 ## draw k from q(k)

698 k = in t (np . random . mult inomial (1 , q , s i z e =1) . r av e l () . nonzero ()

[0])

699 ## draw r from q(r | k)
700 i f v [k] < 0 :

701 r = in t (a l i a s d raw (J one [k , :] , Q one [k , :]))

702 e l s e :

703 r = in t (a l i a s d raw (J ze ro [k , :] , Q zero [k , :]))

704

705 gradU = (l o g i s t i cFun ((i o t a [r , :] * x) . sum()) − y [r]) * i o t a [r , :]

706 c h i r = np . dot ((v*((−1)**y [r]) >= 0) , (i o t a [r , :] * abs (v)) .T)

707

708 i f np . random . random sample (1) < max(0 , np . dot (gradU , v)) / c h i r :

709

710 v = v − 2*(gradU*v) . sum() /(np . l i n a l g . norm(gradU) **2) *gradU #

Else

711

712 e l s e :

713 v = np . random . standard normal ((d ,))

714

715 X[i , :] = x

716 V[i , :] = v

717

718

Page 74 of 85

9 APPENDIX B: PYTHON CODE.

719 tBPS = time . time () − startTime

720

721 t = Time[−1]

722

723 re turn (ESSs , np .mean(sampleS izes) , tBPS)

724

725

726 ### r e f l e c t i o n method , c on t r o l v a r i a t e s

727 de f cycleBPScv (R, d , Niter , y , io ta , Lref , x s t a r) :

728

729 l ipKs = np . z e ro s ((d ,))

730 dataNorms = np . l i n a l g . norm(iota , ax i s =1)

731

732 boundMat = (dataNorms* i o t a .T) .T

733

734 f o r i in range (0 , d) :

735 l ipKs [i] = R* (1/4) *max(boundMat [: , i])

736

737 gradRefs = np . array (np . z e r o s ((R, d)))

738

739 f o r i in range (0 ,R) :

740 gradRefs [i , :] = gradU (x s ta r , y , i , i o t a)

741

742 refGrad = np . sum(gradRefs , ax i s = 0)

743

744 x 0 = x s t a r

745 v 0 = np . array (np . random . standard normal (d ,))

746 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

747 X = np . array (np . z e r o s ((Ni te r+1,d)))

748 V = np . array (np . z e r o s ((Ni te r+1,d)))

749 X[0 , :] = x 0

750 V[0 , :] = v 0

751 x = x 0

752 v = v 0

753

754 startTime = time . time ()

755 f o r i in range (1 , Ni te r + 1) :

756

757 A = max(0 , np . dot (v , refGrad)) + np . l i n a l g . norm(x − x s t a r) *np . dot (

l ipKs , np . abs (v))

758 B = np . l i n a l g . norm(v) *np . dot (l ipKs , np . abs (v))

759 tau1 = a f f i n eP o i s (A,B)

760 tau2 = np . random . exponent i a l (1/ Lre f)

761 tau = min (tau1 , tau2)

762 x = x + tau*v

763 Time [i] = Time [i −1] + tau

764

765 i f tau2 < tau1 :

766 v = np . array (np . random . standard normal (d ,))

767 ### naive subsampling

768 e l s e :

769 k = in t (np . f l o o r (np . random . rand (1) *R))

Page 75 of 85

9 APPENDIX B: PYTHON CODE.

770 Ek = (refGrad/R + gradU (x , y , k , i o t a) − gradRefs [k , :])

771 i f np . random . rand (1) < R*max(0 , np . dot (v ,Ek)) /(A + tau*B) :

772 v = v − 2*np . dot (Ek , v) /(np . l i n a l g . norm(Ek) **2) *Ek

773

774 X[i , :] = x

775 V[i , :] = v

776

777 tBPS = time . time () − startTime

778 t = Time[−1]

779

780

781 re turn (ESSs , np .mean(sampleS izes) , tBPS)

782

783

784 ### r e f l e c t i o n with con t r o l v a r i a t e s − informed s s

785 de f cycleBPSalcv (R, d , Niter , y , io ta , Lref , x s t a r) :

786

787 dataNorms = np . l i n a l g . norm(iota , ax i s =1)

788

789 C Mat = (1/4) *(dataNorms* i o t a .T) .T

790

791 C sums = np . sum(C Mat , ax i s = 0)

792

793 C probvec = C Mat/C sums

794

795 gradRefs = np . array (np . z e r o s ((R, d)))

796

797 f o r i in range (0 ,R) :

798 gradRefs [i , :] = gradU (x s ta r , y , i , i o t a)

799

800

801 J ze ro = np . z e ro s ([d ,R])

802 Q zero = np . z e ro s ([d ,R])

803

804

805 f o r i i in range (0 , d) :

806 J ze ro [i i , :] , Q zero [i i , :] = a l i a s s e t u p (C probvec [: , i i])

807

808

809 x 0 = x s t a r

810 v 0 = np . random . standard normal ((d ,))

811

812 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

813

814 X = np . array (np . z e r o s ((Ni te r+1,d)))

815 V = np . array (np . z e r o s ((Ni te r+1,d)))

816 X[0 , :] = x 0

817 V[0 , :] = v 0

818 x = x 0

819 v = v 0

820

821

Page 76 of 85

9 APPENDIX B: PYTHON CODE.

822 startTime = time . time ()

823 f o r i in range (1 , Ni te r+1) :

824 nv = np . l i n a l g . norm(v)

825 nx = np . l i n a l g . norm(x − x s t a r)

826 A = np . dot (C sums , abs (v)) *nx

827 B = np . dot (C sums , abs (v)) *nv

828

829 q = np . array (np . z e r o s ([d]))

830 f o r i i in range (0 , d) :

831 q [i i] = abs (v [i i]) *C sums [i i]

832

833 q = q/q . sum()

834

835

836 tau1 = a f f i n eP o i s (A,B)

837 tau2 = np . random . exponent i a l (1/(Lre f))

838

839 tau = min (tau1 , tau2)

840 x = x + tau*v

841 Time [i] = Time [i −1] + tau

842

843 i f tau == tau1 : ## i i) i f j = 1

844 ## draw k from q(k)

845 k = in t (np . random . mult inomial (1 , q , s i z e =1) . r av e l () . nonzero ()

[0])

846 ## draw r from q(r | k)
847 r = in t (a l i a s d raw (J ze ro [k , :] , Q zero [k , :]))

848

849 Er = (gradU (x , y , r , i o t a) − gradRefs [r , :])

850 i f np . random . random sample (1) < max(0 , np . dot (Er , v)) /(np . dot (

C Mat [r , :] , abs (v)) *(tau*nv + nx)) :

851 v = v − 2*np . dot (Er , v) /(np . l i n a l g . norm(Er) **2) *Er

852 e l s e :

853 v = np . random . standard normal ((d ,))

854

855 X[i , :] = x

856 V[i , :] = v

857

858

859 tBPS = time . time () − startTime

860

861

862 re turn (ESSs , np .mean(sampleS izes) , tBPS)

863

864

865

866

867 ### one example with a mass matrix w i l l s u f f i c e

868 ### ’M’ i s the mass matrix , ’ rootM ’ i s the Cholesky decompos it ion

869

870

871 de f cycleBPSalcvM (R, d , Niter , y , i o ta , Lref , x s ta r ,M, rootM) :

Page 77 of 85

9 APPENDIX B: PYTHON CODE.

872

873 dataNorms = np . l i n a l g . norm(iota , ax i s =1)

874

875 C Mat = (1/4) *(dataNorms*np . abs (i o t a .T)) .T

876

877 C sums = np . sum(C Mat , ax i s = 0)

878

879 C probvec = C Mat/C sums

880

881 gradRefs = np . array (np . z e r o s ((R, d)))

882

883 f o r i in range (0 ,R) :

884 gradRefs [i , :] = gradU (x s ta r , y , i , i o t a)

885

886 J ze ro = np . z e ro s ([d ,R])

887 Q zero = np . z e ro s ([d ,R])

888

889

890

891

892

893

894 f o r i i in range (0 , d) :

895 J ze ro [i i , :] , Q zero [i i , :] = a l i a s s e t u p (C probvec [: , i i])

896

897

898 x 0 = x s t a r

899 v 0 = np . dot (rootM , np . random . standard normal ((d ,)) .T)

900

901 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

902

903 X = np . array (np . z e r o s ((Ni te r+1,d)))

904 V = np . array (np . z e r o s ((Ni te r+1,d)))

905 X[0 , :] = x 0

906 V[0 , :] = v 0

907 x = x 0

908 v = v 0

909

910

911 startTime = time . time ()

912 f o r i in range (1 , Ni te r+1) :

913 nv = np . l i n a l g . norm(v)

914 nx = np . l i n a l g . norm(x − x s t a r)

915 A = np . dot (C sums , abs (v)) *nx

916 B = np . dot (C sums , abs (v)) *nv

917

918 q = np . array (np . z e r o s ([d]))

919 f o r i i in range (0 , d) :

920 q [i i] = abs (v [i i]) *C sums [i i]

921

922 q = q/q . sum()

923

Page 78 of 85

9 APPENDIX B: PYTHON CODE.

924

925 tau1 = a f f i n eP o i s (A,B)

926 tau2 = np . random . exponent i a l (1/(Lre f))

927

928 tau = min (tau1 , tau2)

929 x = x + tau*v

930 Time [i] = Time [i −1] + tau

931

932 i f tau == tau1 : ## i i) i f j = 1

933 ## draw k from q(k)

934 k = in t (np . random . mult inomial (1 , q , s i z e =1) . r av e l () . nonzero ()

[0])

935 ## draw r from q(r | k)
936 r = in t (a l i a s d raw (J ze ro [k , :] , Q zero [k , :]))

937

938 Er = (gradU (x , y , r , i o t a) − gradRefs [r , :])

939 i f np . random . random sample (1) < max(0 , np . dot (Er , v)) /(np . dot (

C Mat [r , :] , abs (v)) *(tau*nv + nx)) :

940 v = v − 2*np . dot (Er , v) /(np . l i n a l g . norm(np . dot (rootM .T, Er .T))

**2) *np . dot (M, Er)

941 e l s e :

942 v = np . dot (rootM , np . random . standard normal ((d ,)) .T)

943

944 X[i , :] = x

945 V[i , :] = v

946

947 ### code f o r random f i e l d example

948

949

950 import numpy as np

951 import time

952 import math

953

954 ##hyperparameters

955 d = 30

956 s i g 2 = 1.91

957 mu = np . l og (126) − s i g 2 /2

958 beta = 1/6

959 s = 1/d**2

960

961 Lre f = 5

962

963

964 ## crea t e the 900x900 cov matrix

965

966 Z = np . z e r o s ((d**2 ,d**2))

967

968 startTime = time . time ()

969 f o r n in range (0 , d**2) :

970 ni = np . c e i l ((n+1)/d)

971 nj = (n+1) % d

972 i f n j == 0 :

Page 79 of 85

9 APPENDIX B: PYTHON CODE.

973 nj = d

974 f o r m in range (0 , d**2) :

975 mi = np . c e i l ((m+1)/d)

976 mj = (m+1) % d

977 i f mj == 0 :

978 mj = d

979

980 Z [n ,m] = np . sq r t ((n i − mi) **2 + (nj − mj) **2)

981

982 matTime = time . time () − startTime

983

984

985 ### Fisher i n f .

986 Z = s i g 2 *np . exp(−Z/(beta *d))
987 Zinv = np . l i n a l g . inv (Z)

988 L = np . l i n a l g . cho l e sky (Z)

989

990

991 ### make the mass matrix

992

993 Lambda = np . z e ro s ((d**2 ,d**2))

994 f o r i in range (0 , d**2) :

995 Lambda [i , i] = s *math . exp (mu + Z [i , i])

996

997 G = Lambda + Zinv

998 M = np . l i n a l g . inv (G)

999

1000 f o r i in range (0 , d**2) :

1001 f o r j in range (0 , d**2) :

1002 i f M[i , j] < 10**(−5) :
1003 M[i , j] = 0

1004

1005

1006 rootM = np . l i n a l g . cho l e sky (M)

1007

1008 ### generate the l a t e n t f i e l d X and data Y

1009

1010 X = np . dot (L , np . random . standard normal ((d**2 ,)) .T) + mu

1011

1012 Y = np . z e ro s ((d**2 ,))

1013 f o r i in range (0 , d**2) :

1014 Y[i] = np . random . po i s son (s *np . exp (X[i]))

1015

1016 l a tProc = s *np . exp (X)

1017

1018

1019

1020 ### batch means e s t imator f o r HMC ESS

1021

1022 de f batchMeansNeff (X,N,B) : ## assumes N/B i s an i n t e g e r

1023 bMeans = np . z e r o s ((B,))

1024 m = N/B ## batch s i z e

Page 80 of 85

9 APPENDIX B: PYTHON CODE.

1025 f o r i in range (0 ,B) :

1026 bMeans [i] = np . sum(X[i *m: (i +1)*m]) /m

1027

1028 s = np . var (X, ddof = 1)

1029 s batch = m*np . var (bMeans , ddof = 1)

1030

1031 re turn (N*(s / s batch))

1032

1033

1034

1035 ### func t i on to generate an a r r i v a l time from a Gaussian

1036 ### fo r s imu la t i on o f event time o f U 2 (x) (s ee s e c t i o n 6 . 4)

1037 de f genGaussianTime (x , v ,mu, Zinv) :

1038 x = x − mu

1039 i f np . dot (v , np . dot (Zinv , x .T)) >= 0 :

1040 t = ((−np . dot (v , np . dot (Zinv , x .T))

1041 + math . sq r t (np . dot (v , np . dot (Zinv , x .T)) **2

1042 − 2*np . dot (v , np . dot (Zinv , v .T)) *math . l og (np . random . rand (1))))

1043 / np . dot (v , np . dot (Zinv , v .T)))

1044 e l s e :

1045 t = ((−np . dot (v , np . dot (Zinv , x .T))

1046 + math . sq r t (−2*np . dot (v , np . dot (Zinv , v .T))

1047 *math . l og (np . random . rand (1))))

1048 / np . dot (v , np . dot (Zinv , v .T)))

1049 re turn (t)

1050

1051

1052 ### no mass (moment c a l c u l a t i o n s , e s s c a l c u l a t i o n s l e f t out

1053 ### as they are i d e n t i c a l to the l o g i s t i c case

1054

1055 de f cycleRF (Y,Z , Zinv ,mu, Niter , Lre f) :

1056

1057 x 0 = np . random . standard normal ((d**2 ,))

1058 v 0 = np . random . standard normal ((d**2 ,))

1059

1060 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

1061

1062 X = np . array (np . z e r o s ((Ni te r+1,d**2)))

1063 V = np . array (np . z e r o s ((Ni te r+1,d**2)))

1064 X[0 , :] = x 0

1065 V[0 , :] = v 0

1066 x = x 0

1067 v = v 0

1068

1069 startTime = time . time ()

1070

1071 f o r i in range (1 , Ni te r+1) :

1072

1073 t1 = np . random . exponent i a l (1/ Lre f)

1074 t2 = genGaussianTime (x , v ,mu, Zinv)

1075

1076 tauL i s t = np . z e ro s ((d**2 ,))

Page 81 of 85

9 APPENDIX B: PYTHON CODE.

1077 f o r j in range (0 , d**2) :

1078

1079 i f v [j] > 0 :

1080 tauL i s t [j] = (1/v [j]) *(math . l og (−math . l og (np . random .

random sample (1)) / s + math . exp (x [j])) − x [j])

1081 e l i f Y[j]>0:

1082 tauL i s t [j] = math . l og (np . random . random sample (1)) /(Y[j]* v [j

])

1083 e l s e :

1084 tauL i s t [j] = np . i n f

1085

1086 t3 = min (tauL i s t)

1087 tau = min (t1 , t2 , t3)

1088 x = x + tau*v

1089 Time [i] = Time [i −1] + tau

1090

1091 i f tau == t1 :

1092 v = np . random . standard normal ((d**2 ,))

1093

1094 e l s e :

1095 gradU = np . dot (Zinv , (x − mu)) − Y + s *np . exp (x)

1096 v = v − 2*(np . dot (gradU , v) /np . l i n a l g . norm(gradU) **2) *gradU

1097

1098 X[i , :] = x

1099 V[i , :] = v

1100

1101 tBPS = time . time () − startTime

1102

1103 re turn (ESSs , sampleSizes , tBPS ,Min ,Med,Max, means , Vars)

1104

1105

1106

1107 de f cycleRFwMass (Y, Z , Zinv ,mu, Niter , Lref ,M, rootM) :

1108

1109 x 0 = np . random . standard normal ((d**2 ,))

1110 v 0 = np . dot (rootM , np . random . standard normal ((d**2 ,)) .T)

1111

1112 Time = np . array (np . z e r o s ((Ni te r +1 ,)))

1113

1114 X = np . array (np . z e r o s ((Ni te r+1,d**2)))

1115 V = np . array (np . z e r o s ((Ni te r+1,d**2)))

1116 X[0 , :] = x 0

1117 V[0 , :] = v 0

1118 x = x 0

1119 v = v 0

1120

1121 startTime = time . time ()

1122

1123 f o r i in range (1 , Ni te r+1) :

1124

1125 t1 = np . random . exponent i a l (1/ Lre f)

1126 t2 = genGaussianTime (x , v ,mu, Zinv)

Page 82 of 85

9 APPENDIX B: PYTHON CODE.

1127

1128 tauL i s t = np . z e ro s ((d**2 ,))

1129 f o r j in range (0 , d**2) :

1130

1131 i f v [j] > 0 :

1132 tauL i s t [j] = (1/v [j]) *(math . l og (−math . l og (np . random .

random sample (1)) / s + math . exp (x [j])) − x [j])

1133 e l i f Y[j] > 0 :

1134 tauL i s t [j] = math . l og (np . random . random sample (1)) /(Y[j]* v [j

])

1135 e l s e : t auL i s t [j] = np . i n f

1136

1137 t3 = min (tauL i s t)

1138 tau = min (t1 , t2 , t3)

1139 x = x + tau*v

1140 Time [i] = Time [i −1] + tau

1141

1142 i f tau == t1 :

1143 v = np . dot (rootM , np . random . standard normal ((d**2 ,)))

1144

1145 e l s e :

1146 gradU = np . dot (Zinv , (x − mu)) − Y + s *np . exp (x)

1147 v = v − 2*(np . dot (gradU , v) /np . l i n a l g . norm(np . dot (rootM .T, gradU .T

)) **2) *np . dot (M, gradU .T)

1148

1149 X[i , :] = x

1150 V[i , :] = v

1151

1152 tBPS = time . time () − startTime

1153

1154

1155 re turn (ESSs , sampleSizes , tBPS ,Min ,Med,Max, means , Vars)

1156

1157 ### batch means f o r HMC ESS c a l c u l a t i o n s

1158

1159 de f batchMeans (X,N,B) : ## assumes N/B i s an i n t e g e r

1160 bMeans = np . z e r o s ((B,))

1161 m = N/B ## batch s i z e

1162 f o r i in range (0 ,B) :

1163 bMeans [i] = np . sum(X[i *m: (i +1)*m]) /m

1164

1165 s = np . var (X, ddof = 1)

1166 s batch = m*np . var (bMeans , ddof = 1)

1167

1168 re turn (N*(s / s batch))

1169

1170

1171

1172

1173

1174 ### HMC, RMHMC code , modi f i ed from pseudocode g iven in ’MCMC using

Hamiltonian Dynamics ’ by Radford Neal

Page 83 of 85

9 APPENDIX B: PYTHON CODE.

1175

1176 de f HMCitM(U, grad U , eps i l on , L , current q , d ,Minv , rootM) :

1177 q = cur r en t q

1178 p = np . dot (rootM , np . random . standard normal ((d ,)))

1179 # independent standard normal v a r i a t e s

1180 cur r ent p = p

1181 # Make a ha l f s tep f o r momentum at the beg inning

1182 p = p− ep s i l o n *grad U (q) /2

1183 # Alternate f u l l s t ep s f o r p o s i t i o n and momentum

1184 f o r i in range (1 ,L+1) :

1185

1186

1187 q = q + ep s i l o n *np . dot (Minv , p)

1188 # Make a f u l l s tep f o r the momentum, except at end o f t r a j e c t o r y

1189 i f (i !=L) :

1190 p = p − ep s i l o n *grad U (q)

1191

1192 # Make a ha l f s tep f o r momentum at the end .

1193 p = p − ep s i l o n *grad U (q) /2

1194 # Negate momentum at end o f t r a j e c t o r y to make the proposa l symmetric

1195 p = −p
1196 # Evaluate p o t e n t i a l and k i n e t i c e n e r g i e s at s t a r t and end o f t r a j e c t o r y

1197 current U = U(cur r en t q)

1198 current K = np . dot (current p , np . dot (Minv , cur r ent p)) /2 ## id en t i t y mass

matrix

1199 proposed U = U(q)

1200 proposed K = np . dot (p , np . dot (Minv , p)) /2

1201 # Accept or r e j e c t the s t a t e at end o f t r a j e c t o r y , r e tu rn ing e i t h e r

1202 # the po s i t i o n at the end o f the t r a j e c t o r y or the i n i t i a l p o s i t i o n

1203 i f (np . l og (np . random . random sample (1)) <

1204 (current U−proposed U+current K−proposed K)) :

1205 re turn (q) # accept

1206

1207 e l s e :

1208 re turn (cu r r en t q) # r e j e c t

1209

1210 de f HMCit(U, grad U , eps i l on , L , current q , d) :

1211 q = cur r en t q

1212 p = np . random . standard normal ((d ,)) # independent standard normal

v a r i a t e s

1213 cur r ent p = p

1214 # Make a ha l f s tep f o r momentum at the beg inning

1215 p = p− ep s i l o n *grad U (q) /2

1216 # Alternate f u l l s t ep s f o r p o s i t i o n and momentum

1217 f o r i in range (1 ,L+1) :

1218

1219

1220 q = q + ep s i l o n *p

1221 # Make a f u l l s tep f o r the momentum, except at end o f t r a j e c t o r y

1222 i f (i !=L) :

1223 p = p − ep s i l o n *grad U (q)

1224

Page 84 of 85

9 APPENDIX B: PYTHON CODE.

1225 # Make a ha l f s tep f o r momentum at the end .

1226 p = p − ep s i l o n *grad U (q) /2

1227 # Negate momentum at end o f t r a j e c t o r y to make the proposa l symmetric

1228 p = −p
1229 # Evaluate p o t e n t i a l and k i n e t i c e n e r g i e s at s t a r t and end o f t r a j e c t o r y

1230 current U = U(cur r en t q)

1231 current K = np . sum(cur r ent p **2) /2 ## id en t i t y mass matrix

1232 proposed U = U(q)

1233 proposed K = np . sum(p**2) /2

1234 # Accept or r e j e c t the s t a t e at end o f t r a j e c t o r y , r e tu rn ing e i t h e r

1235 # the po s i t i o n at the end o f the t r a j e c t o r y or the i n i t i a l p o s i t i o n

1236 i f (np . l og (np . random . random sample (1)) <

1237 (current U−proposed U+current K−proposed K)) :

1238 re turn (q) # accept

1239

1240 e l s e :

1241 re turn (cu r r en t q)

1242

1243

1244

1245 ### func t i on s that HMC, RMHMC w i l l c a l l :

1246 ### energy , g rad i en t r e s p e c t i v e l y

1247

1248 de f U(x) : #### negat ive l og dens i ty

1249 u1 = np . dot ((x − mu) ,np . dot (Zinv , (x−mu))) /2

1250 u2 = −np . sum(Y*x) + s *np . sum(np . exp (x))

1251 re turn u1 + u2

1252

1253 de f grad U (x) :

1254 re turn −Y +s *np . exp (x) + np . dot (Zinv , (x−mu))

Page 85 of 85

