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Summary. The pseudomarginal algorithm is a Metropolis–Hastings-type scheme which sam-
ples asymptotically from a target probability density when we can only estimate unbiasedly an
unnormalized version of it. In a Bayesian context, it is a state of the art posterior simulation
technique when the likelihood function is intractable but can be estimated unbiasedly by using
Monte Carlo samples. However, for the performance of this scheme not to degrade as the num-
ber T of data points increases, it is typically necessary for the number N of Monte Carlo samples
to be proportional to T to control the relative variance of the likelihood ratio estimator appear-
ing in the acceptance probability of this algorithm. The correlated pseudomarginal method is
a modification of the pseudomarginal method using a likelihood ratio estimator computed by
using two correlated likelihood estimators. For random-effects models, we show under regularity
conditions that the parameters of this scheme can be selected such that the relative variance of
this likelihood ratio estimator is controlled when N increases sublinearly with T and we provide
guidelines on how to optimize the algorithm on the basis of a non-standard weak convergence
analysis. The efficiency of computations for Bayesian inference relative to the pseudomarginal
method empirically increases with T and exceeds two orders of magnitude in some examples.

Keywords: Asymptotic posterior normality; Correlated random numbers; Intractable likelihood;
Metropolis–Hastings algorithm; Particle filter; Random-effects model; Weak convergence

1. Introduction

Consider a Bayesian model where the likelihood of the observations y is denoted by p.y | θ/ and
the prior for the parameter θ∈Θ⊆Rd admits a density p.θ/ with respect to Lebesgue measure
dθ. Then the posterior density of interest is π.θ/∝p.y | θ/p.θ/. We slightly abuse the notation
by using the same symbols for distributions and densities.

A standard approach to compute expectations with respect to π.θ/ is to use the Metropolis–
Hastings (MH) algorithm to generate an ergodic Markov chain of invariant density π.θ/. Given
the current state θ of the Markov chain, one samples a candidate θ′ which is accepted with
a probability which depends in part on the likelihood ratio p.y | θ′/=p.y | θ/. For many latent
variable models, the likelihood is intractable and it is thus impossible to implement the MH
algorithm. In this context, Markov chain Monte Carlo schemes targeting the joint posterior
distribution of the parameter and latent variables are often inefficient as the parameter and
latent variables can be strongly correlated under the posterior, or cannot even be used if only
forward simulation of the latent variables is feasible; see, for example, Ionides et al. (2006),
Johndrow et al. (2016) and Andrieu et al. (2010), section 2.3, for a detailed discussion.
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Contrary to these approaches, the pseudomarginal algorithm directly mimics the MH scheme
targeting the marginal π.θ/ by substituting an estimator of the likelihood ratio p.y|θ′/=p.y|θ/
for the true likelihood ratio in the MH acceptance probability (Lin et al., 2000; Beaumont,
2003; Andrieu and Roberts, 2009). This estimator is obtained by computing a non-negative
unbiased estimator of p.y | θ′/ and dividing it by the estimator of p.y | θ/ computed when θ was
accepted. This simple yet powerful idea has become popular as it is often possible to obtain
a non-negative unbiased estimator of intractable likelihoods and it provides state of the art
performance in many scenarios; see, for example, Andrieu et al. (2010) and Flury and Shephard
(2011). Qualitative convergence results for this procedure have been obtained by Andrieu and
Roberts (2009) and Andrieu and Vihola (2015).

Assuming that the likelihood estimator is evaluated by using importance sampling or particle
filters for state space models with N particles, it has also been shown under various assumptions
by Pitt et al. (2012), Doucet et al. (2015) and Sherlock et al. (2015) that N should be selected such
that the variance of the log-likelihood ratio estimator should take a value between 1.0 and 3.0
in regions of high probability mass to minimize the computational resources that are necessary
to achieve a prespecified asymptotic variance for a particular pseudomarginal average. As the
number T of data y = .y1, : : : , yT / increases, this implies that N should increase linearly with T

(Bérard et al. (2014), theorem 1) and the computational cost of the pseudomarginal algorithm
is thus of order T 2 at each iteration. This can be prohibitive for large data sets.

The reason for this is that the pseudomarginal algorithm is based on an estimator of p.y |
θ′/=p.y | θ/ that is obtained by dividing estimators of p.y | θ/ and p.y | θ′/ which are independent
given θ and θ′. However, when one is interested in estimating a ratio, using positively correlated
estimators of the numerator and denominator typically provides a lower variance ratio estimator
than if these estimators were independent; see, for example, Koop (1972). This is exploited by the
proposed correlated pseudomarginal method which correlates these estimators by correlating
the auxiliary random variates that are used to obtain them. Two implementations of this generic
idea are detailed. We show how to correlate importance sampling estimators for random-effects
models and particle filter estimators for state space models by using the Hilbert sort procedure
that was proposed by Gerber and Chopin (2015).

We study in detail the large sample properties of the correlated pseudomarginal scheme for
random-effects models. In this scenario, the log-likelihood ratio estimator based on our cor-
relation scheme satisfies a conditional central limit theorem (CLT) whenever N grows to ∞
sublinearly with T and the Euclidean distance between θ and θ′ is of order 1=

√
T . When the

posterior concentrates towards a Gaussian density of standard deviation 1=
√

T , this CLT can
be used to show that a space-rescaled version of the correlated pseudomarginal chain converges
weakly to a discrete time Markov chain on the parameter space. The integrated auto-correlation
time of the weak limit is not impacted by how fast N goes to ∞ with T . However, the lower this
growth rate is, the more correlated the auxiliary variables need to be to control the variance of
this estimator. We provide results suggesting that N needs to grow at least at rate

√
T for the inte-

grated auto-correlation time of the original correlated pseudomarginal chain to remain finite as
T →∞. We use these results to provide practical guidelines on how to optimize the performance
of the algorithm for large data sets which are validated experimentally. In our numerical exam-
ples on random-effects models and state space models, the correlated pseudomarginal method
always outperforms the pseudomarginal method and the improvement increases with T from
20 to 50 times when T is a few hundred to more than 100 times when T is a few thousand.

The rest of the paper is organized as follows. In Section 2, we introduce the correlated pseu-
domarginal algorithm and detail its implementation for random-effects and state space models.
In Section 3, we present various CLTs for the log-likelihood estimator and log-likelihood ratio
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estimators that are used by the pseudomarginal and correlated pseudomarginal methods. In
Section 4, we exploit these results to analyse and optimize the correlated pseudomarginal kernel
in the large sample regime. We demonstrate experimentally the efficiency of this methodology
in Section 5 and discuss various potential extensions in Section 6. All the proofs are given in
the on-line supplementary material. The numerical results have been generated by using Ox
version 4.0 (Doornik, 2007). The computer code to replicate the experiments is available on line
from https://github.com/mikepitt1969/correlated.

2. Metropolis–Hastings and correlated pseudomarginal schemes

2.1. Metropolis–Hastings algorithm
The transition kernel QMH of the MH algorithm targeting π.θ/ by using a proposal distribution
q.θ, dθ′/=q.θ, θ′/dθ′ is given by

QMH.θ, dθ′/=q.θ, dθ′/αMH.θ, θ′/+{1−�MH.θ/}δθ.dθ′/, .1/

where

rMH.θ, θ′/= π.θ′/q.θ′, θ/
π.θ/q.θ, θ′/

= p.y | θ′/ p.θ′/q.θ′, θ/
p.y | θ/ p.θ/q.θ, θ′/

, .2/

and

αMH.θ, θ′/=min{1, rMH.θ, θ′/},

�MH.θ/=
∫

q.θ, dθ′/αMH.θ, θ′/:
.3/

Implementing this MH scheme requires being able to evaluate the likelihood ratio p.y | θ′/=p.y |
θ/ appearing in the expression of rMH.θ, θ′/. When it is not possible to evaluate this ratio exactly,
this MH algorithm cannot be implemented.

2.2. The correlated pseudomarginal algorithm
Assume that p̂.y | θ, U/ is a non-negative unbiased estimator of the intractable likelihood p.y | θ/
when U ∼m. Here U corresponds to the U-valued auxiliary random variables that are used to
obtain the estimator. We assume that m.du/ = m.u/du and introduce the joint density π̄.θ, u/

on Θ×U , where

π̄.θ, u/=π.θ/m.u/ p̂.y | θ, u/=p.y|θ/: .4/

As p̂.y | θ, U/ is unbiased, π̄.θ, u/ admits π.θ/ as the marginal density. The correlated pseudo-
marginal algorithm is an MH scheme targeting (4) with proposal density q.θ, dθ′/K.u, du′/
where K admits an m-reversible Markov transition density, i.e.

m.u/K.u, u′/=m.u′/K.u′, u/: .5/

This yields the acceptance probability

αQ{.θ, u/, .θ′, u′/}=min
{

1, rMH.θ, θ′/
p̂.y | θ′, u′/=p.y | θ′/
p̂.y | θ, u/=p.y | θ/

}
: .6/

The correlated pseudomarginal algorithm admits π̄.θ, u/ as an invariant density by construction
and its transition kernel Q is given by

Q{.θ, u/, .dθ′, du′/}=q.θ, dθ′/K.u, du′/αQ{.θ, u/, .θ′, u′/}+{1−�Q.θ, u/}δ.θ, u/.dθ′, du′/, .7/
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Table 1. Algorithm 1: correlated pseudomarginal algorithm

1, sample θ′ ∼q.θ, ·/
2, sample "∼N .0M , IM/ and set U ′ =ρU +√

.1−ρ2/"
3, compute the estimator p̂.y | θ′, U ′/ of p.y | θ′/
4, with probability

αQ{.θ, U/, .θ′, U ′/}=min
{

1,
p̂.y | θ′, U ′/
p̂.y | θ, U/

p.θ′/
p.θ/

q.θ′, θ/
q.θ, θ′/

}

output .θ′, U ′/; otherwise, output .θ, U/

where 1−�Q.θ, u/ is the corresponding rejection probability. For K.u, u′/=m.u′/, we recover the
pseudomarginal scheme. Data-informed proposals such as the preconditioned Crank-Nicolson
Langevin proposal of Cotter et al. (2013) and its extensions proposed by Titsias and
Papaspiliopoulos (2018) could also be used to update the auxiliary random variates at the
cost of more complex acceptance probabilities.

Letϕ.z;μ, Σ/ be the multivariate normal density of argument z, meanμ and covariance matrix
Σ and let X∼N .μ, Σ/ denote a sample from this distribution. Henceforth, we focus on the case
where the likelihood estimator is computed by using M �1 standard normal random variables
and the corresponding Crank-Nicolson proposal (Cotter et al., 2013) is used. Hence we have

m.u/=ϕ.u; 0M , IM/,

Kρ.u, u′/=ϕ{u′;ρu, .1−ρ2/IM},
.8/

where ρ∈ .−1, 1/, 0M is the M ×1 vector with 0-entries and IM the M ×M identity matrix. It is
straightforward to check that Kρ is m reversible. There is no loss of generality to select m as a
normal density since inversion techniques can be used to form any random variable of interest.
(For example, in Section 2.3.2, it is necessary to generate uniform random variates and these
may be constructed as Φ.ui/ where ui is a scalar element of u and Φ the cumulative distribution
function of the standard normal distribution.)

The selection of m as a normal distribution and Kρ as a proposal is advantageous because
Kρ can be interpreted as a discretized Ornstein–Uhlenbeck process. This is key in establishing
the main theoretical result of Section 3 whose proof is simplified by the use of Itô’s lemma and
Stein’s lemma. This allows us to provide useful guidelines on how to optimize the parameters
of the correlated pseudomarginal. Moreover, Kρ is cheap to simulate from and admits a single
interpretable parameter.

Algorithm 1 in Table 1 summarizes how to simulate from Q{.θ, U/, ·}. Contrary to the pseu-
domarginal method corresponding to ρ= 0, we need to store the vector u instead of p̂.y | θ, u/

to implement the algorithm when ρ 
= 0. In the applications that are considered, this overhead
is mild.

The rationale behind the correlated pseudomarginal scheme is that if .θ, u/ �→ p̂.y | θ, u/ is
a sufficiently regular function and .θ, U/ and .θ′, U ′/ are sufficiently ‘close’ then we expect the
ratio estimator p̂.y | θ′, U ′/=p̂.y | θ, U/ to have small relative variance and therefore to mimic the
‘exact’ MH scheme QMH better. In many situations, the posterior π.θ/ will be approximately
normal for large data sets with covariance scaling like 1=

√
T , so an appropriately scaled MH

random walk or auto-regressive proposal q.θ, dθ′/ will ensure that θ and θ′ are close. We explain
in Section 3 how ρ can be selected as a function of T to ensure that U and U ′ are sufficiently
close that the log-likelihood ratio estimator log{p̂.y | θ′, U ′/=p̂.y | θ, U/} satisfies a conditional
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CLT at stationarity. As explained in Section 1, properties of this estimator and in particular its
asymptotic distribution and variance at stationarity are critical to our analysis of the correlated
pseudomarginal scheme in the large sample regime that is detailed in Section 4.

2.3. Application to latent variable models
2.3.1. Random-effects models
Consider the model

Xt
IID∼ fθ.·/, Yt|Xt ∼gθ.·|Xt/, .9/

where {Xt ; t � 1} are Rk-valued latent variables, {Yt ; t � 1} are Y-valued observations, Y being
a topological space, and fθ.·/ and gθ.·|x/ are densities with respect to reference Borel measures.
For any i<j, let i : j ={i, i+1, : : : , j}. For a realization Y1:T =y1:T , the likelihood satisfies

p.y1:T |θ/=
T∏

t=1
p.yt|θ/, .10/

with

p.yt|θ/=
∫
gθ.yt|xt/fθ.xt/ dxt: .11/

If the T integrals appearing in expression (10) are intractable, we can estimate them by using
importance sampling to obtain the following unbiased likelihood estimator

p̂.y1:T | θ, U/=
T∏

t=1

{
1
N

N∑
i=1

ω.yt , Xt, i; θ/
}

, .12/

where the importance weight ω.y, Ut, i; θ/ is given by

ω.yt , Ut, i; θ/= gθ.yt |Xt, i/ fθ.Xt, i/

qθ.Xt, i |yt/
, .13/

assuming that there is a deterministic map Ξt :Rp ×Θ→Rk such that Xt, i =Ξt.Ut, i; θ/∼qθ.·|yt/

for Ut, i ∼N .0p, Ip/. Let U be the column vector consisting of all the components of Ut, i for
t ∈1 : T and i∈1 : N. It is clear that U ∼N .0M , IM/ where M =TNp.

2.3.2. State space models
Consider a generalization of model (9)–(10) where the latent variables {Xt ; t � 1} now arise
from a homogeneous Rk-valued Markov process of initial density νθ and Markov transition
density fθ with respect to Lebesgue measure, i.e., for t � 1,

X1 ∼νθ, Xt+1|Xt ∼fθ.·|Xt/, Yt|Xt ∼gθ.·|Xt/: .14/

For a realization Y1:T =y1:T , the likelihood satisfies the predictive decomposition

p.y1:T | θ/=p.y1 | θ/
T∏

t=2
p.yt |y1:t−1, θ/, .15/

with

p.yt |y1:t−1, θ/=
∫
gθ.yt |xt/pθ.xt |y1:t−1/ dxt , .16/

where pθ.x1 |y1:0/=νθ.x1/ and pθ.xt |y1:t−1/ denotes the posterior density of Xt given Y1:t−1 =
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y1:t−1 for t � 2. Importance sampling estimators of the likelihood have relative variance typically
increasing exponentially with T so the likelihood is usually estimated by using particle filters
instead.

Particle filters propagate N random samples, termed particles, over time by using a sequence
of resampling steps and importance sampling steps using the importance densities qθ.x1 |y1/ at
time 1 and qθ.xt |yt , xt−1/ at times t � 2. LetΞ1 :Rp ×Θ→Rk andΞt :Rk ×Rp ×Θ→Rk for t � 2
be deterministic maps such that X1 =Ξ1.V ; θ/∼qθ.· |y1/ and Xt =Ξt.xt−1, V ; θ/∼qθ.· |yt , xt−1/

for t �2 if V ∼N .0p, Ip/. We also propose to use normal random variables to obtain the uniform
random variables that are necessary to sample the categorical distributions appearing in the re-
sampling steps. By using these representations, we obtain an unbiased estimator p̂.yt | θ, U/ of
p.yt | θ/ where U follows a multivariate normal distribution (Del Moral, 2004). When this esti-
mator is used within a pseudomarginal scheme, the resulting algorithm is known as the particle
marginal MH algorithm (Andrieu et al., 2010). However, if this likelihood estimator is used in
the correlated pseudomarginal context, the likelihood ratio estimator p̂.y1:T | θ′, u′/=p̂.y1:T |θ, u/

can significantly deviate from 1 even when .θ, u/ is close to .θ′, u′/ and the true likelihood is con-
tinuous at θ: This is because the resampling steps introduce discontinuities in the particles that
are selected when θ and u are modified, even slightly (Malik and Pitt, 2011).

To reduce the variability of this likelihood ratio estimator, we use a resampling scheme based
on the Hilbert sort procedure that was introduced by Gerber and Chopin (2015). This procedure
is based on the Hilbert space filling curve which is a continuous fractal map H : [0, 1] → [0, 1]k

whose image is [0, 1]k. It admits a pseudoinverse h : [0, 1]k → [0, 1], i.e. H ◦ h.x/ = x for all x ∈
[0, 1]k. For most points x and x′ that are close in [0, 1]k, their images h.x/ and h.x′/ tend to be
close. This property can be used to build a ‘sorted’ resampling procedure which will ensure that
when the parameter or auxiliary variables change only slightly the particles that are selected
remain close. Practically, this resampling procedure proceeds as follows:

(a) the Rk-valued particles are projected in the hypercube [0, 1]k by using a bijection ~ : Rk →
[0, 1]k;

(b) the resulting [0, 1]k-valued particles are projected on [0, 1] by using the pseudoinverse h;
(c) these projected [0, 1]-valued particles are sorted;
(d) the systematic resampling scheme proposed by Carpenter et al. (1999) is used on the

sorted points.

Introduce the importance weights ω1.x1; θ/ = νθ.x1/ gθ.y1 |x1/=qθ.x1 |y1/ and ωt.xt−1, xt ; θ/
=fθ.xt |xt−1/ gθ.yt |xt/=qθ.xt |yt , xt−1/ for t �2. The only difference between the resulting par-
ticle filter summarized by algorithm 2 in Table 2 and the algorithm of Gerber and Chopin
(2015) is that we use normal random variates instead of randomized quasi-Monte-Carlo points
in [0, 1]p. For the mapping ~, we adopt the logistic transform that was used in Gerber and
Chopin (2015).

If we denote by U the column vector composed of the components of .U1, 1, : : : , UT , N , UR
1 , : : : ,

UR
T−1/, then U ∼N .0M , IM/ where M = TNp + T − 1. The corresponding unbiased likelihood

estimator is given by

p̂.y1:T | θ, U/=
{

1
N

N∑
i=1

ω1.X1, i; θ/
}

T∏
t=2

{
1
N

N∑
i=1

ωt.Xt−1, σt−1.At−1, i/, Xt, i; θ/
}

: .17/

We can now use this estimator within the correlated pseudomarginal scheme. Many valid alter-
natives and generalizations of this scheme are possible as discussed in Section 6. For example,
we found that introducing an additional Hilbert sort step (Table 2) after resampling can slightly
improve performance without affecting the scaling properties.
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Table 2. Algorithm 2: particle filter using Hilbert sort

1, sample U1,i ∼N .0p, Ip/ and set X1,i =Ξ1.U1,i; θ/ for i∈1 : N
2, for t =1,: : : , T −1:

(a) find the permutation σt such that h◦~ .Xt,σt .1// � : : : � h◦~ .Xt,σt .N// if k � 2,
or Xt,σt .1/ � : : : � Xt,σt .N/ if k =1;

(b) sample UR
t ∼N .0, 1/, set Ūt,i = .i−1/=N +Φ.UR

t /=N for i∈1 : N;
(c) sample At,i ∼F−1

t .Ūt,i/ for i∈1 : N where F−1
t is the generalized inverse distribution

function of the categorical distribution with weights {ω1.X1,σ1.i/; θ/; i∈1 : N} if
t =1 and {ωt .Xt−1,σt−1.At−1,σt .i//

, Xt,σt .i/; θ/; i∈1 : N} for t � 2;
(d) sample Ut+1,i ∼N .0p, Ip/ and set Xt+1,i =Ξt+1.Xt,σt .At,i/, Ut+1,i; θ/ for i∈1 : N

2.4. Discussion
Ideas related to the correlated pseudomarginal scheme have previously been proposed: Lee and
Holmes (2010) suggested combining pseudomarginal steps with updates where only θ is updated
while U is held fixed, but this scheme scales poorly with T as it still uses pseudomarginal steps.
Andrieu et al. (2012) proposed combining pseudomarginal steps with steps where θ is held fixed
and correlation between p̂.y | θ, U/ and p̂.y | θ, U ′/ is introduced by sampling U ′ by using an
m-reversible Markov kernel K. However, the crucial selection of K was not discussed. It was
independently proposed by Dahlin et al. (2015) to use the correlation scheme (8) but the guide-
lines for the correlation parameter ρ therein do not ensure that the variance of the log-likelihood
ratio estimator is controlled as T increases. This work also relies on a standard particle filter.

As the density m of U is independent of θ, it might be argued that a Gibbs algorithm sampling
alternately from the full conditional densities π̄.θ|u/ and π̄.u|θ/ of π̄.θ, u/ could mix well. Related
ideas have been explored in Papaspiliopoulos et al. (2007). Such a Gibbs strategy is usually not
implementable in the applications that are considered here. Particle Gibbs samplers have been
proposed to mimic this strategy but their computational complexity is of order T 2N per iteration
for state space models when using such a parameterization (Lindsten et al. (2014), section 6.2).
Thus they are not competitive with the pseudomarginal algorithm whose cost is of order T 2 per
iteration. An alternative approach for updating U given θ, which has been proposed by Murray
and Graham (2016), is to use elliptical slice sampling. However, in this context, no guidelines
for the selection of N have been proposed. Experimentally, this method is not competitive with
an appropriately tuned correlated pseudomarginal scheme when the same value of N is used
for both methods. We observed that elliptical slice sampling is attempting many moves on the
ellipse which are not on the support of the slice, thus requiring multiple expensive evaluations
of the simulated likelihood for each sample.

3. Asymptotics of the log-likelihood ratio estimators

To understand the quantitative properties of the correlated pseudomarginal scheme, it is key to
establish the statistical properties of the likelihood ratio estimator appearing in its acceptance
probability (6). For the random-effects models that were introduced in Section 2.3.1, we establish
conditional CLTs for the log-likelihood estimator (12) and the corresponding log-likelihood ratio
estimators used by the pseudomarginal and the correlated pseudomarginal algorithms when
N →∞ and T →∞. Here N will be a deterministic function of T denoted by NT . We show
that these estimators exhibit very different behaviours, underlining the benefits of correlated
pseudomarginal over pseudomarginal schemes.
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Consider a sequence of random variables {MT ; T � 1} defined on a probability space .Ω, G, P/

and a sequence of sub-σ-algebras {GT ; T � 1} and write →P to denote convergence in probabil-
ity. We also write MT |GT ⇒λ if M ∼λ and E[f.MT /|GT ]→P E[f.M/] as T →∞ for any bounded
continuous function f .

Henceforth, we shall make the assumption that Yt ∼IID μ and write YT for the σ-field that
is spanned by Y1:T . When additionally U ∼ m, we denote the associated probability measure,
expectation and variance by P, E and V. As our limit theorems consider the asymptotic regime
where T →∞ and NT →∞, we should write mT and πT instead of m and π and similarly UT ,
UT

t and UT
t, i instead of U, Ut and Ut, i: The probability space is defined precisely in section A.1

of the on-line supplementary material. For notational simplicity we do not emphasize here this
dependence on T but it should be kept in mind that we are dealing with triangular arrays of
random variables. We can write unambiguously E[ψ.Y1, U1, 1; θ/] rather than E[ψ.Y1, UT

1, 1; θ/] as
UT

1, 1 ∼N .0p, Ip/ under P for any T � 1:

3.1. Asymptotic distribution of the log-likelihood error
Let γ.y1; θ/2 = V{�.y1, U1, 1; θ/} be the conditional variance given Y1 = y1 and γ.θ/2 =
V{�.Y1, U1, 1; θ/} = E[γ.Y1; θ/2] the unconditional variance of the normalized importance
weight

�.Yt , U1, 1; θ/= ω.Yt , U1, 1; θ/
p.Yt | θ/ , .18/

where ω.Yt , U1, 1; θ/ is defined in equation (13).
Our first result establishes conditional CLTs for the log-likelihood error

ZT .θ/= log{p̂.Y1:T | θ, U/}− log{p.Y1:T | θ/}, .19/

when U arises from the proposal m or from the equilibrium distribution

π̄.u|θ/= π̄.θ, u/

π.θ/
=

T∏
t=1

p̂.Yt | θ, ut/

p.Yt | θ/ ϕ.ut ; 0pNT , IpNT /, .20/

with π̄.θ, u/ as defined in equation (4).

Theorem 1. Let NT =�βT α� with 1
3 <α � 1, β> 0 and Yt ∼IID μ.

(a) If E[�.Y , U1, 1; θ/8] <∞ and U ∼m then

T .α−1/=2ZT .θ/+ 1
2 T .1−α/=2β−1γ.θ/2|YT ⇒N{0,β−1γ.θ/2}: .21/

(b) If E[�.Y1, U1, 1; θ/9]+E[γ.Y1; θ/4] <∞ and U ∼ π̄.·|θ/ then

T .α−1/=2ZT .θ/− 1
2 T .1−α/=2β−1γ.θ/2|YT ⇒N{0,β−1γ.θ/2}: .22/

Remark 1. To establish results (21) and (22), for 1
2 <α � 1, the conditions E[�.Y1, U1, 1; θ/4]<

∞ and E[�.Y1, U1, 1; θ/5] <∞ respectively are sufficient.

For particle filters, a CLT for ZT .θ/ of the form (21) has already been established for the
case α= 1 in Bérard et al. (2014), when using multinomial resampling under strong mixing
assumptions. We conjecture that both result (21) and result (22) hold under weaker assumptions
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for 1
3 <α<1 and the Hilbert sort resampling scheme. However, it is very technically challenging

to establish this result. In the simpler scenario where one uses systematic resampling, such a
CLT has not yet been established. Some of the technical problems which arise when attempting
to carry out such an analysis are detailed in Gentil and Rémillard (2008).

Result (21) suggests that, for large T under the proposal, ZT .θ/ is approximately normal with
mean −β−1T 1−αγ.θ/2=2 and variance β−1T 1−αγ.θ/2. Result (22) suggests that at equilibrium
ZT .θ/ is approximately normal with the same variance but opposite mean.

3.2. Asymptotic distribution of the log-likelihood ratio error
Assume that we are at state .θ, U/ and propose .θ′, U ′/ using θ′ ∼ q.θ, ·/ and U ′ ∼ m as in
the pseudomarginal algorithm or θ′ ∼ q.θ, ·/ and U ′ ∼ Kρ.U, ·/ as in the correlated pseudo-
marginal algorithm. In both cases, the acceptance ratio (6) depends on the log-likelihood ratio
error

RT .θ, θ′/= log
{

p̂.Y1:T | θ′, U ′/
p̂.Y1:T | θ, U/

}
− log

{
p.Y1:T | θ′/
p.Y1:T | θ/

}
: .23/

We examine here the limiting distribution of RT .θ, θ+ ξ=
√

T/ for fixed θ and ξ, the rationale
being that the posterior typically concentrates at rate 1=

√
T when T increases. Thus a correctly

scaled random-walk proposal for an MH algorithm will be of the form θ′ =θ+ξ=
√

T where the
distribution of ξ is independent of T .

For the pseudomarginal algorithm, we have the following conditional CLT.

Theorem 2. Let θ and ξ be fixed. Assume that ϑ �→�.y1, u1, 1;ϑ/ and ϑ �→E[�.Y1, U1, 1;ϑ/9]
are continuous at ϑ= θ for any .y1, u1,1/ ∈ Y × Rp, ϑ �→ γ.ϑ/ is continuously differentiable
at ϑ= θ and E[�.Y1, U1, 1;ϑ/9] + E[γ.Y1; θ/4] < ∞. For NT =�βT α� with 1

3 <α � 1, β> 0,
Yt ∼IID μ, U ∼ π̄.·|θ/ and U ′ ∼m where U and U ′ are independent, we have

T .α−1/=2RT .θ, θ+ ξ=
√

T/+T .1−α/=2β−1γ.θ/2 |YT ⇒N{0, 2β−1γ.θ/2}: .24/

This result shows that the log-likelihood ratio error in the pseudomarginal case can have only
a limiting variance of order 1 if NT is proportional to T . The log-likelihood ratio estimator that
is used by the correlated pseudomarginal exhibits a markedly different behaviour if we consider
the Crank-Nicolson proposal (8), U ′ ∼KρT .U, ·/, with

ρT = exp
(

−ψNT

T

)
, .25/

for some ψ> 0. Denote by FT the σ-field that is spanned by {Yt ; t ∈ 1 : T} and {Ut, i; t ∈ 1 :
T , i∈1 : N}. We also denote the Euclidean norm by ‖ · ‖ and write ∇uf = .@u1f , : : : , @upf/′ for a
real-valued function f : Rp →R where u= .u1, : : : , up/.

Theorem 3. Let θ and ξ be fixed. Let Yt ∼IID μ, U ∼ π̄.·|θ/ and U ′ ∼ KρT .U, ·/ where ρT is
given by equation (25). Under assumptions 1–6 in section A.5 of the on-line supplementary
material, if NT →∞ as T →∞ with NT =T →0, we have

RT .θ, θ+ ξ=
√

T/
∣∣FT ⇒N{−κ.θ/2=2,κ.θ/2}, .26/

where

κ.θ/2 =2ψ E{‖∇u�.Y1, U1, 1; θ/‖2}: .27/
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Assumptions 1–6 in the supplementary material are differentiability and integrability assump-
tions on �.y, u; θ/ with respect to y, u and θ. This result states that the limiting variance of
the log-likelihood ratio for the correlated pseudomarginal scheme at equilibrium is of order 1
when NT grows sublinearly with T , although it will typically grow exponentially with p, the
dimension of U1, 1. Moreover, the distribution of the log-likelihood ratio error is asymptotically
independent of U, suggesting that the correlated pseudomarginal chain is less prone to sticking
than the pseudomarginal chain at stationarity.

This conditional CLT has not been established for particle filters. For univariate state space
models, i.e. k = 1, we have observed experimentally on various stationary state space models
that a similar conditional CLT appears to hold. For multivariate state space models, the CLT
appears to hold only conditionally on YT when NT grows at least at rate T k=.k+1/; see Section 5.

4. Analysis and optimization

4.1. Weak convergence in the large sample regime
The use of weak convergence techniques to analyse and optimize Markov chain Monte Carlo
schemes was pioneered by Roberts et al. (1997) and has found numerous applications ever since;
see, for example Sherlock et al. (2015) for a recent application to the pseudomarginal method.
The high level idea behind this approach is to identify an appropriate asymptotic regime under
which a component of the original Markov chain, rescaled appropriately, converges to a limiting
process which is simpler to analyse and optimize. To the best of our knowledge, all previous
contributions have considered the asymptotic regime where d → ∞, d being the parameter
dimension, while T is fixed. In these scenarios, under time rescaling, the limiting Markov process
is usually a diffusion. We analyse here the correlated pseudomarginal scheme under the standard
large sample regime of asymptotic statistics where d is fixed and T →∞. In this context, after
space rescaling, the parameter component of the correlated pseudomarginal chain, targeting
the posterior πT .θ/ that is associated with the observations Y1:T , converges towards a discrete
time Markov chain. Our analysis assumes that the statistical model is sufficiently regular to
ensure that {πT .θ/; T � 1} can be approximated by normal densities which concentrate. Here
πT .θ/ is interpreted as the density of a YT -measurable random probability measure; see, for
example, Berti et al. (2006) and Crauel (2003) for a formal definition. We write →PY to denote
convergence in probability with respect to the law of {Yt ; t � 1}.

Assumption 1. There is a d ×d positive definite matrix Σ̄, a parameter value θ̄∈ Rd and an
Rd-valued random sequence {θ̂T ; T � 1}, θ̂T being YT measurable, such that as T →∞∫

|πT .θ/−ϕ.θ; θ̂T , Σ̄=T/| dθ→PY 0, θ̂T →PY θ̄:

This assumption will be satisfied if a Berstein–von Mises theorem holds; see van der Vaart
(2000), section 10.2, for sufficient conditions.

Consider the stationary correlated pseudomarginal chain {.ϑT
n , UT

n /; n � 0} with proposal
qT .θ, θ′/ targeting the random measure π̄T .dθ, du/ =πT .dθ/π̄T .du|θ/ associated with the ob-
servations Y1:T . By rescaling the parameter component of the correlated pseudomarginal chain
using ϑ̃T

n :=√
T.ϑT

n − θ̂T /, we obtain the stationary Markov chain {.ϑ̃T
n , UT

n /; n � 0} with initial
distribution .ϑ̃T

0 , UT
0 /∼ π̃T where

π̃T .θ̃, u/= π̃T .θ̃/π̃T .u|θ̃/,
π̃T .θ̃/=πT .θ̂T + θ̃=

√
T/=

√
T ,

π̃T .u|θ̃/= π̄T .u|θ̂T + θ̃=
√

T/,

⎫⎪⎬
⎪⎭ .28/
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and the associated proposal density for the parameter becomes

q̃T .θ̃, θ̃′/= qT .θ̂T + θ̃=
√

T , θ̂T + θ̃′=
√

T/√
T

: .29/

We shall assume here that we use a random-walk proposal that is scaled appropriately.

Assumption 2. The proposal density is of the form

qT .θ, θ′/=√
Tυ{√

T.θ′ −θ/}, .30/

where υ is a probability density on Rd , i.e. θ′ ∼qT .θ, ·/ when θ′ =θ+ ξ=
√

T with ξ∼υ.

Finally, we assume that a uniform version of the CLT of theorem 3 holds in a neighbourhood
of θ̄, where θ̄ is specified in assumption 1. We denote by dBL.μ, ν/ the bounded Lipschitz metric
between two probability measures μ and ν; see, for example, van der Vaart (2000), page 332, or
section A.9 of the on-line supplementary material.

Assumption 3. There is a neighbourhood N.θ̄/ of θ̄ such that the log-likelihood ratio error
that is considered in theorem 3 with ξ∼υ.·/ satisfies as T →∞

sup
θ∈N.θ̄/

E.dBL[law{RT .θ, θ+ ξ=
√

T/|FT }, N{−κ.θ/2=2,κ.θ/2}]|YT /→PY 0:

In assumption 3, the expectation is with respect to Yt , U and U ′ distributed as in theorem 3. For
the random-effects model of Section 2.3.1, we prove that assumption 3 holds under regularity
conditions that are given in section A.6 of the on-line supplementary material.

Under assumption 2, the proposal that is defined in equation (29) satisfies q̃T .θ̃, θ̃′/=υ.θ̃′ −
θ̃/ := q̃.θ̃, θ̃′/. In this case, the corresponding transition kernel of the rescaled correlated pseudo-
marginal chain is given by

QT {.θ̃, u/, .dθ̃′, du′/}= q̃.θ̃, dθ̃′/KρT .u, du′/αQT {.θ̃, u/, .θ̃′, u′/}+{1−�QT .θ̃, u/}δ
.θ̃,u/

.dθ̃′, du′/
.31/

with acceptance probability

αQT {.θ̃, u/, .θ̃′, u′/}=min
{

1,
π̃T .θ̃′, u′/ q̃.θ̃′, θ̃/KρT .u′, u/

π̃T .θ̃, u/ q̃.θ̃, θ̃′/KρT .u, u′/

}
,

and corresponding rejection probability 1 − �QT .θ̃, u/. The kernel QT is assumed to be YT

measurable. Let ΘT = {ϑ̃T
n ; n � 0} denote the non-Markov stationary space-rescaled param-

eter sequence arising from the correlated pseudomarginal chain. The following result shows
that the sequences {ΘT ; T � 1} converge weakly as T →∞ to a stationary Markov chain corre-
sponding to the penalty method—an ‘ideal’ Monte Carlo technique which cannot be practically
implemented (Ceperley and Dewing, 1999; Nicholls et al., 2012).

Theorem 4. If assumptions 1–3 hold and ϑ �→ κ.ϑ/ is locally Lipschitz at ϑ= θ̄ then the
random probability measures on .Rd/∞ given by the laws of {ΘT ; T � 1} converge weakly
in probability PY as T →∞ to the law of a stationary Markov chain {ϑ̃n; n � 0} defined by
ϑ̃0 ∼N .0, Σ̄/ and ϑ̃n ∼P.ϑ̃n−1, ·/ for n�1 with

P.θ̃, dθ̃′/= q̃.θ̃, dθ̃′/αP.θ̃, θ̃′/+{1−�P.θ̃/} δθ̃.dθ̃′/, .32/

and
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αP.θ̃, θ̃′/=
∫
ϕ.dr;−κ2=2,κ2/ min

{
1,
ϕ.θ̃′; 0, Σ̄/ q̃.θ̃′, θ̃/
ϕ.θ̃; 0, Σ̄/ q̃.θ̃, θ̃′/

exp.r/

}
,

1−�P.θ̃/ being the corresponding rejection probability and κ :=κ.θ̄/.

The consequence of this result is that, as T → ∞, only the asymptotic distribution of the
log-likelihood ratio error at the central parameter value θ̄ impacts the acceptance probability
of the limiting chain. For large T and a proposal of the form that is specified in assumption 2,
we thus expect some of the quantitative properties of the correlated pseudomarginal kernel Q,
where we now omit T from the notation, to be captured by the Markov kernel

Q̂.θ, dθ′/=q.θ, dθ′/αQ̂.θ, θ′/+{1−�Q̂.θ/}δθ.dθ′/, .33/

with

αQ̂.θ, θ′/=
∫
ϕ.dr;−κ2=2,κ2/ min

{
1, rMH.θ, θ′/ exp.r/

}
,

where 1 −�Q̂.θ/ is the corresponding rejection probability and rMH is defined in equation (2).
We have obtained equation (33) by using the change of variables θ= θ̂T + θ̃=

√
T and substi-

tuting the true target for its normal approximation in equation (32), hence removing a level of
approximation.

4.2. A bounding Markov chain
We analyse here the stationary Markov chain with transition kernel Q̂ arising from our weak
convergence analysis. To state our results, we need the following notation. For any real-valued
measurable function h, probability measure μ and Markov kernel K on a measurable space
.E, E/, we write μ.h/=∫

E h.x/μ.dx/, Kh.x/=∫
E K.x, dx′/h.x′/ and

Knh.x/=
∫

E

∫
E

Kn−1.x, dz/K.z, dx′/h.x′/

for n � 2 with K1 = K. We also introduce the Hilbert space L2.μ/ = {h : E → R |μ.h2/ <

∞} equipped with the inner product 〈g, h〉μ = ∫
E g.x/h.x/μ.dx/. For any h ∈ L2.μ/, the auto-

correlation at lag n � 0 is φn.h, K/=〈h̄, Knh〉μ=μ.h̄
2
/ where h̄=h−μ.h/. The integrated auto-

correlation time that is associated with a function h under a Markov kernel K is given by
IF.h, K/ = 1 + 2Σ∞

n=1φn.h, K/ and will be referred to subsequently as the inefficiency. For
μ.dx/=μ.dx1, dx2/, we shall slightly abuse the notation and write IF.h, K/ instead of IF.g, K/

when g.x1, x2/ = h.x1/ or g.x1, x2/ = h.x2/. When estimating μ.h/, n IF.h, K/ samples from a
stationary Markov chain of μ-invariant transition kernel K are necessary to obtain an estima-
tor of approximately the same precision as an average of n independent draws from μ; see, for
example, Geyer (1992).

We provide an upper bound on IF.h, Q̂/ which we exploit to provide guidelines on how to
optimize the performance of the correlated pseudomarginal scheme in Section 4.4. The inef-
ficiency IF.h, Q̂/ is difficult to work with but we give an upper bound that depends only on
IF.h, QMH/ and κ. To proceed, we introduce an auxiliary Markov kernel QÅ given by

QÅ.θ, dθ′/=�U.κ/QMH.θ, dθ′/+{1−�U.κ/}δθ.dθ′/, .34/

where QMH is defined in equation (1) and

�U.κ/=
∫
ϕ.dr;−κ2=2,κ2/ min{1, exp.r/}=2Φ.−κ=2/: .35/
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We denote by �̄QÅ.κ/ and �̄Q̂.κ/ the average acceptance probability of QÅ and Q̂ respec-
tively, at stationarity. The kernel QÅ is a ‘lazy’ version of QMH which satisfies the following
properties.

Proposition 1. The kernel QÅ is π reversible and IF.h, Q̂/ � IF.h, QÅ/ for any h ∈ L2.π/,
where

IF.h, QÅ/={1+ IF.h, QMH/}=�U.κ/−1, .36/

with equality when �MH.θ/=1 for all θ∈Θ, and

�̄QÅ.κ/=�U.κ/π.�MH/� �̄Q̂.κ/: .37/

Moreover, QÅ is geometrically ergodic if QMH is geometrically ergodic.

For any π- or π̄-invariant Markov kernel K, we define the relative inefficiency RIF.h, K/ and
the auxiliary relative computing time ARCT.h, K/ with respect to the MH kernel QMH using
the exact likelihood by

RIF.h, K/ := IF.h, K/

IF.h, QMH/
,

ARCT.h, K/ :=
√{

RIF.h, K/

κ2�U.κ/

}
:

.38/

We next minimize ARCT.h, QÅ/, which is an upper bound on ARCT.h, Q̂/, with respect to
κ—this quantity is a component of the function that we need to minimize to optimize the
performance of the correlated pseudolikelihood algorithm; see Section 4.4.

Proposition 2. The following results hold.

(a) If IF.h, QMH/=1, then

RIF.h, QÅ/={2−�U.κ/}=�U.κ/,

and ARCT.h, QÅ/ is minimized at κ= 1:35, at which point �U.κ/= 0:50, RIF.h, QÅ/=
2:99 and ARCT.h, QÅ/=1:81.

(b) As IF.h, QMH/→∞,

RIF.h, QÅ/=1=�U.κ/,

and ARCT.h, QÅ/ is minimized at κ= 1:50, at which point �U.κ/= 0:43, RIF.h, QÅ/=
2:20 and ARCT.h, QÅ/=1:47.

(c) RIF.h, QÅ/ and ARCT.h, QÅ/ are decreasing functions of IF.h, QMH/. The minimizing
argument rises monotonically from 1:35 to 1:50 as IF.h, QMH/ increases from 1 to ∞.

Fig. 1 displays �U.κ/, RIF.h, QÅ/ and ARCT.h, QÅ/ against κ. The two scenarios that are
displayed are for IF.h, QMH/=1, corresponding to the ‘perfect’ proposal case where q.θ, θ′/=
π.θ′/, and for the limiting case where IF.h, QMH/→∞. These correspond to parts (a) and (b)
of proposition 2. From Fig. 1, it is also clear that ARCT.h, QÅ/, for both scenarios, is fairly flat
as a function of κ. The function only approximately doubles relative to the minimum at κ= 1
or κ=4.

4.3. A lower bound on the integrated auto-correlation time
We stress here that theorem 4 does not imply that the inefficiency of the correlated pseudo-
marginal scheme converges, as T →∞, to the inefficiency of the limiting chain that is identified
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therein. In fact, whereas theorem 4 holds whenever NT →∞ and NT =o.T/ as T →∞, our next
result suggests that NT must grow at least as fast as

√
T for the inefficiency of the correlated

pseudomarginal scheme to remain bounded. To simplify the presentation in this section, we
assume further on that d =1.

In the correlated pseudomarginal context, the sequence of auxiliary variables {Un; n � 0}
evolves at a much slower scale than {ϑn; n � 0} as it is driven by the proposal KρT , where ρT is
given by equation (25). When NT grows too slowly with T , we expect and observe empirically
that the inefficiency IF.h, QT /, for any function h, is of the same order as the inefficiency of
{E[h.ϑn/|Un]; n � 0}. Moreover, under regularity conditions (see for example Doucet et al.
(2013), lemma 2), we have for large T

E[h.ϑn/|Un]=h.θ̂T /+ Σ̄
2T

∇ϑ,ϑh.θ̂T /+ Σ̄
T

∇ϑh.θ̂T /Ψ.θ̂T , Un/+OP.T −2/, .39/

where

Ψ.θ̂T , U/=∇ϑ log{p̂.Y1:T | θ̂T , U/=p.Y1:T | θ̂T /} .40/

is the error in the simulated score at θ̂T and will be referred to as the score error. As a first step,
we obtain a lower bound on IF.Ψ, QT /.

Proposition 3. Under regularity conditions given in section A.10 of the on-line supplementary
material, there is a constant C > 0 such that IF.Ψ, QT / � CVπ̄T .Ψ/ PY —almost surely.

It follows from calculations that are similar to those in section A.11 in the on-line supple-
mentary material (see also Lindsten and Doucet (2016), proposition 3) that under regularity
conditions there exists A>0 such that Vπ̄T .Ψ/∼AT=N PY —almost surely. By combining equa-
tion (39) and proposition 3, we thus expect the inefficiency of {E[h.ϑn/|Un]; n � 0} to be lower
bounded by a term of order

IF.Ψ, QT /Vπ̄T .Ψ=T/

Vπ̄T .h/
�B

T

NT

T 1−α

T 2 T =BT 1−2α

for NT =�βT α�, some constant B>0 and T sufficiently large. This result suggests that a necessary
condition for IF.h, QT / to remain finite as T →∞ is to have NT growing at least at rate

√
T . This

is validated by the experimental results of Section 5 which also suggest that this rate is sufficient.

4.4. Optimization
We provide a heuristic to select the parameters of the correlated pseudomarginal scheme to
optimize its performance which is validated by experimental results in Section 5. Again, we set
d =1 for simplicity. For a test function h :Θ→R, we want to minimize

CT.h, QT /=NT IF.h, QT /, .41/

where the factor NT arises from the fact that the computational cost of the likelihood estimator is
proportional to NT for random-effects models. The results of Section 4.3 suggest that we should
choose the number of Monte Carlo samples to scale as NT =βT 1=2 so that ρT =exp.−ψβT −1=2/.
It remains to determine ψ and β.

To evaluate equation (41), we first decompose the functional of interest evaluated at the
parameter at the nth iteration as

h.ϑn/=f.Un/+g.ϑn, Un/,

where



16 G. Deligiannidis, A. Doucet and M. K. Pitt

f.U/ :=Eπ̄T [h.ϑ/|U],

g.ϑ, U/ :=h.ϑ/−Eπ̄T {h.ϑ/|U}:
.42/

It is easy to check that

Vπ̄T .h/ IF.h, QT / � 2 Vπ̄T .f/ IF.f , QT /+2 Vπ̄T .g/ IF.g, QT /:

Assumption 1 combined with mild regularity assumptions on h and integrability conditions
shows that Vπ̄T {h.ϑn/}≈ Σ̄h=T , where Σ̄h = |h′.θ̄/|2Σ̄: Since f.Un/ and g.ϑn, Un/ are clearly
uncorrelated, it follows that Vπ̄T .h/=Vπ̄T .f/+Vπ̄T .g/. From equation (39) we have Vπ̄T .f/≈
Σ̄2

Vπ̄T .Ψ=T/≈ Σ̄f =.TNT /; therefore

Vπ̄T .g/≈ Σ̄h

T
− Σ̄f

TNT
≈ Σ̄h

T
:

Using the reasoning of Section 4.3 and the calculations above we obtain

IF.h, QT / � 2

Σ̄h

{Vπ̄T .
√

Tf/IF.f , QT /+Vπ̄T .
√

T g/IF.g, QT /}

≈ 2

Σ̄h

{
Σ̄f

NT
IF.Ψ, QT /+ Σ̄hIF.g, QT /

}
: .43/

Proposition 3 states that IF.Ψ, QT / is of order at least T=NT in probability as T →∞. Numerical
results suggest that in fact we have IF.Ψ, QT / ≈ A={δT �U.κ/} where δT =ψNT =T =−log.ρT /

as illustrated in Section 5.1, Fig. 5. Hence, by substituting this expression of IF.Ψ, QT / in
approximation (43), it follows that

IF.h, QT /� 2

Σ̄h

{
Σ̄f

NT

A

δT �U.κ/
+ Σ̄h IF.g, QT /

}
,

where the symbol ‘�’ means that an approximation has been used. It can also be observed
empirically from Fig. 4, described in Section 5.1, that the auto-correlations of g.ϑn, Un/ decay
exponentially, at a rate that is independent of T . We expect that, at least approximately, we have
IF.g, QT /≈ IF.h, Q̂T / in probability. Therefore overall, for some constant B> 0, we have that

IF.h, QT /�2
{

B

�U.κ/δT NT
+ IF.h, Q̂T /

}
: .44/

We are interested in optimizing CT.h, QT / = NT IF.h, QT / with respect to ψ and β where we
recall from equation (27) that δT =ψNT =T =ψβ=

√
T =κ2β=.γ2√T/ as κ2 =ψγ2. Therefore

CT.h, QT /�2T 1=2
{

C

β�U.κ/κ2 +β IF.h, Q̂T /

}
, .45/

where C =Bγ2, and the upper bound on CT.h, QT / is minimized at

βÅ =
√{

C

�U.κ/κ2 IF.h, Q̂T /

}
:
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By plugging βÅ in the right-hand side of expression (45), we obtain by proposition 1 that

CT.h, QT /�4
√{C IF.h, QMH/T}ARCT.h, Q̂T /�4

√{C IF.h, QMH/T}ARCT.h, QÅ
T / .46/

where ARCT was introduced in expression (38). In practice we minimize ARCT.h, QÅ
T / with

respect to κ, following proposition 2. The minimizer κ̂ is a function of IF.h, QMH/ which varies
only slightly as IF.h, QMH/ varies from 1 to ∞ as observed in Fig. 1. Consequently, we propose
the following procedure to optimize the performance of the correlated pseudomarginal. Let T

be fixed and sufficiently large for the asymptotic assumptions to hold approximately. First, we
choose a candidate value for N and determine ψ̂ such that the standard deviation of the log-
likelihood ratio estimator around the mode of the posterior, estimated through a preliminary
run, satisfies κ̂≈1:4. Second, fixing ψ at ψ̂, we evaluate for several values of β the computation
time CT.h, QT / which we assume is of the form of the upper bound (45), i.e.

CT.h, QT /=C0=β+C1β, .47/

with κ and T kept constant; see Fig. 6 in Section 5.1 for empirical results. This function is
minimized for β=√

.C0=C1/. Practically we evaluate CT.h, QT / on only a subset of the data.
We then estimate through regression the constants C0 and C1 by Ĉ0 and Ĉ1 which in turn provide
the following estimate of β:

β̂=√
.Ĉ0=Ĉ1/: .48/

We examine in Section 5.1 the assumptions that were made here, illustrate this procedure and
demonstrate its robustness.

5. Applications

5.1. Random-effects model
We illustrate the performance of the pseudomarginal and correlated pseudomarginal schemes
on a simple Gaussian random-effects model where

Xt
IID∼ N .θ, 1/,

Yt|Xt ∼N .Xt , 1/:
.49/

We are interested in estimating θ (which has a true value of 0:5) to which we assign a zero-mean
Gaussian prior with large variance. In this scenario, the likelihood is known as Yt ∼N .θ, 2/.
This enables detailed experimental analysis of the log-likelihood error and the log-likelihood
ratio error. This also enables us to implement the MH algorithm with the true likelihood. The
same normal random-walk proposal is used for all three schemes (MH, pseudomarginal and
correlated pseudomarginal) and the following unbiased estimator of the likelihood is used for
the pseudomarginal and correlated pseudomarginal schemes:

p̂.y1:T | θ, U/=
T∏

t=1
p̂.yt | θ, Ut/,

p̂.yt | θ, Ut/= 1
N

N∑
i=1

ϕ.yt ; θ+Ut, i, 1/, Ut, i
IID∼ N .0, 1/:

.50/

The inefficiency is estimated for all three schemes for h.θ/ = θ using 1 + 2ΣL
n=1φ̂n where φ̂n is

the estimated correlation for θ at lag n and L is a suitable cut-off value. We use the notation
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Z= log{p̂.y1:T | θ, U/=p.y1:T | θ/} and W = log{p̂.y1:T | θ′, U ′/=p.y1:T | θ′/} where θ′ ∼q.θ, ·/ and
U ′ ∼Kρ.U, ·/ and write R=W −Z for RT .θ, θ′/ defined in equation (23).

As discussed in Section 4, for large data sets, the relative inefficiency RIF = IF=IFMH and
associated relative computing time RCT = N RIF of the correlated pseudomarginal scheme
depend on the standard deviation κ of R at stationarity and the correlation parameter ρ. To
validate experimentally the results of Section 3, we first analyse the case where T =8192 in more
detail. We run the correlated pseudomarginal algorithm by using a random-walk proposal for
N = 80 and ρ= 0:9963, so that κ= 1:145. The draws of W and Z at equilibrium, together
with R, are displayed in Fig. 2. The draws of Z are approximately distributed according to
N .σ2=2,σ2/ (Fig. 2(c)), where the variance σ2 is high. The draws of R appear uncorrelated
(in unreported tests) and their histogram is indistinguishable from the expected theoretical
distributionN .−κ2=2,κ2/ established in theorem 3 (Fig. 2(d)). This is in agreement with theorem
1, equation (22), the posterior of θ being concentrated. The resulting draws and correlogram
(Figs 2(b) and 2(f)) of θ demonstrate low persistence.

For the pseudomarginal scheme, it is necessary to take N = 5000 samples to ensure that the
variance of Z evaluated at a central value θ̂ is approximately 1 (Doucet et al., 2015). We next
validate experimentally the theoretical results of Section 4 by investigating the performance of
the correlated pseudomarginal algorithm for this data set, varying N, and thus also κ2 =V.R/,
while keeping ρ= 0:9963. Fig. 3 displays the values of RIF and RCT against κ as well as
the marginal acceptance probabilities, showing that RCT is approximately minimized around
κ=1:6 close to the minimizing argument of ARCT.h, QÅ

T / that was established in proposition
2 which satisfies expression (46). Figs 3(c) and 3(d) show that log.κ2/ decreases linearly with
log.N/ as expected (Fig. 3(d)) and that the marginal probability of acceptance in the correlated
pseudomarginal scheme is close to the asymptotic lower bound (Fig. 3(c)) given by expression
(37). From these experimental results, it is clear that, for all values of N that were considered,
the gains of the correlated pseudomarginal scheme over the pseudomarginal method in terms
of RCT are very significant. The optimal value of N for the correlated pseudomarginal scheme
is 35 (κ= 1:6) which gives RCT = 61 against a value of RCT = 14100 for the pseudomarginal
scheme. Consequently, the pseudomarginal method would take more than 200 times as long in
computation time to produce an estimate of the posterior mean of θ of the same accuracy.

We next investigate the performance of the correlated pseudomarginal method when T and
N =β

√
T vary while ψ, or equivalently ρ, is scaled such that κ is approximately constant. The

results are recorded in Table 3. They suggest that the scaling N =β
√

T is successful as IFCPM
appears to stabilize whereas the scaling N =βT is necessary for IFPM to stabilize. Experimental
results that are not reported here confirm that, if N grows at a slower rate than

√
T , then IFCPM

increases without bound with T .
We now justify empirically some of the assumptions that were made in Section 4 to guide the

selection of the parameters ψ and β. First, we show that the correlated pseudomarginal process
can be thought of as a combination of two different processes: a ‘slow’ moving component
f.Un/≈ f̂ .Un/= θ̂T + Σ̄T −1Ψ.θ̂T , Un/, the modified score error associated with the score error
Ψ.θ̂T , Un/ defined in equation (40) and a ‘fast’ component g.ϑn, Un/=ϑn −f.Un/≈ ĝ.ϑn, Un/=
ϑn − f̂ .Un/. We display these components for a correlated pseudomarginal run and the associ-
ated correlograms in Fig. 4 for fixedκ. We also illustrate in Fig. 5 that IF.Ψ, QT /≈A={δT �U.κ/}
where δT =ψNT =T =− log.ρT /. The optimization scheme that was developed in Section 4.4 es-
sentially selects β such that the asymptotic variances of both the slow and the fast components
f̂ .Un/ and ĝ.ϑn, Un/ are of the same order.

To apply the optimization procedure, we first run the algorithm for N = 20 and tune ψ to
obtain κ̂≈1:4. For the resulting value ψ̂, we then evaluate CTCPM =N IFCPM for various values
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Table 3. Random-effects model†

T N ρ κ2 �̄MH IFMH �̄CPM IFCPM RIFCPM

1024 19 0.9894 2.0 0.71 10.71 0.48 43.26 4.04
2048 28 0.9925 1.9 0.69 8.21 0.49 38.50 4.61
4096 39 0.9947 1.7 0.72 11.75 0.51 21.01 1.79
8192 56 0.9962 1.8 0.81 15.61 0.50 24.25 1.55

16384 79 0.9974 1.8 0.70 9.37 0.50 20.05 2.14

†Inefficiency and acceptance probabilities �̄MH and �̄CPM for the MH and
correlated pseudomarginal algorithms, N =β

√
T and ρ selected such that κ2

is approximately constant.

of β and perform a regression based on equations (47) and (48). Practically, we use only a
subset of the data to perform this optimization to speed up computation. The results are fairly
insensitive to the size of this subset as illustrated in Fig. 6 and suggest selecting β around 0.25.

5.2. Heston stochastic volatility model
We investigate here the empirical performance of the correlated pseudomarginal algorithm on
the Heston model (Heston, 1993; Chopin and Gerber, 2017), which is a popular stochastic
volatility model with leverage which is a partially observed diffusion model. The logarithm of
the observed price P.t/ evolves according to

d log P.t/=σ.t/dB.t/,

dσ2.t/=υ{μ−σ2.t/}dt +ωσ.t/dW.t/,

where σ.t/ is a stationary latent spot stochastic volatility process such that σ2.t/∼G.α,β/ where
G.α,β/ is the gamma distribution of shape α= 2μυ=ω2 and rate β = 2υ=ω2. The Brownian
motions B.t/ and W.t/ are correlated with χ= corr{B.t/, W.t/}. The returns Ys = log{P.τs/}−
log{P.τs−1/} are observed at equally spaced times τ0 < : : : < τT , where Δ = τs − τs−1 for all
s=1, : : : , T . Conditionally on the volatility σ2.t/ and driving process W.t/, we have

Ys ∼N{χγs; .1−χ2/σ2Å
s }, .51/

σ2Å
s =

∫ τs

τs−1

σ2.t/dt,

γs =
∫ τs

τs−1

σ.t/dW.t/:

.52/

To perform inference, we first reparameterize the model in terms of x.t/= log{σ2.t/}. We apply
Itô’s lemma to x.t/ and discretize the resulting diffusion by using an Euler scheme. We write
xs

i = x.τs + εi/, where ε= Δ=I for i = 0, : : : , I so that xs
I = xs+1

0 . The evolution of these latent
variables is given by

xs
i+1 =xs

i + ε

[
υ{μ exp.−xs

i /−1}− ω2

2
exp.−xs

i /

]
+√

εω exp
(
−xs

i

2

)
ηi,

where ηi ∼IID N .0, 1/ for i=0, : : : , I −1. Under the Euler scheme, the returns satisfy
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Table 4. Heston model: posterior means and standard deviations over 10000 iterations†

N μ φ ω χ ρ �̄CPM

E(θ) (SD(θ))
80 1.258 (0.098) 0.981 (0.0027) 0.142 (0.0099) −0:676 (0.027) 0.9975

150 1.253 (0.098) 0.981 (0.0028) 0.142 (0.0105) −0:672 (0.034) 0.9953
300 1.255 (0.099) 0.981 (0.0028) 0.142 (0.0110) −0:671 (0.032) 0.9907

CT(θ)
80 9995 12555 13571 33794 0.276

150 19691 20256 17931 32588 0.272
300 32970 30432 35103 35505 0.281

†The computing time CT= IF×N for the correlated pseudomarginal scheme for N =β
√

T and
ρ selected such that κ≈1:4 at θ̂ and acceptance probability �̄CPM.

Ys ∼N{χγ̂s; .1−χ2/σ̂2Å
s }, .53/

σ̂2Å
s = ε

I∑
i=1

exp.xs
i /,

γ̂s =√
ε

I∑
i=1

exp.xs
i =2/ηi,

.54/

where σ̂2Å
s and γ̂s are the Euler approximations of expressions (52). We are interested in inferring

θ= .μ,υ,ω,χ/ given T = 4000 daily returns y1:T from the Standard & Poors 500 index from
August 15th, 1990, to July 3rd, 2006. We use here I =10. Although the state is scalar, it is very
difficult to perform inference by using standard Markov chain Mante Carlo techniques as this
involves TI =40000 highly correlated latent variates.

We first run the correlated pseudomarginal scheme keeping the parameter fixed at the posterior
mean θ̂, estimated from a full correlated pseudomarginal run, and only updating the auxiliary
variables. We display the histograms of Z = log{p̂.y1:T | θ̂, U/}, W = log{p̂.y1:T | θ̂, U ′/} and
R = log{p̂.y1:T | θ̂, U ′/=p̂.y1:T | θ̂, U/} in Fig. 7 for N = 80 and N = 300 using the parameters
given in Table 4. We observe that R is approximately distributed according to N .−κ2=2,κ2/

for κ=1:35 in both cases. Additionally the sequence of estimates is almost uncorrelated across
correlated pseudomarginal iterations.

Using N = 300, we first select ψ= 0:125 to achieve κ= 1:4 at θ̂. We then run the correlated
pseudomarginal scheme by using a random-walk proposal for other values of N, N = β

√
T ,

and compute CT = IF × N. These results are summarized in Table 4. The posterior estimates
are in very close agreement across the various values of N. In unreported results, we observe
empirically that the dependence of CT on β for parameters .μ,φ := exp.−υ/,ω,χ/ matches
equation (47) which can be optimized, suggesting an optimal value of N around 70–80. As in the
random-effects scenario, we observe on data sets of increasing length that the scaling N =β

√
T is

successful as IFCPM appears to stabilize. In this context, the pseudomarginal method is extremely
expensive computationally as we need approximately N =20000 to obtain a standard deviation
of Z around 1 (Doucet et al., 2015), our implementation taking 7 min per iteration to run
on a standard desktop computer. In terms of CT, the correlated pseudomarginal scheme is
approximately 100 times more efficient than the pseudomarginal scheme.
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5.3. Linear Gaussian state space model
We examine empirically the performance of the correlated pseudomarginal method for multi-
variate state space models by using the particle filter with Hilbert sort described in algorithm
2 (Table 2) and compare it with the pseudomarginal method. Attention is restricted to a lin-
ear Gaussian state space model which allows exact calculation of the likelihood and of the
log-likelihood error ZT .θ, U/= log{p̂.Y1:T | θ, U/=p.Y1:T | θ/}. Similar empirical results for non-
linear non-Gaussian state space models were observed.

We consider the model that was discussed in Guarniero et al. (2017) and Jacob et al. (2016)
where {Xt ; t � 1} and {Yt ; t � 1} are Rk valued with

X1 ∼N .0, Ik/, Xt+1 =AθXt +Vt+1, Yt =Xt +Wt , .55/

where Vt ∼IID N .0k, Ik/, Wt ∼IID N .0k, Ik/ and A
i, j
θ =θ|i−j|+1.

We use the transition density of {Xt ; t � 1} as proposal density within the particle filter. We in-
vestigate the variance of the error in the log-likelihood estimator Z= log{p̂.y1:T |θ, U/=p.y1:T |θ/}
by running the correlated pseudomarginal procedure holding the parameter fixed and equal to
its true value θ= 0:4. Next, we investigate the variance of the error in the log-likelihood ra-
tio estimator R = log{p̂.y1:T |θ′, U ′/=p.y1:T |θ′/}− Z where U ′ ∼ Kρ.U, ·/ is the proposal when
θ′ = θ. This is performed for various values of T , with N = �βT α� and ρ= exp.−ψN=T/ for
k ∈{2, 3, 4}.

We shall now discuss the choice of α for state space models. In sharp contrast with random-
effects models, we found empirically that there are dimension-dependent limitations to the
realized correlation that can be achieved through the particle filter with Hilbert sort. In particular
we found that, because of resampling, the realized correlation is limited by min{1−c1N−1=k, 1−
c2δ} for some constants c1 and c2, unless we set δ extremely small. Since the inefficiency tends
to increase if we set δ too small, we balance the two terms by choosing δ=N−1=k, thus setting
α=k=.k +1/ for the following examples.

We run the correlated pseudomarginal chain for 1000 iterations, recording κ2 = V.R/

and σ2 = V.Z/. The values of β and ψ have been chosen so that they result in a particular
target value of κ2 as will be evident from the following tables. The asymptotic acceptance
probability of the correlated pseudomarginal scheme is thus in this case given by �CPM.κ/ :=
�U.κ/=2Φ.−κ=2/ whereas it is �PM.σ/=2Φ.−σ=

√
2/ for the pseudomarginal scheme (Doucet

et al., 2015).
The results for k = 2 are reported in Table 5, where the two eigenvalues of Aθ are 0.56

and 0.24. The scaling rule proposed results in values of κ2 which are approximately constant,
remaining at values that are close to 2 for T � 1600. The implied acceptance probability of the

Table 5. Linear state space model: results for k D2 for varying T †

T N δ=−log(ρ) κ2 σ2 �CPM(κ) �PM(σ)

100 18 0.0216 2.59 16.3 0.42 0.004
400 46 0.0138 2.71 20.5 0.41 0.0013

1600 116 0.0087 2.01 34.1 0.48 3:6×10−5

6400 294 0.0055 2.07 49.7 0.47 6:0×10−7

25600 742 0.0034 1.97 105.9 0.48 3:4×10−13

†State dimension k =2 with β=0:854, ψ=0:12 and α= 2
3 .
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Table 6. Linear state space model: results for k D3 for varying T †

T N δ=−log(ρ) κ2 σ2 �CPM(κ) �PM(σ)

100 49 0.0205 3.15 13.7 0.37 0.0089
400 140 0.0147 2.97 16.6 0.39 0.0039

1600 397 0.0104 3.44 26.7 0.35 0.00025
6400 1124 0.0074 3.03 34.1 0.38 3:66×10−5

25600 3181 0.0052 2.69 49.4 0.41 6:74×10−7

†State dimension k =3 with β=1:57, ψ=0:042 and α= 3
4 .

CPM scheme �CPM.κ/ therefore settles at a value that is close to 0.5. By contrast, the marginal
variance σ2 increases at the expected rate T 1−α and accordingly the acceptance probability of
the corresponding pseudomarginal scheme, �PM.σ/, is very low even for T = 100. Similar re-
sults are found for the case k =3, which are reported in Table 6, where the eigenvalues of Aθ are
(0.6605, 0.3360, 0.2035), resulting in a model with moderately high persistence. In this case we
set α= 3

4 . Although less dramatic, the implied gain of the correlated pseudomarginal method
over the pseudomarginal method is substantial even for T =100 and increases with T.

The full correlated pseudomarginal procedure is now implemented for T =400 and T =6400
when k = 2 and k = 3 by using the parameters of Tables 5 and 6. An auto-regressive proposal
is employed for θ which is based on the posterior mode and the second derivative at this point
(Tran et al., 2016b).

The results for k =3 and T =6400 are shown in Fig. 8. The mixing for θ is fairly rapid for the
achieved value of κ=2:26. The empirical distributions of Z under m and π̄ are plotted (Fig. 8(c))
and are close to the theoretical distributions N .−σ2=2,σ2/ and N .σ2=2,σ2/ respectively, where
σ=7:5. Figs 8(d)–8(f) show the draws of R, its empirical distribution and the associated correl-
ogram arising from the correlated pseudomarginal scheme. It is clear that R is approximately
distributed according to N .−κ2=2,κ2/, which is overlaid, but the correlogram decays slower
than for random-effect models and one-dimensional state space models. The gain over the pseu-
domarginal method is around σ2, meaning that we need around 50 times as many particles in
the pseudomarginal method to achieve similar results to the correlated pseudomarginal scheme.
When T =400, we obtained κ=1:92 and σ=4:30, resulting in gains over the pseudomarginal
of approximately 18 fold. When k =2, the gains are more impressive and are around 25 fold for
T =400 and 80 fold when T =6400.

6. Discussion

The correlated pseudomarginal method is an extension of the pseudomarginal method using an
estimator of the likelihood ratio appearing in its acceptance probability obtained by correlating
estimators of its numerator and denominator. We have detailed implementations of this general
idea for random-effects and state space models. For random-effects models, we have provided
theory to apply this methodology efficiently and have also verified empirically its efficacy for
state space models. In our examples, the computational gains over the pseudomarginal method
increase with T and can be over two orders of magnitude for large data sets. The correlated pseu-
domarginal method is particularly useful for partially observed diffusions where sophisticated
Markov chain Monte Carlo alternatives, such as particle Gibbs techniques, are inefficient.

From a theoretical point of view, in the random-effects scenario, we have obtained a result
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suggesting that a necessary condition to ensure finiteness of the integrated auto-correlation
time of the correlated pseudomarginal chain, as T increases, is to have NT growing at least
at rate

√
T . Our experimental results suggest that this condition is also sufficient and thus

that the computational cost per iteration of the correlated pseudomarginal method is O.T 3=2/

versus O.T 2/ for the pseudomarginal method. For state space models, our empirical results
indicate that this scaling degrades with the state dimension k and that we need NT to grow
at rate T k=.k+1/, leading to a computational cost per iteration of order O.T .2k+1/=.k+1//, up
to a logarithmic factor (the particle filter with Hilbert sort has computational complexity
NT log.NT / per observation), for the correlated pseudomarginal method versus O.T 2/ for the
pseudomarginal method. It would be of interest but technically very involved to establish these
results rigorously.

From a methodological point of view, it is possible in the state space context to use alternatives
to the Hilbert resampling sort to implement the correlated pseudomarginal algorithm (Lee,
2008; Malik and Pitt, 2011; L’Ecuyer et al., 2018) and several such methods have been proposed
following the first version of this work (Doucet et al., 2015); see, for example Jacob et al. (2016)
and Sen et al. (2018). Empirical results in Jacob et al. (2016) and L’Ecuyer et al. (2018) and
our own experiments indicate that all these procedures provide roughly similar improvements
over the pseudomarginal method. One direction of interest is to use the sequential randomized
quasi-Monte-Carlo algorithm, proposed and analysed by Gerber and Chopin (2015), within the
correlated pseudomarginal scheme by correlating the single uniform distribution that was used to
randomize the quasi-Monte-Carlo grid. This is one motivation behind choosing the Hilbert sort
procedure over alternative schemes, since this algorithm comes with theoretical guarantees. In a
random-effects context, the use of quasi-Monte-Carlo methods has already been demonstrated
to provide significant improvements (Tran et al., 2016a). Finally, a sequential extension of the
particle marginal MH algorithm (Andrieu et al., 2010), a pseudomarginal method, has been
proposed in Chopin et al. (2013) and it would be interesting to develop an efficient sequential
version of the correlated pseudomarginal scheme.
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A.1 Notation

For each T we define a reference probability space (ΩT ,GT ,PT ) which supports the following random
variables:

1. θT ∼ πT , where πT denote the posterior distribution associated to observations y1:T ,

2. {UTt,i : t ∈ 1 : T, i ∈ 1 : N} independent and identically distributed N (0p, Ip) random variables,

3. {BTt,i(·) : t ∈ 1 : T, i ∈ 1 : N} where the BTt,i(·) are mutually independent, p−dimensional standard
Brownian motions.

More specifically, we set
ΩT := Θ× RpNT × Cp[0,∞)NT ,

and

PT
(

dθT ,
{

duTt,i
}
t,i
,
{

d
(
βTt,i(·)

)}
t,i

)
= πT (dθT )

T∏
t=1

N∏
i=1

ϕ(duTt,i; 0p, Ip)

T∏
t=1

N∏
i=1

Wp
(
dβTt,i(·)

)
,

where Wp(d·) denotes the Wiener measure on Cp[0,∞), the space of Rp- valued continuous paths on
[0,∞).

Let Y = Y∞, yt is Y-valued and B(Y) the associated Borel σ-algebra. We consider the product space
(Ω,G,P) where

Ω = Y×
∏
T

ΩT , G = B(Y)⊗ (⊗TGT ) ,

and

P =

( ∞∏
t=1

µ(dyt)

)
⊗ (⊗TPT ) .

In most cases we will be working with the probability measure P̃ capturing the scenario when the CPM
algorithm is in the stationary regime. This measure is defined as follows. For every T ≥ 1 and sequence
of observations y1:T , we define the probability measure P̃y1:TT by

dP̃y1:TT

dPT

(
θT ,
{
uTt,i
}
i,t
,
{
βTt,i(·)

}
t,i

)
=

T∏
t=1

1

N

N∑
i=1

$(yt; θ
T , uTt,i),

where $(·; ·, ·) is defined in (18), and let

P̃ =

( ∞∏
t=1

µ(dyt)

)
⊗
(
⊗T P̃y1:TT

)
.

We will denote by E, V and Ẽ, Ṽ the expectation and variance under P and P̃ respectively.

When T and θT are understood fixed, allowing some abuse of notation, we will write P to denote the
measure

P
(

dy1, . . . ,dyT ,
{

duTt,i
}
t,i
,
{

d
(
βTt,i(·)

)}
t,i

)
=

T∏
t=1

µ(dyt)

T∏
t=1

N∏
i=1

ϕ(duTt,i; 0p, Ip)

T∏
t=1

N∏
i=1

Wp
(
dβTt,i(·)

)
,

and similarly

P̃
(

dy1, . . . ,dyT ,
{

duTt,i
}
t,i
,
{

d
(
βTt,i(·)

)}
t,i

)
= π̄T

(
{duTt,i}t,i | θT

) T∏
t=1

µ(dyt)

T∏
t=1

N∏
i=1

Wp
(
dβTt,i(·)

)
=

T∏
t=1

1

N

N∑
i=1

$(yt; θ
T , uTt,i)

T∏
t=1

N∏
i=1

ϕ(duTt,i; 0p, Ip)

T∏
t=1

µ(dyt)

T∏
t=1

N∏
i=1

Wp
(
dβTt,i(·)

)
.
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To simplify notation, we will often drop the superscript T , since we will always be considering variables
belonging to the same row. In addition we will write N for NT in the proofs, omitting the explicit
dependence of NT on T . In the proofs of Theorem 1, Theorem 2 and Theorem 3, we also write m,
π̄ (du | θ), Bt,i, Ut,i instead of mT , π̄T

(
duT | θT

)
, BTt,i and UTt,i. Notice that E

(
$
(
Y1, U

T
1,1; θ

)j) is

independent of T for any j as UT1,1 ∼ N (0p, Ip) under P.

A.2 Proof of Part 1 of Theorem 1

The starting point of our analysis is the following decomposition

log p̂ (Y1:T | θ)− log p (Y1:T | θ) =

T∑
t=1

log

{
1 +

εN (Yt; θ)√
N

}
, (1)

with

εN (Yt; θ) :=
√
N
p̂ (Yt| θ)− p (Yt| θ)

p (Yt| θ)
=

1√
N

N∑
i=1

{$(Yt, Ut,i; θ)− 1} .

We will denote by ρi (θ) the ith order cumulant of the normalized importance weight $(Y1, U1,1; θ) given
in (18) under P and by γ (θ)

2 its variance, so that ρ2 (θ) = γ (θ)
2.

We first present three preliminary lemmas.

Lemma 1. The terms {εN (yt; θ)}Tt=1 are independent, and for any y ∈ Y we have E (εN (y; θ)) = 0 and

E
(
εN (y; θ)

2
)

= V ($(y, U1,1; θ)) = ρ2 (y; θ) := γ (y; θ)
2
, (2)

E
(
εN (y; θ)

3
)

=
ρ3 (y; θ)√

N
, (3)

E
(
εN (y; θ)

4
)

= 3γ (y; θ)
4

+
ρ4 (y; θ)

N
, (4)

E
(
εN (y; θ)

5
)

=
10ρ2 (y; θ) ρ3 (y; θ)√

N
+
ρ5 (y; θ)

N
√
N

,

where ρi (y; θ) denotes the ith-order cumulant of $(y, U1,1; θ) and ρi (θ) = E (ρi(Y ; θ)) =
´
ρi (y; θ)µ (dy).

The proof of Lemma 1 follows from direct calculations so it is omitted.

Lemma 2. Let k ≥ 2. If E
(
$(Y1, U1,1; θ)k

)
<∞ then lim supT→∞ E

(
|εN (Y1; θ)|k

)
<∞.

Proof of Lemma 2. It follows from a successive application of Marcinkiewicz-Zygmund, Jensen and Cp
inequalities that for any k ≥ 2, there exist b (k) , c (k) <∞ such that

E
(
|εN (Y1; θ)|k

)
= E

∣∣∣∣∣ 1√
N

N∑
i=1

{$(Y1, U1,i; θ)− 1}

∣∣∣∣∣
k


≤ b (k)E

∣∣∣∣∣ 1

N

N∑
i=1

{$(Y1, U1,i; θ)− 1}2
∣∣∣∣∣
k/2


≤ b (k)
1

N

N∑
i=1

E
(
|$(Y1, U1,i; θ)− 1|k

)
= b (k)

(
E |$(Y1, U1,1; θ)− 1|k

)
≤ b (k) c (k)

(
E
(
$(Y1, U1,1; θ)k

)
+ 1
)
.

This concludes the proof.
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Lemma 3. Consider the triangular array {εN (Yt; θ)} and let k ≥ 2. If there exists a δ > 0 such that
E
(
$(Y1, U1,1; θ)k+δ

)
<∞ then

T−1
T∑
t=1

εN (Yt; θ)
k − E

(
εN (Y1; θ)k

)
→P 0. (5)

If E
(
$(Y1, U1,1; θ)2k

)
<∞ then we have for any λ > 0

T−
(1+λ)

2

T∑
t=1

εN (Yt; θ)
k − T

(1−λ)
2 E

(
εN (Y1; θ)k

)
→P 0. (6)

Proof of Lemma 3. Equation (5) follows directly from a weak law of large numbers (WLLN) applied to
the triangular array εN (Yt; θ)

k−E
(
εN (Y1; θ)k

)
; see, e.g., (Douc et al., 2014, Theorem B.18). This results

holds as E
(
$(Y1, U1,1; θ)k+δ

)
< ∞ so lim supT→∞ E

(
|εN (Y1; θ)|k+δ

)
< ∞ by Lemma 2. To establish

(6), we use that for any ε > 0

P

{∣∣∣∣∣T− (1+λ)
2

T∑
t=1

{
εN (Yt; θ)

k − E
(
εN (Y1; θ)k

)}∣∣∣∣∣ ≥ ε
}
≤

E
[(∑T

t=1

[
εN (Yt; θ)

k − E
(
εN (Y1; θ)k

)])2
]

T (1+λ)ε2

=
E
([
εN (Y1; θ)k − E

(
εN (Y1; θ)k

)]2)
Tλε2

→ 0.

The result follows.

We can now give the proof of Part 1 of Theorem 1.

Proof of Part 1 of Theorem 1. We first perform a fourth order Taylor expansion of each term appearing
in (1), i.e.

log

{
1 +

εN (Yt; θ)√
N

}
=
εN (Yt; θ)√

N
− εN (Yt; θ)

2

2N
+
εN (Yt; θ)

3

3N
√
N
− εN (Yt; θ)

4

4N2
+Rt,N (Yt; θ) (7)

where

Rt,N (Yt; θ) =
1

5

1

(1 + ξN (Yt; θ))
5

{
εN (Yt; θ)√

N

}5

(8)

with |ξN (Yt; θ)| ≤
∣∣∣ εN (Yt;θ)√

N

∣∣∣ . To ensure that these Taylor expansions are valid for t ∈ 1 : T , we control

the probability of the event B
(
Y T , ε

)
=

{
max
t≤T

∣∣∣ εN (Yt;θ)√
N

∣∣∣ > ε

}
. We have for any ε > 0

P
{
B
(
Y T , ε

)}
≤

T∑
t=1

P
(∣∣∣∣εN (Yt; θ)√

N

∣∣∣∣ > ε

)
= TP

(∣∣∣∣εN (Y1; θ)√
N

∣∣∣∣ > ε

)

≤ T
E
(
εN (Y1; θ)

8
)

ε8N4

≤
E
(
εN (Y1; θ)

8
)

ε8β4T 4α−1
,

since N = dβTαe. As E
(
$
(
Y1, U

T
1,1; θ

)8)
< ∞ by assumption, the complementary event satisfies for

α > 1/4

lim
T→∞

P
((
B
(
Y T , ε

))C)
= 1. (9)
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On the event
(
B
(
Y T , ε

))C, the Taylor expansion (7) holds for all t ∈ 1 : T so we can write

log p̂ (Y1:T | θ)− log p (Y1:T | θ)
T (1−α)/2

=
1

β1/2T 1/2

T∑
t=1

εN (Yt; θ) (10)

− 1

2βT (1+α)/2

T∑
t=1

εN (Yt; θ)
2 (11)

+
1

3β3/2T (1+2α)/2

T∑
t=1

εN (Yt; θ)
3 (12)

− 1

4β2T (1+3α)/2

T∑
t=1

εN (Yt; θ)
4 (13)

+
1

T (1−α)/2

T∑
t=1

Rt,N (Yt; θ) (14)

+ oP (1) .

We first control the remainder (14), using the fact that (8) can be controlled on the event BC
(
Y T , ε

)
, as

follows

1

T (1−α)/2

∣∣∣∣∣
T∑
t=1

Rt,N (Yt; θ)

∣∣∣∣∣ ≤ 1

5β5/2

1

(1− ε)5

1

T (1−α)/2N5/2

T∑
t=1

|εN (Yt; θ)|5

≤ 1

5β5/2

1

(1− ε)5

1

T (4α−1)/2

1

T

T∑
t=1

|εN (Yt; θ)|5 .

The WLLN for triangular arrays holds by a similar argument to Lemma 3 so we have

1

T

T∑
t=1

|εN (Yt; θ)|5 − E
(
|εN (Y1; θ)|5

)
→P 0.

Hence as α > 1/4, we obtain
1

T (1−α)/2

∣∣∣∣∣
T∑
t=1

Rt,N (Yt; θ)

∣∣∣∣∣→P 0. (15)

The term on the r.h.s. of (10) satisfies a conditional CLT for triangular arrays; see Lemma 19 in Section
A.9. Indeed, we have for any ε > 0

E

[
T−1

T∑
t=1

E
(
εN (Yt; θ)

2 I{|εN (Yt;θ)|≥
√
Tε}
∣∣∣YT)] = E

[
ε2

T∑
t=1

E

(
εN (Yt; θ)

2

ε2T
I{|εN (Yt;θ)|≥

√
Tε}

∣∣∣∣∣YT
)]
(16)

≤ ε2
T∑
t=1

E

(
εN (Yt; θ)

4

ε4T 2

)

=
1

Tε2
E
(
εN (Yt; θ)

4
)

=
1

Tε2

{
3γ (θ)

4
+
ρ4 (θ)

N

}
→ 0,

using (4) to obtain the last equality. Hence the following conditional Lindeberg condition holds

T−1
T∑
t=1

E
(
εN (Yt; θ)

2 I{|εN (Yt;θ)|≥
√
Tε}
∣∣∣YT)→P 0 .

5



As (2) holds, by the strong law of large numbers (SLLN), the limiting variance is given by

lim
T→∞

1

βT

T∑
t=1

E
(
εN (Yt; θ)

2
∣∣∣YT) = lim

T→∞

1

βT

T∑
t=1

γ (Yt; θ)
2

= β−1γ (θ)
2
.

Lemma 3 shows that the second term (11) satisfies

1

T (1+α)/2

T∑
t=1

εN (Yt; θ)
2 − T (1−α)/2γ (θ)

2 →P 0, (17)

and that the third term (12) satisfies

1

T (1+2α)/2

T∑
t=1

εN (Yt; θ)
3 − ρ3 (θ)

β1/2T (3α−1)/2
→P 0, (18)

hence it vanishes for α > 1/3. Similarly, Lemma 3 and (4) show that

1

T (1+3α)/2

T∑
t=1

εN (Yt; θ)
4 − 3γ (θ)

4

T (3α−1)/2
− ρ4 (θ)

βT (5α−1)/2
→P 0 (19)

where ρ4(θ)
βT (5α−1)/2 → 0 for any α > 1/5.

The term T−(1−α)/2 {log p̂ (Y1:T | θ)− log p (Y1:T | θ)} is asymptotically equivalent in distribution to the
sum of the terms (10), (11), (12), (13) and (14). By combining (9) to the fact that (10) satisfies a
conditional CLT, that (17), (18), (19), (15) hold and Lemma 21, the result follows.

A.3 Proof of Part 2 of Theorem 1

Lemma 4. For any y ∈ Y and integer k ≥ 1, if E
[
|εN (y; θ)|k+1

]
<∞ then Ẽ

[
|εN (y; θ)|k

]
<∞ and

Ẽ
[
εN (y; θ)

k
]

= E
[
εN (y; θ)

k
]

+
1√
N

E
[
εN (y; θ)

k+1
]
.

Proof of Lemma 4. We have

Ẽ
[
εN (y; θ)

k
]

=
1

Nk/2

˙ [
N∑
i=1

{$ (y, u1,i; θ)− 1}

]k
π(du1,1:N |θ)

=
1

N1+k/2

˙ [
N∑
i=1

{$ (y, u1,i; θ)− 1}

]k [
N +

N∑
i=1

{$ (y, u1,i; θ)− 1}

]∏N

j=1
ϕ (du1,j ; 0p, Ip)

=
1

Nk/2

˙ [
N∑
i=1

{$ (y, u1,i; θ)− 1}

]k∏N

j=1
ϕ (du1,j ; 0p, Ip)

+
1

N1+k/2

˙ [
N∑
i=1

{$ (y, u1,i; θ)− 1}

]k+1∏N

j=1
ϕ (du1,j ; 0p, Ip) .

The result follows directly.

Corollary 5. By combining Lemma 1 with Lemma 4, we obtain

Ẽ [εN (y; θ)] =
γ (y; θ)

2

√
N

, (20)

Ẽ
[
εN (y; θ)

2
]

= γ (y; θ)
2

+
ρ3 (y; θ)

N
, (21)

6



Ẽ
[
εN (y; θ)

3
]

=
3γ (y; θ)

4
+ ρ3 (y; θ)√
N

+
ρ4 (y; θ)

N
√
N

, (22)

Ẽ
[
εN (y; θ)

4
]

= 3γ (y; θ)
4

+
ρ4 (y; θ) + 10ρ2 (y; θ) ρ3 (y; θ)

N
+
ρ5 (y; θ)

N2
. (23)

Similarly, we have Ẽ [εN (Y1; θ)] = γ (θ)
2
/
√
N, Ẽ

[
εN (Y1; θ)

2
]

= γ (θ)
2

+ ρ3 (θ) /N , etc.

We can now give the proof of Part 2 of Theorem 1. For α = 1, it is possible to combine Part 1 of Theorem
1 to a uniform integrability argument to establish this result but this argument does not appear to extend
to 1/3 < α < 1.

Proof of Part 2 of Theorem 1. The proof of this CLT is very similar to the proof of Part 1 of Theorem
1 so we skip some details. We again first perform a fourth order Taylor expansion of each term appearing
in (1), i.e., see (7) and (8). We also need to ensure that these Taylor expansions are valid for t ∈ 1 : T

so we control the probability of the event B
(
Y T , ε

)
=

{
max
t≤T

∣∣N−1/2εN (Yt; θ)
∣∣ > ε

}
. We have for any

ε > 0

P̃
{
B
(
Y T , ε

)}
≤

Ẽ
(
εN (Y1; θ)

8
)

ε8β4T 4α−1
.

As E
(
$
(
Y1, U

T
1,1; θ

)9)
<∞ holds by assumption, Lemma 4 ensures that Ẽ

(
εN (Y1; θ)

8
)
<∞ so

lim
T→∞

P̃
((
B
(
Y T , ε

))C)
= 1 (24)

for α > 1/4. On the event
(
B
(
Y T , ε

))C
, the Taylor expansion (7) holds for all t ∈ 1 : T so we can

similarly decompose T−(1−α)/2 {log p̂ (Y1:T | θ)− log p (Y1:T | θ)} as the sum of the terms (10), (11), (12),
(13), (14) and an additional oP̃ (1) term.

For α > 1/4, the remainder vanishes

1

T (1−α)/2

∣∣∣∣∣
T∑
t=1

Rt,N (Yt; θ)

∣∣∣∣∣→P̃ 0 (25)

as the WLLN for triangular arrays holds so

1

T

T∑
t=1

|εN (Yt; θ)|5 − Ẽ
(
|εN (Y1; θ)|5

)
→P̃ 0.

Using (20), we can rewrite the first term (10) as follows

1

β1/2T 1/2

T∑
t=1

εN (Yt; θ) =
1

β1/2T 1/2

T∑
t=1

{
εN (Yt; θ)− Ẽ

(
εN (Yt; θ)| YT

)}
(26)

+
1

β1/2T 1/2

T∑
t=1

{
Ẽ
(
εN (Yt; θ)| YT

)
− γ (θ)

2

√
N

}
(27)

+
T 1/2

β1/2

γ (θ)
2

√
N

. (28)

The r.h.s. of (26) satisfies a conditional CLT, see Lemma 19. Indeed the conditional Lindeberg condition
holds using arguments similar to (16) as T−1Ẽ

(
ε4
N (Yt; θ)

)
→ 0. By Lemma 4 and the SLLN, the limiting

variance is given by

lim
T→∞

1

βT

T∑
t=1

Ẽ
(
εN (Yt; θ)

2
∣∣∣YT)− Ẽ

(
εN (Yt; θ)| YT

)2
= lim
T→∞

1

βT

T∑
t=1

{
γ (Yt; θ)

2
+
ρ3 (Yt; θ)

N
− γ (Yt; θ)

4

N

}
= β−1γ (θ)

2

7



almost surely as (20)-(21) hold and Ẽ
[
γ (Y1; θ)

4
]
<∞. The term (27) satisfies

1

T 1/2

T∑
t=1

{
Ẽ
(
εN (Yt; θ)| YT

)
− γ (θ)

2

√
N

}
=

1

T 1/2
√
N

T∑
t=1

{
γ (Yt; θ)

2 − γ (θ)
2
}
→P̃ 0 (29)

by the SLLN, the assumption Ẽ
[
γ (Y1; θ)

4
]
<∞ and Chebyshev’s inequality. Finally we have for (28)

T 1/2

β1/2

γ (θ)
2

√
N
− T (1−α)/2

β
γ (θ)

2 → 0. (30)

For the second term (11), using (21), we obtain using Lemma 3

1

T (1+α)/2

T∑
t=1

εN (Yt; θ)
2 − T (1−α)/2γ (θ)

2 − β−1T (1−3α)/2ρ3 (θ)→P̃ 0, (31)

where the third term on the l.h.s. vanishes for α > 1/3. For the third term (12), we obtain using (22)
and Lemma 3

1

T (1+2α)/2

T∑
t=1

εN (Yt; θ)
3 − 3γ (θ)

4
+ ρ3 (θ)

β1/2T (3α−1)/2
− ρ4 (θ)

β3/2T (5α−1)/2
→P̃ 0. (32)

Hence, (12) vanishes for α > 1/3. Finally for the fourth term (13), we obtain using (23) and Lemma 3

1

T (1+3α)/2

T∑
t=1

εN (Yt; θ)
4 − 3γ (θ)

4

T (3α−1)/2
− ρ4 (θ) + 10ρ2 (θ) ρ3 (θ)

βT (5α−1)/2
− ρ5 (θ)

β2T (7α−1)/2
→P̃ 0 (33)

where T−(5α−1)/2 {ρ4 (θ) + 10ρ2 (θ) ρ3 (θ)} → 0 and T−(7α−1)/2ρ5 (θ)→ 0 for any α > 1/5.

The term T−(1−α)/2 {log p̂ (Y1:T | θ)− log p (Y1:T | θ)} is asymptotically equivalent in distribution to the
sum of the terms (10), (11), (12), (13) and (14). By combining (24) to the fact that (26) satisfies a
conditional CLT, (29), (30), (31), (32), (33), (25) and Lemma 21, the result follows.

A.4 Proof of Theorem 2

To simplify presentation, we only give the proof when θ is a scalar parameter, the multivariate exten-
sion is direct. We have ZT (θ) = log p̂(Y1:T | θ, U) − log p(Y1:T | θ, U) with U ∼ π ( ·| θ). We define
WT

(
θ + ξ/

√
T
)

= log p̂(Y1:T | θ + ξ/
√
T ,U ′)− log p(Y1:T | θ, U ′) with U ′ ∼ m.

The result will follow by the arguments used in the proof of Theorem 1, replacing

εN (Yt, Ut; θ) =
1√
N

N∑
i=1

[$(Yt, Ut,i; θ)− 1] ,

with
ζN (Yt; θ) = εN (Yt, U

′
t ; θ + ξ/

√
T )− εN (Yt, Ut; θ).

We make here the dependence of εN on Ut or U ′t explicit. We need to check that the moment conditions
used for εN carry over to ζN . We have by the Cp inequality and Lemma 4 that there exists c <∞

Ẽ
(
ζN (Y1; θ)8

)
≤ c

{
E
(
εN

(
Y1, U

′
1; θ + ξ/

√
T
)8
)

+ Ẽ
(
εN (Y1, U1; θ)

8
)}

≤ c
{
E
(
εN

(
Y1, U1; θ + ξ/

√
T
)8
)

+E
(
εN (Y1, U1; θ)

8
)

+
1√
N

∣∣∣E(εN (Y1, U1; θ)
9
)∣∣∣} .

As ϑ 7→ $(Y1, U1,1;ϑ) and ϑ 7→ Ẽ($(Y1, U1,1;ϑ)9) are continuous by assumption, it is straightforward to
check that lower order moments are also continuous. Also for T large enough

Ẽ
(
ζN (Y1; θ)8

)
≤ c

{
2E
(
εN (Y1, U1; θ)

8
)

+
1√
N

E
(
|εN (Y1, U1; θ)|9

)}
,

8



and similar results hold for lower order moments.

We use a Taylor expansion similar to the one used to establish Part 1 and Part 2 of Theorem 1,

WT

(
θ + ξ/

√
T
)

T (1−α)/2
− ZT (θ)

T (1−α)/2
=

1

β1/2T 1/2

T∑
t=1

[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

]
− 1

2βT (1+α)/2

T∑
t=1

[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)2

− εN (Yt, Ut; θ)
2

]

+
1

3β3/2T (1+2α)/2

T∑
t=1

[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)3

− εN (Yt, Ut; θ)
3

]

− 1

4β2T (1+3α)/2

T∑
t=1

[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)4

− εN (Yt, Ut; θ)
4

]

+
1

T (1−α)/2

T∑
t=1

R′t,N (Yt; θ, ξ) + oP (1) ,

where P denotes the probability over U ∼ π ( ·| θ) , U ′ ∼ m and Yt
i.i.d.∼ µ and E the associated expectation.

By inspecting the proofs of Parts 1 and 2 of Theorem 1, we can rewrite this as

WT

(
θ + ξ/

√
T
)

T (1−α)/2
− ZT (θ)

T (1−α)/2
(34)

=
1

β1/2T 1/2

T∑
t=1

[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

]
(35)

− 1

2βT (1+α)/2

T∑
t=1

[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)2

− εN (Yt, Ut; θ)
2

]
+ oP (1) . (36)

Next notice that

E

[
T−1

T∑
t=1

E
({

εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

}2

I{|εN (Yt;θ)−εN (Yt,Ut;θ)|≥
√
Tε}

∣∣∣∣YT)
]

= E

ε2 T∑
t=1

E


{
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

}2

ε2T
I{|εN (Yt;θ)−εN (Yt,Ut;θ)|≥

√
Tε}

∣∣∣∣∣∣∣YT



≤ 1

Tε2
E
({

εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

}4
)

≤ c

T ε2

{
Ẽ
(
εN (Yt, Ut; θ)

4
)

+ E
(
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)4
)}

(Cp inequality)

→ 0,

which implies that

T−1
T∑
t=1

E
({

εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

}2

I{|εN (Yt;θ)−εN (Yt,Ut;θ)|≥
√
Tε}

∣∣∣∣YT)→P 0.

Therefore the conditional Lindeberg condition is verified and the term (35) satisfies a conditional CLT
for triangular arrays (Lemma 19), with limiting variance given by

lim
T→∞

1

βT

T∑
t=1

[
E
({

εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

}2
∣∣∣∣YT)

− E
(
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)
− εN (Yt, Ut; θ)

∣∣∣YT)2
]

9



= lim
T→∞

1

βT

T∑
t=1

Ẽ
(
εN (Yt, Ut; θ)

2
∣∣∣YT)+ E

(
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)2
∣∣∣∣YT)− Ẽ

(
εN (Yt, Ut; θ)| YT

)2
= lim
T→∞

1

βT

T∑
t=1

γ (Yt; θ)
2

+
ρ3 (Yt; θ)

N
+ γ

(
Yt; θ + ξ/

√
T
)2

− γ (Yt; θ)
4

N

as E
[
εN

(
Yt, U

′
t ; θ + ξ/

√
T
)∣∣∣YT ] = 0. Now we have

lim
T→∞

1

βT

T∑
t=1

γ (Yt; θ)
2

+
ρ3 (Yt; θ)

N
− γ (Yt; θ)

4

N
= β−1γ (θ)

2

by the SLLN as E
[
γ (Yt; θ)

4
]
<∞. We also have by the WLLN for triangular arrays that

lim
T→∞

1

T

T∑
t=1

γ (Yt; θ)
2 − γ

(
Yt; θ + ξ/

√
T
)2

→P 0, (37)

and since by assumption γ(·) is continuously differentiable we have for any ξ

T (1−α)/2

∣∣∣∣γ (θ + ξ/
√
T
)2

− γ (θ)
2

∣∣∣∣ = T (1−α)/2

∣∣∣∣∣
ˆ θ+ ξ√

T

θ

∂γ (ϑ)
2

∂ϑ
dϑ

∣∣∣∣∣ (38)

≤ T (1−α)/2 ξ√
T

sup
ϑ∈
[
θ∧
(
θ+ ξ√

T

)
,θ∨
(
θ+ ξ√

T

)]
∣∣∣∣∣∂γ (ϑ)

2

∂ϑ

∣∣∣∣∣→ 0.

We have already seen in the proof of Theorem 1, equation (17), that

1

T (1+α)/2

T∑
t=1

εN (Yt, Ut; θ)
2 − T (1−α)/2γ (θ)

2 →P 0, (39)

and using a similar argument as the one used in the proof of (22) in Theorem 1, equation (31), we have

1

T (1+α)/2

T∑
t=1

εN (Yt, U
′
t ; θ + ξ/

√
T )2 − T (1−α)/2γ (θ)

2 →P 0 (40)

as α > 1/3 and (38) holds.

Hence (35) minus its mean satisfies a conditional CLT of limiting variance 2β−1γ (θ)
2 because of (37)-

(38). Using (29), its mean plus β−1T (1−α)/2γ (θ)
2 converges to zero in probability and (36) vanishes in

probability so the final result follows from Lemma 21.

A.5 Proof of Theorem 3

A.5.1 Notation and continuous-time embedding

For δT = ψNT , we have ρT = exp (−δT ) and we can write for t ∈ 1 : T and i ∈ 1 : N

U ′t,i = e−δTUt,i +
√

1− e−2δT εt,i, εt,i ∼ N (0p, Ip) . (41)

It will prove convenient for our proof to embed this discrete-time process within the following Ornstein-
Uhlenbeck process

dUt,i (s) = −Ut,i (s) ds+
√

2dBt,i (s) , (42)

where Bt,i are independent p−dimensional standard Brownian motions for t ∈ 1 : T and i ∈ 1 : N . It is
easy to check that we can set equivalently U ′t,i = Ut,i (δT ) as the value of the Ornstein-Uhlenbeck process
at time s = δT which has been initialized at time s = 0 using Ut,i (0) = Ut,i.

10



Whenever it is clear, we will drop the T index to keep the notation reasonable. We define

ŴT
t (θ) = ŴT

t (Yt | θ;Ut) =
p̂ (Yt| θ, Ut)
p (Yt | θ)

=
1

N

N∑
i=1

$ (Yt, Ut,i; θ) ,

where the full notation shall be retained when evaluating at the proposal θ′, U ′t and

ηTt =
ŴT
t (Yt | θ′;U ′t)− ŴT

t (θ)

ŴT
t (θ)

. (43)

Let FT ⊂ G be the sigma-algebra spanned by
{
UT ,YT

}
where UT = σ{Ut,i; t ∈ 1 : T, i ∈ 1 : N} and

YT = σ {Yt; t ∈ 1 : T}. Let Ẽ
[
·| YT

]
denotes the expectation w.r.t {Ut,i (0) ; t ∈ 1 : T, i ∈ 1 : N} ∼

π ( ·| θ) and the Brownian motions {(Bt,i (s) ; s ≥ 0); t ∈ 1 : T, i ∈ 1 : N} where π({uTt,i; t ∈ 1 : T, i ∈
1 : N}|θ) is given by (20) whereas E

[
·| YT

]
denotes the expectation w.r.t Ut,i

i.i.d.∼ N (0p, Ip) and the
Brownian motions {(Bt,i (s) ; s ≥ 0); t ∈ 1 : T, i ∈ 1 : N}. Finally, we define the Stein operator S for a
real-valued function g(y, u; θ)

S {g(y, u; θ)} := 〈∇u,∇ug(y, u; θ)〉 − 〈u,∇ug(y, u; θ)〉 . (44)

A.5.2 Assumptions

Assumption 1. There exists ε > 0 such that

lim sup
T

E
[(
ŴT

1 (θ)
)−3−ε

]
<∞.

Assumption 2. There exists χ : Y × Rp → R+ such that ϑ 7→ ∇ϑ$ (y, u;ϑ) is continuous at ϑ = θ,
‖∇θ$ (y, u; θ)‖ ≤ χ (y, u) for all y, u ∈ Y × Rp, and

E
[
χ (Y1, U1,1)

4
]
<∞.

Assumption 3. We have
E [|〈∇u,∇u$ (Y1, U1,1; θ)〉|] <∞.

Assumption 4. We have

E
[(
S
{
‖∇u$(Y1, U1,1; θ)‖2

})2
]
<∞.

Assumption 5. There exists κ > 0 such that

E
[
‖∇u$(Y1, U1,1; θ)‖4+κ

]
<∞.

Assumption 6. We have
E
[
(S {$ (Y1, U1,1; θ)})4

]
<∞.

A.5.3 Details of the proof

To simplify the presentation we only consider the case where θ is a scalar parameter, the dimension of
Ut,i is p = 1 and ψ = 1, the multivariate extension is straightforward although much more tedious. Let
θ′ = θ + ξ/

√
T . Notice that from the definitions of ŴT

t (Yt | θ′;U ′t), and ŴT
t := ŴT

t (θ) we have

T∑
t=1

log

(
ŴT
t (Yt | θ′;U ′t)

ŴT
t

)
=

T∑
t=1

log(1 + ηTt )

=

T∑
t=1

ηTt −
1

2

T∑
t=1

[ηTt ]2 +

T∑
t=1

h(ηTt )[ηTt ]2, (45)
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since log(1 + x) = x− x2/2 + h(x)x2 with h(x) = o(x) as x→ 0.

The proof proceeds through several auxiliary Lemmas in three main steps. First, we prove that
∑T
t=1 η

T
t

converges to a zero-mean Gaussian random variable conditionally upon FT . Second, we show that∑T
t=1

(
ηTt
)2 converges in probability towards a constant. Third, we show that high-order terms vanish

in probability. The result then follows from Lemma 21.

Using Itô’s formula, we decompose ηTt as follows

ηTt = JTt + LTt +MT
t , (46)

where

JTt =
1

NŴT
t

N∑
i=1

{$(Yt, Ut,i (δT ) ; θ + ξ/
√
T )−$(Yt, Ut,i (δT ) ; θ)}, (47)

LTt =

ˆ δT

0

1

NŴT
t

N∑
i=1

{
−∂u$ (Yt, Ut,i (s) ; θ)Ut,i (s) + ∂2

u,u$ (Yt, Ut,i (s) ; θ)
}

ds, (48)

MT
t =

ˆ δT

0

√
2

NŴT
t

N∑
i=1

∂u$ (Yt, Ut,i (s) ; θ) dBt,i (s) . (49)

The following preliminary Lemmas establish various properties of the terms JTt , LTt , MT
t and ηTt .

Lemma 6. The sequence
{
JTt ; t ≥ 1

}
defined in (47) satisfies

Ẽ
(
JTt
)

= 0, Ṽ

(
T∑
t=1

JTt

)
= T Ṽ

(
JT1
)
→ 0

and
∑T
t=1 J

T
t →P̃ 0,

∑T
t=1(JTt )2 →P̃ 0.

Lemma 7. The sequence
{
LTt ; t ≥ 1

}
defined in (48) satisfies

Ẽ
(
LTt
)

= 0, Ṽ

(
T∑
t=1

LTt

)
= T Ṽ

(
LT1
)
→ 0,

and
∑T
t=1 L

T
t →P̃ 0.

Lemma 8. The sequence
{
MT
t ; t ≥ 1

}
defined in (49) satisfies

Ẽ[(MT
t )2] = O(1/T ),

T∑
t=1

MT
t

∣∣∣∣∣FT ⇒ N
(

0,
κ (θ)

2

2

)
.

Lemma 9. The sequence
{
ηTt ; t ≥ 1

}
defined in (46) satisfies

T∑
t=1

(ηTt )2 →P̃ κ
2 (θ) .

Using the above results, we can now prove Theorem 3. Combining Lemmas 6, 7, 8 and 9 with Lemma 21
from Section A.9, we obtain that

T∑
t=1

ηt −
1

2

(
ηTt
)2 ∣∣FT ⇒ N (−κ (θ)

2

2
, κ (θ)

2

)
.

It remains to control the remainder from the Taylor expansion (45). We bound it using Lemma 9 as∣∣∣∣∣
T∑
t=1

h
(
ηTt
) (
ηTt
)2∣∣∣∣∣ ≤ max

1≤t≤T

∣∣h (ηTt )∣∣ T∑
t=1

η2
t = max

t
|h(ηTt )| O

P̃
(1).
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Without loss of generality we can assume that |h (x)| ≤ g (|x|) where g is increasing on [0,∞) and
limx→0+ g (x) = 0 so that

max
1≤t≤T

∣∣h (ηTt )∣∣ ≤ g( max
1≤t≤T

∣∣ηTt ∣∣) ,
and

P̃
(

max
1≤t≤T

∣∣ηTt ∣∣ ≤ ε) =
∏T

t=1

{
1− P̃

(∣∣ηTt ∣∣ > ε
)}
≥
(

1− ε−2Ẽ
((
ηT1
)2 I (∣∣ηT1 ∣∣ > ε

)))T
. (50)

By using the decomposition of ηT1 , we have using the Cp inequality

T Ẽ
((
ηT1
)2 I (∣∣ηT1 ∣∣ > ε

))
≤ c T

(
Ṽ(JT1 ) + Ṽ(LT1 ) + Ẽ

[(
MT

1

)2 I (∣∣ηT1 ∣∣ > ε
)])

= o(1),

where we have used Lemmas 6 and 7 for the terms involving JT1 and LT1 . The term involvingMT
1 vanishes

by uniform integrability of the family
{
T (MT

1 )2;T ≥ 1
}
, the proof of which can be found in the proof

of Lemma 8 where the Lindeberg condition is verified. Therefore overall we have

Ẽ
(∣∣ηT1 ∣∣2 I (∣∣ηT1 ∣∣ > ε

))
= o(1/T ),

and thus (50) converges towards 1 as T → ∞. Hence we have g
(
maxt

∣∣ηTt ∣∣) = oP̃(1) and the result
follows.

A.5.4 Proofs of Auxiliary Results

Proof of Lemma 6. We obtain Ẽ
(
JTt
)

= 0 directly from Assumption 2 and we can rewrite JTt as

JTt =
1

NŴT
t

N∑
i=1

ˆ θ′

θ

∂ϑ$(Yt, Ut,i(δT );ϑ)dϑ,

where θ′ = θ + ξ/
√
T . Thus we obtain

Ṽ

(
T∑
t=1

JTt

)
=

T∑
t=1

Ṽ
(
JTt
)

=

T∑
t=1

Ẽ
((
JTt
)2)

=

T∑
t=1

Ẽ

( 1

NŴT
t

N∑
i=1

ˆ θ′

θ

∂ϑ$(Yt, Ut,i(δT );ϑ)dϑ

)2


=

T∑
t=1

1

N2
E

(ŴT
t )−1

(
N∑
i=1

ˆ θ′

θ

∂ϑ$(Yt, Ut,i(δT );ϑ)dϑ

)2


≤
T∑
t=1

1

N2
E
[
(ŴT

t )−2
]1/2

E

[ N∑
i=1

ˆ θ′

θ

∂ϑ$(Yt, Ut,i(δT );ϑ)dϑ

]4
1/2

=
T

N2
E
[
(ŴT

1 )−2
]1/2

E

[ N∑
i=1

ˆ θ′

θ

∂ϑ$(Yt, Ut,i(δT );ϑ)dϑ

]4
1/2

≤ cTN
N2

E
[
(ŴT

1 )−2
]1/2

E

[ˆ θ′

θ

∂ϑ$(Y1, U1,1(δT );ϑ)dϑ

]4
1/2

,

after interchanging the order of differentiation and integration by Assumption 2, using the fact that the
integrals over ϑ have zero mean and that the terms are i.i.d. over the index i under P. We also used the
fact that for i.i.d. zero-mean random variables {Zi}Mi=0,

E

( M∑
i=1

Zi

)4
 ≤ cM2E

(
Z4

1

)
,
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for some positive constant c. Hence, we have using Assumptions 1 and 2 that |∂ϑ$(Y1, U1,1(δT );ϑ)| ≤
2χ(Y1, U1,1(δT )) for ϑ ∈ [θ ∧ θ′, θ ∨ θ′] and T large enough. When θ is multidimensional, this can be
established using the fundamental theorem of calculus for line integrals. It follows that

Ṽ
( T∑
t=1

JTt

)
≤ cTN

N2
E
([ ˆ θ′

θ

∂ϑ$(Y1, U1,1(δT );ϑ)dϑ
]4)1/2

≤ cTN
N2

E
([ ˆ θ′

θ

χ(Y1, U1,1(δT ))dϑ
]4)1/2

= c
TN

N2

ξ2

T
E
(
χ(Y1, U1,1)4

)1/2

= O
( 1

N

)
.

This concludes the proof of the lemma.

Proof of Lemma 7. We can rewrite LTt given by (48) as

LTt =

ˆ δT

0

1

NŴT
t

(
N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

)
ds,

where S is the Stein operator defined in (44). By Assumption 3, we can apply Fubini’s theorem to
interchange the order of integration, and Stein’s lemma (Stein, 1981, Lemma 1) shows that

Ẽ
(
LTt
∣∣YT ) =

1

N

N∑
i=1

E

(ˆ δT

0

S {$ (Yt, Ut,i (s) ; θ)} ds

∣∣∣∣∣YT
)

= 0,

so in particular Ẽ
(
LTt
)

= 0. Hence, we have

Ṽ
(
LTt
)

= Ẽ

[ˆ δT

0

1

NŴT
t

N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)} ds

]2


= Ẽ

 1(
NŴT

t

)2

ˆ δT

0

ˆ δT

0

[
N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

] N∑
j=1

S {$ (Yt, Ut,j (r) ; θ)}

 dr ds


= E

 1

N2ŴT
t

ˆ δT

0

ˆ δT

0

[
N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

] N∑
j=1

S {$ (Yt, Ut,j (r) ; θ)}

dr ds

 . (51)

The term (51) can be rewritten as

ˆ δT

0

ˆ δT

0

E

 1

ŴT
t

(
1

N

N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

) 1

N

N∑
j=1

S {$ (Yt, Ut,j (r) ; θ)}

drds

≤
ˆ δT

0

ˆ δT

0

E
[(
ŴT
t

)−2
]1/2

E

( 1

N

N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

)2
 1

N

N∑
j=1

S {$ (Yt, Ut,j (r) ; θ)}

2


1/2

drds

≤
ˆ δT

0

ˆ δT

0

E
[(
ŴT
t

)−2
]1/2

E

( 1

N

N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

)4
1/4

E


 1

N

N∑
j=1

S {$ (Yt, Ut,j (r) ; θ)}

4


1/4

drds

=

ˆ δT

0

ˆ δT

0

E
[(
ŴT
t

)−2
]1/2

E

( 1

N

N∑
i=1

S {$ (Yt, Ut,i (s) ; θ)}

)4
1/2

drds

≤ cδ
2
T

N
= O(

N

T 2
),
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by Assumption 6, E (S {$ (Yt, Ut,i (s) ; θ)}) = 0, and the fact that Ut,i (s) are stationary and independent
over i under P. Therefore we have

Ṽ

(
T∑
t=1

LTt

)
= T Ṽ

(
LT1
)

= O

(
N

T 2
T

)
= O

(
N

T

)
.

This concludes the proof of the lemma.

Proof of Lemma 8. We check here that the conditions of the conditional CLT given in Lemma 19 of
Section A.9 are satisfied. Consider the term MT given by (49) which can be decomposed as

MT =

T∑
t=1

MT
t =

T∑
t=1

N∑
i=1

MT
t,i, (52)

where

MT
t,i =

√
2

NŴT
t

ˆ δT

0

∂u$ (Yt, Ut,i (s) ; θ) dBt,i (s) . (53)

It is straightforward to see that

Ẽ
(
MT
t

∣∣FT ) = E

(√
2

N

N∑
i=1

ˆ δT

0

∂u$ (Yt, Ut,i (s) ; θ) dBt,i (s)

∣∣∣∣∣FT
)

= 0,

and

s2
T = Ṽ

(
MT

∣∣FT ) =

T∑
t=1

Ṽ
(
MT
t

∣∣FT ) . (54)

Next we will show that s2
T →P̃ κ (θ)

2. The term Ṽ
(
MT
t

∣∣FT ) satisfies
Ṽ
(
MT
t

∣∣FT ) =

N∑
i=1

Ṽ
(
MT
t,i

∣∣FT )
=

N∑
i=1

2

N2
(
ŴT
t

)2

ˆ δT

0

Ẽ
(
{∂u$ (Yt, Ut,i (s) ; θ)}2

∣∣∣FT)ds.

Letting
g(y, u; θ) = {∂u$(y, u; θ)}2 ,

and using Itô’s formula, we obtain
ˆ δT

0

Ẽ
(
{∂u$(Yt, Ut,i (s) ; θ)}2

∣∣∣FT)ds

=

ˆ δT

0

{∂u$(Yt, Ut,i (0) ; θ)}2 ds+

ˆ δT

0

ˆ s

0

Ẽ
(
S {g(Yt, Ut,i (s) ; θ)}| FT

)
drds

= δT {∂u$(Yt, Ut,i (0) ; θ)}2 +

ˆ δT

0

ˆ s

0

Ẽ
(
S {g(Yt, Ut,i (s) ; θ)}| FT

)
drds,

whereˆ s

0

Ẽ
(
S {g(Yt, Ut,i (s) ; θ)}| FT

)
dr =

ˆ s

0

ˆ
S
{
g(Yt, e

−rUt,i +
√

1− e−2rε; θ)
}
ϕ (ε; 0, 1) dεdr.

Therefore

s2
T =

T∑
t=1

N∑
i=1

2

N2
(
ŴT
t

)2

ˆ δT

0

Ẽ
(
{∂u$(Yt, Ut,i (s) ; θ)}2

∣∣FT ) ds

=

T∑
t=1

N∑
i=1

2δT

N2
(
ŴT
t

)2 {∂u$(Yt, Ut,i; θ)}2 (55)
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+

T∑
t=1

N∑
i=1

2

N2
(
ŴT
t

)2

ˆ δT

0

ˆ s

0

Ẽ
(
S {g(Yt, Ut,i (s) ; θ)}| FT

)
drds. (56)

To show that the term (56) vanishes in probability, we show that it vanishes in absolute mean

1

N2
E


∣∣∣∣∣∣∣
T∑
t=1

N∑
i=1

2(
ŴT
t

)2

ˆ δT

0

ˆ s

0

Ẽ
(
S {g(Yt, Ut,i (r) ; θ)}| FT

)
drds

∣∣∣∣∣∣∣


≤ 1

N2

T∑
t=1

N∑
i=1

Ẽ

 2(
ŴT
t

)2

ˆ δT

0

ˆ s

0

∣∣∣Ẽ (S {g(Yt, Ut,i (r) ; θ)}| FT
)∣∣∣drds


=

1

N2

T∑
t=1

N∑
i=1

Ẽ

 2(
ŴT
t

)2

ˆ δT

0

ˆ s

0

∣∣∣Ẽ (S {g(Yt, Ut,i (r) ; θ)}| FT
)∣∣∣drds


=

1

N2

T∑
t=1

N∑
i=1

ˆ δT

0

ˆ s

0

Ẽ

Ẽ

 2(
ŴT
t

)2 |S {g(Yt, Ut,i (r) ; θ)}|

∣∣∣∣∣∣∣FT

 drds

=
2

N2

T∑
t=1

N∑
i=1

ˆ δT

0

ˆ s

0

E

(
1

ŴT
t

|S {g(Yt, Ut,i (r) ; θ)}|

)
drds

=
2

N2

T∑
t=1

N∑
i=1

ˆ δT

0

ˆ s

0

E
[(
ŴT
t

)−2
]1/2

E
[
(S {g(Yt, Ut,i (r) ; θ)})2

]1/2
drds

= δ2
T

NT

N2
E
[(
ŴT
t

)−2
]1/2

E
[
(S {g(Y1, U1,1; θ)})2

]1/2
= δTE

[(
ŴT
t

)−2
]1/2

E
[
(S {g(Y1, U1,1; θ)})2

]1/2
= O(δT ),

by Assumption 4 and the fact that Ut,i (r) are stationary and i.i.d. over t, i under P. Going back to our
calculation of s2

T , we now consider the term (55)

T∑
t=1

N∑
i=1

2δT

N2
(
ŴT
t

)2 {∂u$(Yt, Ut,i; θ)}2 =
2

T

T∑
t=1

gT (Yt, Ut) ,

where

gT (Yt, Ut) :=
1

N

N∑
i=1

(
ŴT
t

)−2

{∂u$(Yt, Ut,i; θ)}2 .

In order to apply the WLLN we have to check that
T∑
t=1

Ẽ
(
|gT (Yt, Ut)|

T
I {|gT (Yt, Ut)| ≥ εT}

)
= Ẽ

(∣∣gT (Y1, U
T
1

)∣∣ I{∣∣gT (Y1, U
T
1

)∣∣ ≥ εT})→ 0,

or equivalently that

{
gT
(
Y1, U

T
1

)}
T≥1

=

{
1

N

N∑
i=1

(
ŴT

1

)−2 {
∂u$(Y1, U

T
1,i; θ)

}2
;T ≥ 1

}
,

is uniformly integrable. We use de la Vallée-Poussin theorem; i.e., {Xn;n ≥ 1} is uniformly integrable if
and only if there exists a non-negative increasing convex function g such that g(x)/x → ∞ as x → ∞
and supn≥1 Ẽ [g (|Xn|)] <∞.

As g is convex, we obtain by Jensen’s inequality

Ẽ

[
g

(
1

N

N∑
i=1

(
ŴT

1

)−2 {
∂u$(Y1, U

T
1,i; θ)

}2

)]
≤ Ẽ

[
1

N

N∑
i=1

g

((
ŴT

1

)−2 {
∂u$(Y1, U

T
1,i; θ)

}2
)]
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= Ẽ
[
g

((
ŴT

1

)−2

{∂u$(Y1, U1,1; θ)}2
)]

,

where the last equality follows from the fact that the variables {UT1,i; i ∈ 1 : N} are exchangeable under
π ( ·| θ). Therefore it will suffice to assume that for some non-negative, increasing convex function g such
that g(x)/x→∞

lim sup
T

Ẽ
[
g

((
ŴT

1

)−2

{∂u$(Y1, U1,1; θ)}2
)]

<∞

or equivalently that the family {(
ŴT

1

)−2

{∂u$(Y1, U1,1; θ)}2 ;T ≥ 1

}
,

is uniformly integrable under P̃. However, this is satisfied as there exists ε > 0 such that

lim sup
T

Ẽ

[((
ŴT

1

)−2

{∂u$(Y1, U1,1; θ)}2
)1+ε

]
<∞,

which can be verified by using Cauchy-Schwarz inequality and Assumptions 1 and 5. By applying now
the WLLN, we have

1

T

T∑
t=1

(
gT (Yt, Ut)− Ẽ [gT (Yt, Ut)]

)
→P̃ 0,

where

Ẽ
[
gT
(
Y1, U

T
1

)]
= Ẽ

[
1

N

N∑
i=1

(
ŴT

1

)−2 {
∂u$(Y1, U

T
1,i; θ)

}2

]

= Ẽ
[(
ŴT

1

)−2

{∂u$(Y1, U1,1; θ)}2
]

= E
[(
ŴT

1

)−1

{∂u$(Y1, U1,1; θ)}2
]
.

By Cauchy-Schwarz, Assumptions 1 and 5, we have

lim sup
T

E
{(

ŴT
1

)−1−ε
{∂u$(Y1, U1,1; θ)}2+2ε

}
<∞.

Therefore the family {
(
ŴT

1

)−1

{∂u$(Y1, U1,1; θ)}2 ;T ≥ 1} is also uniformly integrable under P and,

since ŴT
t →P 1, we have

E
((

ŴT
1

)−1

{∂u$(Y1, U1,1; θ)}2
)
→ E

(
{∂u$(Y1, U1,1; θ)}2

)
=
κ (θ)

2

2
.

Hence, it follows that s2
T →P̃ κ (θ)

2 and condition (106) of Lemma 19 is satisfied.

We now need to check the Lindeberg condition (107), i.e., that for any ε > 0

T∑
t=1

Ẽ
(∣∣MT

t

∣∣2 I{∣∣MT
t

∣∣ ≥ ε}∣∣∣FT)→P̃ 0. (57)

Since the l.h.s. of (57) is non-negative, it is enough to show that its unconditional expectation vanishes
or equivalently that T

∣∣MT
1

∣∣2 is uniformly integrable. We have

T∑
t=1

Ẽ
(∣∣MT

t

∣∣2 I{∣∣MT
t

∣∣ ≥ ε}) = T Ẽ
(∣∣MT

1

∣∣2 I{∣∣MT
1

∣∣ ≥ ε})

= T Ẽ

{ √
2

NŴT
1

N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

}2

I
{∣∣MT

1

∣∣ ≥ ε}

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=
2T

N2
Ẽ


 I
{∣∣MT

1

∣∣ ≥ ε}(
ŴT

1

)3/2

 1(
ŴT

1

)1/2

{
N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

}2


≤ 2T

N2
Ẽ

 I
{∣∣MT

1

∣∣ ≥ ε}(
ŴT

1

)3


1/2

Ẽ

 1(
ŴT

1

) { N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

}4
1/2

by Cauchy-Schwartz and

Ẽ

 1(
ŴT

1

) { N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

}4


= E

{ N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

}4


= E

E

{ N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

}4
∣∣∣∣∣∣YT


≤ cN2E

(ˆ δT

0

∂u$ (Y1, U1,1 (s) ; θ) dB1,1 (s)

)4


≤ cN2

{
3

ˆ δT

0

E
[
(∂u$ (Y1, U1,1 (s) ; θ))

4
]1/2

ds

}2

= c′N2δ2
TE
[
(∂u$ (Y1, U1,1; θ))

4
]
<∞,

where the penultimate inequality follows from (Zakai, 1967, Theorem 1) and the last one by Assumption 5.
Therefore, we have

T∑
t=1

Ẽ
(∣∣MT

t

∣∣2 I{∣∣MT
t

∣∣ ≥ ε}) ≤ √c′ 2T
N2

NδTE
[
(∂u$ (Y1, U1,1; θ))

4
]1/2

Ẽ

 I
{∣∣MT

1

∣∣ ≥ ε}(
ŴT

1

)3


1/2

= 2
√
c′E
[
(∂u$ (Y1, U1,1; θ))

4
]1/2

Ẽ

 I
{∣∣MT

1

∣∣ ≥ ε}(
ŴT

1

)3


1/2

. (58)

Using Holder’s inequality, Assumption 1 and Chebyshev’s inequality, we have

Ẽ

 I
{∣∣MT

1

∣∣ ≥ ε}(
ŴT
t

)3

 ≤ Ẽ
[(
ŴT
t

)−3−3ε
]1/(1+ε)

P̃
(
|MT

1 | ≥ ε
)ε/(1+ε)

≤ c′′ P̃
(
|MT

1 | ≥ ε
)ε/(1+ε)

≤ c′′
 Ẽ

[(
MT

1

)2]
ε2

ε/(1+ε)

. (59)

To proceed, we need to control the second moment of MT
1

Ẽ
[(
MT

1

)2]
= Ẽ

( √
2

NŴT
1

N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

)2


=
2

N2
E

 1

ŴT
1

(
N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

)2

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≤ 2

N2
E
[
(ŴT

1 )−2
]1/2

E

( N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

)4
1/2

=
2

N2
E
[
(ŴT

1 )−2
]1/2

E

E

(

N∑
i=1

ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

)4
∣∣∣∣∣∣YT


1/2

≤ c N
N2

E
[
(ŴT

1 )−2
]1/2

E

E

[ˆ δT

0

∂u$
(
Y1, U

T
1,i (s) ; θ

)
dB1,i (s)

]4
∣∣∣∣∣∣YT


1/2

≤ c 1

N
E
[
(ŴT

1 )−2
]1/2

E

(ˆ δT

0

∂u$ (Y1, U1,1 (s) ; θ) dB1,1 (s)

)4
1/2

≤ c

N
E
[
(ŴT

1 )−2
]1/2

δTE
{
|∂u$ (Y1, U1,1; θ)|4

}1/2

= O(1/T ), (60)

by Cauchy-Schwartz, (Zakai, 1967, Theorem 1) and Assumptions 1 and 5.

By combining (58), (59) and (60), it follows that (57) holds. Therefore by the Lindeberg central limit
theorem of Lemma 19 applied conditionally on FT and using s2

T →P̃ κ (θ)
2, we obtain

T∑
t=1

MT
t

∣∣∣∣∣FT ⇒ N
(

0,
κ (θ)

2

2

)
.

Proof of Lemma 9. Notice that

1

2

T∑
t=1

(ηt)
2

=
1

2

T∑
t=1

{
ŴT
t (Yt | θ′;Vt)− ŴT

t

ŴT
t

}2

=
1

2

T∑
t=1

{
JTt +HT

t

}2
=

1

2

T∑
t=1

{[
JTt
]2

+
[
HT
t

]2
+ 2JTt H

T
t

}
.

We know from Lemma 6 that
∑T
t=1(JTt )2 →P̃ 0. The

(
HT
t

)2 terms are given by

T∑
t=1

(
HT
t

)2
=

T∑
t=1

(
LTt +MT

t

)2
=

T∑
t=1

(
LTt
)2

+ 2LTt M
T
t +

(
MT
t

)2
.

The first term vanishes in probability since by Lemma 7

Ẽ
(∑T

t=1

(
LTt
)2)

=
∑T
t=1Ṽ

(
LTt
)
→ 0.

For the product term, notice that by two applications of the Cauchy-Schwartz inequality

Ẽ
(∣∣∣∑T

t=1L
T
t M

T
t

∣∣∣) ≤ Ẽ
({∑T

t=1

(
LTt
)2}1/2 {∑T

t=1

(
MT
t

)2}1/2
)

≤ Ẽ
(∑T

t=1

(
LTt
)2)1/2

Ẽ
(∑T

t=1

(
MT
t

)2)1/2

=
(∑T

t=1Ṽ(LTt )
)1/2 (∑T

t=1Ṽ(MT
t )
)1/2

→ 0,

by Lemmas 7 and 8. Finally, Lemma 8 shows that∑T
t=1Ẽ

((
MT
t

)2)
= O (1) .

For the term involving the product JTt HT
t , we have by two applications of the Cauchy-Schwartz inequality

Ẽ
(∣∣∣∑T

t=1J
T
t H

T
t

∣∣∣) ≤ Ẽ
[(∑T

t=1

(
JTt
)2)1/2 (∑T

t=1

(
HT
t

)2)1/2
]
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≤ Ẽ
(∑T

t=1

(
JTt
)2)1/2

Ẽ
(∑T

t=1

(
HT
t

)2)1/2

.

By Lemmas 6, 7 and 8, the first factor vanishes, while we have just shown that the second factor is O (1).

Finally, conditionally on FT , the terms
(
MT
t

)2 are independent. We want to apply the conditional
WLLN to show that ∑T

t=1

(
MT
t

)2 − Ẽ
((
MT
t

)2∣∣∣FT)→P̃ 0.

By Lemma 8 holds, we only need to check that for any ε > 0∑T
t=1Ẽ

((
MT
t

)2 I{∣∣MT
t

∣∣ ≥ ε}∣∣∣FT)→P̃ 0.

This has already been established in the proof of Lemma 8.

A.6 Sufficient conditions to ensure Assumption 3

We will provide here sufficient conditions to ensure convergence happens almost surely, hence in proba-
bility. In the notation of SectionA.5, let µT denote the conditional law of

RT :=

T∑
t=1

log

(
ŴT
t (Yt | θ′;U ′t)

ŴT
t

)
=

T∑
t=1

log(1 + ηTt ) =

T∑
t=1

ηTt −
1

2

T∑
t=1

[ηTt ]2 +

T∑
t=1

h(ηTt )[ηTt ]2,

given FT where θ, ξ are fixed, θ′ = θ + ξ/
√
T , ξ ∼ υ(·), U ∼ πT ( ·| θ), U ′ ∼ KρT (U, ·) with ρT given by

(25) and NT →∞ as T →∞ with NT = o(T ). We want to control the term

sup
θ∈N(θ̄)

Ẽ
[
dBL(µT , ϕ

(
·;−κ

2(θ)

2
, κ2(θ)

)∣∣∣∣YT]

= sup
θ∈N(θ̄)

¨ {
πT (du0| θ) υ (dξ)

× sup
f :‖f‖BL≤1

∣∣∣∣ˆ KρT (u0,du1) f

{
log

(
p̂(Y1:T | θ0 + ξ/

√
T , u1)/p(Y1:T | θ + ξ/

√
T )

p̂(Y1:T | θ, u0)//p(Y1:T | θ)

)}

−
ˆ
ϕ(dw;−κ

2(θ)

2
, κ2(θ))f (w)

∣∣∣∣
}
.

We state sufficient conditions under which this result holds in the setting where d = 1, p = 1 and ψ = 1.
The extension to the multivariate scenario is straightforward albeit tedious. As in Theorem 3, we define

κ (θ)
2

= 2E
(
{∂u$(Y1, U1,1; θ)}2

)
.

We will also write
κ(y, θ)2 = 2E

(
{∂u$(Y1, U1,1; θ)}2

∣∣∣Y1 = y
)
.

Assumption 7. Let B : Y → R+ be a measurable function such that E(B(Y1)10) <∞, and let εT → 0
as T →∞. Assume that

´
ξ10υ(dξ) <∞, that κ2(·, θ) is measurable for all θ and κ2(y, ·) is continuous

in θ for all y, that κ(θ) is locally Lispschitz around θ̄ and that the following inequalities hold:

κ2(y, θ) ≤ B(y), (61)

sup
θ∈N(θ̄)

E
[(
ŴT

1

)−6
∣∣∣∣Y1 = y

]
≤ B(y), (62)

sup
θ∈N(θ̄)

E1/2

[∣∣∣∣(ŴT
t

)2
∣∣∣∣∣∣∣∣Yt = y

]
≤ B(y), (63)

sup
θ∈N(θ̄)

E1/2
[{

2∂θ$(y, Ut,1; θ)2
}2
∣∣∣] ≤ B(y), (64)
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sup
θ∈N(θ̄)

E

∣∣∣∣∣ 1

ŴT
t

− 1

∣∣∣∣∣
2
∣∣∣∣∣∣Yt = y

 , sup
θ∈N(θ̄)

E


∣∣∣∣∣∣∣

1(
ŴT
t

)2 − 1

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣Yt = y

 ≤ εTB(y), (65)

sup
θ∈N(θ̄)

E
[∣∣∣ŴT

t − 1
∣∣∣2∣∣∣∣Yt = y

]
≤ εTB(y), (66)

sup
θ∈N(θ̄)

E
[

ηTt
1 + ηTt

∣∣∣∣Yt = y

]
≤ B(y), (67)

sup
θ∈N(θ̄)

E
[
∂θ$(Yt, Ut,1; θ)10

∣∣Yt = y
]
≤ B(y), (68)

sup
θ∈N(θ̄)

E
[

(∂u$ (Yt, Ut,1; θ))
10
∣∣∣Yt = y

]
≤ B(y), (69)

sup
θ∈N(θ̄)

E
[[
∂3
uuu$ (Yt, Ut,1 (0) ; θ)

]4∣∣∣Yt = y
]
≤ B(y), (70)

sup
θ∈N(θ̄)

E
[
S {$ (Yt, Ut,1; θ)}10

+ S {∂u$ (Yt, Ut,1; θ)}10
∣∣∣Yt = y

]
≤ B(y). (71)

Under Assumption 7, the following theorem shows that Assumption 3 is satisfied.

Theorem 10. Under Assumption 7, we have as T →∞

sup
θ∈N(θ̄)

Ẽ
[
dBL(µT , ϕ

(
·;−κ

2(θ)

2
, κ2(θ)

)∣∣∣∣YT]→ 0 PY − a.s.

The proof of this result will require establish a few preliminary lemmas. Let us first recall the decompo-
sition

ηTt = JTt + LTt +MT
t , (72)

where JTt , LTt and MT
t are defined in (47)-(49). We rearrange the above expression as

RT = MT − 1

2

∑(
ηTt
)2

+RT1 , (73)

where MT :=
∑T
t=1M

T
t =

∑T
t=1

∑N
i=1M

T
t,i where MT

t,i is defined in (53).

We can further decompose MT
t as

T∑
t=1

MT
t =

T∑
t=1

ˆ δT

0

√
2

NŴT
t

N∑
i=1

∂u$ (Yt, Ut,i (s) ; θ) dBt,i (s)

=

T∑
t=1

ˆ δT

0

√
2

NŴT
t

N∑
i=1

∂u$ (Yt, Ut,i (0) ; θ) dBt,i (s)

+

T∑
t=1

ˆ δT

0

√
2

NŴT
t

N∑
i=1

[
−
ˆ s

0

∂2
uu$ (Yt, Ut,i (r) ; θ)Ut,i(r)dr +

ˆ s

0

∂3
uuu(Yt, Ut,i(r); θ)dr

]
dBt,i (s)

+

T∑
t=1

ˆ δT

0

√
2

NŴT
t

N∑
i=1

√
2

ˆ s

0

∂2
uu$ (Yt, Ut,i (r) ; θ) dBt,i(r)dBt,i (s)

=

T∑
t=1

√
2

NŴT
t

N∑
i=1

∂u$ (Yt, Ut,i (0) ; θ)Bt,i (δT ) +RT2 ,

where

RT2 := −
T∑
t=1

√
2

NŴT
t

N∑
i=1

ˆ δT

0

ˆ s

0

S {∂u$ (Yt, Ut,i (r) ; θ)} drdBt,i (s)
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+

T∑
t=1

ˆ δT

0

√
2

NŴT
t

N∑
i=1

√
2

ˆ s

0

∂2
uu$ (Yt, Ut,i (r) ; θ) dBt,i(r)dBt,i (s) .

From the above we can conclude that the law of MT −RT2 conditionally on FT is equal to N
(
0, ŝT (θ)2

)
where

ŝT (θ)2 :=
∑
i,t

2

NT
(
ŴT
t

)2 [∂u$ (Yt, Ut,i (0) ; θ)]
2
.

Finally let

RT3 :=
1

2
Ẽ

[∣∣∣∣∣
T∑
t=1

(
ηTt
)2 − κ2(θ)

∣∣∣∣∣
∣∣∣∣∣FT

]
.

Lemma 11. We have

Ẽ
[
dBL

(
µT , ϕ

(
·;−κ

2(θ)

2
, κ2(θ)

))∣∣∣∣YT] ≤
√

2

π
Ẽ
[
|ŝT (θ)− κ(θ)|| YT

]
+ Ẽ

[ ∣∣RT1 ∣∣∣∣YT ]+ Ẽ
[ ∣∣RT2 ∣∣∣∣YT ]+ Ẽ

[ ∣∣RT3 ∣∣∣∣YT ] . (74)

Proof. We first notice that if f ∈ BL(1) we have∣∣∣∣Ẽ [f (RT )∣∣FT ]− ˆ f(z)ϕ

(
z;−κ

2(θ)

2
, κ2(θ)

)
dz

∣∣∣∣
=

∣∣∣∣Ẽ [f (MT − 1

2

∑(
ηTt
)2

+RT1
)∣∣∣∣FT]− ˆ f(z)ϕ

(
z;−κ

2(θ)

2
, κ2(θ)

)
dz

∣∣∣∣
≤
∣∣∣∣Ẽ [f (MT − 1

2

∑(
ηTt
)2

+RT1
)∣∣∣∣FT]− Ẽ

[
f

(
MT − 1

2

∑(
ηTt
)2)∣∣∣∣FT]∣∣∣∣

+

∣∣∣∣Ẽ [f (MT − 1

2

∑(
ηTt
)2)∣∣∣∣FT]− ˆ f(z)ϕ

(
z;−κ

2(θ)

2
, κ2(θ)

)
dz

∣∣∣∣
≤
∣∣∣∣Ẽ [f (MT − 1

2

∑(
ηTt
)2)∣∣∣∣FT]− ˆ f(z)ϕ

(
z;−κ

2(θ)

2
, κ2(θ)

)
dz

∣∣∣∣+
∣∣E [RT1 ∣∣FT ]∣∣ ,

since |f(x) − f(y)| ≤ |x − y|. Notice that for all θ the function fθ(z) := f(z − κ2(θ)/2) also belongs to
BL(1). Continuing with our estimate we therefore have∣∣∣∣Ẽ [f (MT − 1

2

∑(
ηTt
)2)∣∣∣∣FT]− ˆ f(z)ϕ

(
z;−κ

2(θ)

2
, κ2(θ)

)
dz

∣∣∣∣
=

∣∣∣∣Ẽ [fθ (MT − 1

2

∑(
ηTt
)2

+
κ2(θ)

2

)∣∣∣∣FT]− ˆ fθ(z)ϕ
(
z; 0, κ2(θ)

)
dz

∣∣∣∣
≤
∣∣∣∣Ẽ [fθ (MT − 1

2

∑(
ηTt
)2

+
κ2(θ)

2

)∣∣∣∣FT]− Ẽ
[
fθ
(
MT

)∣∣FT ]∣∣∣∣
+

∣∣∣∣Ẽ [fθ (MT
)∣∣FT ]− ˆ fθ(z)ϕ

(
z; 0, κ2(θ)

)
dz

∣∣∣∣
≤ 1

2
Ẽ

[∣∣∣∣∣
T∑
t=1

(
ηTt
)2 − κ2(θ)

∣∣∣∣∣
∣∣∣∣∣FT

]
+

∣∣∣∣Ẽ [fθ (MT
)∣∣YT ]− ˆ fθ(z)ϕ

(
z; 0, κ2(θ)

)
dz

∣∣∣∣
≤
∣∣∣Ẽ [RT3 ∣∣FT ]∣∣∣+

∣∣∣Ẽ [RT2 ∣∣FT ]∣∣∣+

∣∣∣∣ˆ fθ(z)ϕ
(
z; 0, ŝ2

T (θ)
)

dz −
ˆ
fθ(z)ϕ

(
z; 0, κ2(θ)

)
dz

∣∣∣∣ ,
since MT −RT2 | FT ∼ N

(
0, ŝT (θ)2

)
. Collecting terms and optimising over BL(1) we obtain

dBL

(
µT , ϕ

(
·;−κ

2(θ)

2
, κ2(θ)

))
:= sup

f∈BL(1)

∣∣∣∣Ẽ [f(RT )
∣∣FT ]− ˆ f(z)ϕ

(
z;−κ

2(θ)

2
, κ2(θ)

)
dz

∣∣∣∣
≤ sup
f∈BL(1)

∣∣∣∣ˆ fθ(z)ϕ
(
z; 0, ŝ2

T (θ)
)

dz −
ˆ
fθ(z)ϕ

(
z; 0, κ2(θ)

)
dz

∣∣∣∣+
+
∣∣E [RT1 ∣∣FT ]∣∣+

∣∣E [RT2 ∣∣FT ]∣∣+
∣∣E [RT3 ∣∣FT ]∣∣
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≤
√

2

π
|ŝT (θ)− κ(θ)|+

∣∣E [RT1 ∣∣FT ]∣∣+
∣∣E [RT2 ∣∣FT ]∣∣+

∣∣E [RT3 ∣∣FT ]∣∣
since {fθ : f ∈ BL(1)} = BL(1). The result follows by taking the conditional expectation w.r.t. YT and
elementary manipulations.

We now need to control the four terms appearing on the r.h.s. of (74). This is done in the following four
subsections.

A.6.1 Control of |ŝT (θ)− κ(θ)|

Lemma 12. As T →∞ we have that

sup
θ∈N(θ̄)

Ẽ
[
|ŝT (θ)− κ(θ)|| YT

]
→ 0 PY − a.s.

Proof. This result is established as follows. For any real numbers α, β, we have
√
α2 −

√
β2 ≤

√
|α2 − β2|,

thus
Ẽ
[
|ŝT (θ)− κ(θ)|| YT

]
≤ Ẽ

[√
|ŝ2
T (θ)− κ2(θ)|

∣∣∣∣YT] ≤ Ẽ1/2
[ ∣∣ŝ2

T (θ)− κ2(θ)
∣∣∣∣YT ] .

We will control the last term in the above expression. Let us write g(y, u, θ) := [∂u$(y;u, θ)]
2 and define

κ2(y, θ) := 2Eg(y, U1,1, θ).

Therefore κ2(θ) = Eκ2(Y1, θ). We next compute

ŝ2
T (θ)− κ2(θ) =

T∑
t=1

1

T

N∑
i=1

1

N
(
ŴT
t

)2

[
2g (Yt, Ut,i, θ)− κ2(Yt, θ)

]
+

T∑
t=1

1

T

κ2(Yt, θ)(
ŴT
t

)2 − κ
2(θ)

 .
First we notice that

Ẽ


∣∣∣∣∣∣∣

1

N
(
ŴT
t

)2

N∑
i=1

[
2g (Yt, Ut,i, θ)− κ2(Yt, θ)

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣YT


= E

∣∣∣∣∣∣ 1

N
(
ŴT
t

) N∑
i=1

[
2g (Yt, Ut,i, θ)− κ2(Yt, θ)

]∣∣∣∣∣∣
∣∣∣∣∣∣YT


≤ E1/2

[(
ŴT
t

)−2
∣∣∣∣YT]E1/2

( 1

N

N∑
i=1

[
2g (Yt, Ut,i, θ)− κ2(Yt, θ)

])2
∣∣∣∣∣∣YT


=

1√
N

E1/2

[(
ŴT
t

)−2
∣∣∣∣Yt]V1/2 [ 2g(Yt, Ut,1, θ)|Yt] ,

since the terms are mean zero and independent over i. Therefore by conditions (61) and (69)

Ẽ


∣∣∣∣∣∣∣

1

T

T∑
t=1

1

N
(
ŴT
t

)2

N∑
i=1

[
2g (Yt, Ut,i, θ)− κ2(Yt, θ)

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣YT


≤ 1

T

T∑
t=1

E

∣∣∣∣∣∣ 1

N
(
ŴT
t

) N∑
i=1

[
2g (Yt, Ut,i, θ)− κ2(Yt, θ)

]∣∣∣∣∣∣
∣∣∣∣∣∣YT


≤ 1√

N

1

T

T∑
t=1

E1/2

[(
ŴT
t

)−2
∣∣∣∣Yt]V1/2 [ 2g(Yt, Ut,1, θ)|Yt] .

23



≤ C√
N

1

T

T∑
t=1

B(Yt)
1/3+1.

Continuing we have to control the remainder term

Ẽ


∣∣∣∣∣∣∣

1

T

T∑
t=1

κ2(Yt, θ)(
ŴT
t

)2 − κ
2(θ)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣YT


≤ Ẽ


∣∣∣∣∣∣∣

1

T

T∑
t=1

κ2(Yt, θ)(
ŴT
t

)2 − κ
2(Yt, θ)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣YT

+

∣∣∣∣∣
T∑
t=1

1

T

[
κ2(Yt, θ)− κ2(θ)

]∣∣∣∣∣
≤

T∑
t=1

1

T
κ2(Yt, θ)E

[∣∣∣∣∣ 1

ŴT
t

− ŴT
t

∣∣∣∣∣
∣∣∣∣∣Yt
]

+

∣∣∣∣∣
T∑
t=1

1

T

[
κ2(Yt, θ)− κ2(θ)

]∣∣∣∣∣
≤

T∑
t=1

1

T
κ2(Yt, θ)

{
E

[∣∣∣∣∣ 1

ŴT
t

− 1

∣∣∣∣∣
∣∣∣∣∣Yt
]

+ E
[∣∣∣ŴT

t − 1
∣∣∣∣∣∣Yt]}+

∣∣∣∣∣
T∑
t=1

1

T

[
κ2(Yt, θ)− κ2(θ)

]∣∣∣∣∣
≤

T∑
t=1

2

T
κ2(Yt, θ)

√
εTB(Yt) +

∣∣∣∣∣
T∑
t=1

1

T

[
κ2(Yt, θ)− κ2(θ)

]∣∣∣∣∣ ,
by conditions (65) and (66). Finally, by assumption κ2(y, θ), defined for θ ∈ N(θ̄), is continuous in θ for
all y and a measurable function of y for each θ. Assumption (61) ensures that κ2(y, θ) ≤ B(y) for all
y ∈ Y and θ ∈ N(θ̄) and EB(Y1) < ∞ by assumption. Thus, by (Theorem 2, Jennrich, 1969) it follows
that as T →∞

sup
θ∈N(θ̄)

∣∣∣∣∣
T∑
t=1

1

T

[
κ2(Yt, θ)− κ2(θ)

]∣∣∣∣∣→ 0 PY − a.s. (75)

In addition we have that as T →∞
T∑
t=1

2

T
κ2(Yt, θ)

√
εTB(Yt) ≤

2
√
εT
T

T∑
t=1

B3/2(Yt)→ 0 PY − a.s.

A.6.2 Control of RT1

Lemma 13. As T →∞ we have that

sup
θ∈N(θ̄)

Ẽ
[ ∣∣RT1 ∣∣∣∣YT ]→ 0 PY − a.s.

Proof. It follows from (73) that

RT1 :=

T∑
t=1

JTt +

T∑
t=1

LTt +

T∑
t=1

h(ηTt )[ηTt ]2

with h(x) = o(x). Recall that h was defined through the Taylor expansion

log(1 + x) =x− x2

2
+ h(x)x2

=x− x2

2
+

ˆ x

0

[
y2

1 + y

]
dy.

Therefore we can write

T∑
t=1

Ẽ
[
h(ηTt )

[
ηTt
]2∣∣∣Yt] =

T∑
t=1

Ẽ

[ˆ ηTt

0

[
y2

1 + y

]
dy

∣∣∣∣∣Yt
]
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≤
T∑
t=1

Ẽ

[ˆ ηTt

0

y4dy

]1/2 [ˆ ηTt

0

dy

(1 + y)
2

]1/2
∣∣∣∣∣∣Yt


≤ C
T∑
t=1

E

[
ŴT
t

(
ηTt
)5/2 (

ηTt
)1/2(

1 + ηTt
)1/2

∣∣∣∣∣Yt
]

≤ C
T∑
t=1

E1/2

[(
ŴT
t

)2 (
ηTt
)5∣∣∣∣Yt]E1/2

[
ηTt(

1 + ηTt
) ∣∣∣∣∣Yt

]

≤ C
T∑
t=1

E1/2

[(
ŴT
t

)2 (
ηTt
)5∣∣∣∣Yt]B(Yt)

1/2 (76)

by (67). Letting η̃Tt := ŴT
t η

T
t we have

E1/2

[(
ŴT
t

)2 (
ηTt
)5∣∣∣∣Yt]

= E1/2

[(
ŴT
t

)2−5 (
η̃Tt
)5∣∣∣∣Yt]

≤ E1/4

[(
ŴT
t

)−6
∣∣∣∣Yt]E1/4

[(
η̃Tt
)10
∣∣∣Yt] , (77)

and

E
[[
η̃Tt
]10
∣∣∣Yt] ≤ C {E [[J̃Tt ]10

∣∣∣∣Yt]+ E
[[
L̃Tt

]10
∣∣∣∣Yt]+ E

[[
M̃T
t

]10
∣∣∣∣Yt]} , (78)

where J̃Tt := ŴT
t J

T
t , L̃Tt := ŴT

t L
T
t and M̃T

t := ŴT
t M

T
t . We now control the terms Ẽ

[∣∣∣∑T
t=1 J

T
t

∣∣∣∣∣∣Yt]2
and Ẽ

[∣∣∣∑T
t=1 L

T
t

∣∣∣∣∣∣Yt]2 and the terms on the r.h.s. of (78).

Terms J̃Tt . Since Ẽ
[
JTt
∣∣Yt] = 0 , and the terms are independent over t we have

Ẽ

[∣∣∣∣∣
T∑
t=1

JTt

∣∣∣∣∣
∣∣∣∣∣Yt
]2

≤ Ẽ

( T∑
t=1

JTt

)2
∣∣∣∣∣∣Yt
 =

T∑
t=1

Ẽ
[(
JTt
)2∣∣∣Yt]

=

T∑
t=1

E
[[
ŴT
t

]−1 (
J̃Tt

)2
∣∣∣∣Yt]

≤
T∑
t=1

E1/2

[[
ŴT
t

]−2
∣∣∣∣Yt]E1/2

[(
J̃Tt

)4
∣∣∣∣Yt]

≤
T∑
t=1

B(Yt)
1/2E1/5

[(
J̃Tt

)10
∣∣∣∣Yt] ,

by Holder’s inequality. We thus have to control

E
[[
J̃Tt

]10
∣∣∣∣Yt] ≤ E

[ 1

N

N∑
i=1

{$(Yt, Ut,i (δT ) ; θ + ξ/
√
T )−$(Yt, Ut,i (δT ) ; θ)}

]10
∣∣∣∣∣∣Yt


= E

[ 1

N

N∑
i=1

{$(Yt, Ut,i; θ + ξ/
√
T )−$(Yt, Ut,i; θ)}

]10
∣∣∣∣∣∣Yt
 .

Since the terms are i.i.d. over i and have zero mean we will use the following fact: let X1, . . . , XN be
i.i.d. and zero mean, then

E

( N∑
i=1

Xi

)10
 =

5∑
k=1

N∑
i1 6=···6=ik

∑
α∈A(k)

k∏
j=1

E
[
X

2+αj
ij

]
,
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where
A(k) = {(α1, . . . , αk) : α1 + · · ·+ αk = 10− 2k} .

Using Holder’s inequality, notice that since the factors are i.i.d. for any α ∈ A(k) we have

k∏
j=1

E
[
X

2+αj
ij

]
≤

k∏
j=1

E
[
X10
ij

](2+αj)/10

= E
[
X10

1

]
.

Therefore overall we have

E

( N∑
i=1

Xi

)10
 ≤ E

[
X10

1

] 5∑
k=1

(
N

k

)
C(k) ≤ CE

[
X10

1

] 5∑
k=1

(
N

k

)
≤ CN5E

[
X10

1

]
,

since C(k) := ]A(k) are combinatorial factors not depending on N . Thus for any ξ 6= 0

E
[[
J̃Tt

]10
∣∣∣∣Yt, ξ] ≤ E

[ 1

N

N∑
i=1

{$(Yt, Ut,i; θ + ξ/
√
T )−$(Yt, Ut,i; θ)}

]10
∣∣∣∣∣∣Yt, ξ


≤ C

N10
N5E

[(
$(Yt, Ut,1; θ + ξ/

√
T )−$(Yt, Ut,1; θ)

)10
∣∣∣∣Yt, ξ]

=
C

N10
N5E

(ˆ ξ/
√
T

0

∂θ$(Yt, Ut,1; θ + s)ds

)10
∣∣∣∣∣∣Yt, ξ


=

C

N5

(
ξ√
T

)10

E

(ˆ ξ/
√
T

0

∂θ$(Yt, Ut,1; θ + s)
ds

ξ/
√
T

)10
∣∣∣∣∣∣Yt, ξ


≤ C

N5

(
ξ√
T

)9

E

[ˆ ξ/
√
T

0

∂θ$(Yt, Ut,1; θ + s)10ds

∣∣∣∣∣Yt, ξ
]

=
C

N5

(
ξ√
T

)9 ˆ ξ/
√
T

0

E
[
∂θ$(Yt, Ut,1; θ + s)10

∣∣Yt]ds

≤ C

N5

(
ξ√
T

)10

B(Yt),

by (68).

Since E[ξ10] <∞, we conclude that

E
[[
J̃Tt

]10
∣∣∣∣Yt] = E

[
E
[(
J̃Tt

)10
∣∣∣∣Yt, ξ]∣∣∣∣Yt] ≤ C

N5T 5
B(Yt), (79)

Therefore we have

Ẽ

[∣∣∣∣∣
T∑
t=1

JTt

∣∣∣∣∣
∣∣∣∣∣Yt
]2

≤
T∑
t=1

B(Yt)
1/2E1/5

[(
J̃Tt

)10
∣∣∣∣Yt] (80)

leq
1

NT

T∑
t=1

B(Yt)
1/2B(Yt)

1/5. (81)

Terms L̃Tt . Since Ẽ
[
LTt
∣∣Yt] = 0 , and the terms are independent over t we have

Ẽ

[∣∣∣∣∣
T∑
t=1

LTt

∣∣∣∣∣
∣∣∣∣∣Yt
]2

≤ Ẽ

( T∑
t=1

LTt

)2
∣∣∣∣∣∣Yt
 =

T∑
t=1

Ẽ
[(
LTt
)2∣∣∣Yt]

=

T∑
t=1

E
[[
ŴT
t

]−1 (
L̃Tt

)2
∣∣∣∣Yt]
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≤
T∑
t=1

E1/2

[[
ŴT
t

]−2
∣∣∣∣Yt]E1/2

[(
L̃Tt

)4
∣∣∣∣Yt]

≤
T∑
t=1

B(Yt)
1/2E1/5

[(
L̃Tt

)10
∣∣∣∣Yt] .

To proceed we estimate

E
[[
L̃Tt

]10
∣∣∣∣Yt] = E

( 1

N

N∑
i=1

ˆ δT

0

{
−∂u$ (Yt, Ut,i (s) ; θ)Ut,i (s) + ∂2

u,u$ (Yt, Ut,i (s) ; θ)
}

ds

)10
∣∣∣∣∣∣Yt


≤ C

N5
E

(ˆ δT

0

{
−∂u$ (Yt, Ut,1 (s) ; θ)Ut,1 (s) + ∂2

u,u$ (Yt, Ut,1 (s) ; θ)
}

ds

)10
∣∣∣∣∣∣Yt


≤ C

N5
δ10
T E

(ˆ δT

0

{
−∂u$ (Yt, Ut,1 (s) ; θ)Ut,1 (s) + ∂2

u,u$ (Yt, Ut,1 (s) ; θ)
} ds

δT

)10
∣∣∣∣∣∣Yt


≤ C

N5
δ10
T E

[ˆ δT

0

{
−∂u$ (Yt, Ut,1 (s) ; θ)Ut,1 (s) + ∂2

u,u$ (Yt, Ut,1 (s) ; θ)
}10 ds

δT

∣∣∣∣∣Yt
]

= C
N4

T 9
E

[ˆ δT

0

{
−∂u$ (Yt, Ut,1 (s) ; θ)Ut,1 (s) + ∂2

u,u$ (Yt, Ut,1 (s) ; θ)
}10

ds

∣∣∣∣∣Yt
]

= C
N4

T 9

ˆ δT

0

E
[{
−∂u$ (Yt, Ut,1 (s) ; θ)Ut,1 (s) + ∂2

u,u$ (Yt, Ut,1 (s) ; θ)
}10
∣∣∣Yt] ds

≤ C N5

T 10
B(Yt), (82)

by (71). Therefore we conclude that

Ẽ

[∣∣∣∣∣
T∑
t=1

LTt

∣∣∣∣∣
∣∣∣∣∣Yt
]2

≤
T∑
t=1

B(Yt)
1/2E1/5

[(
L̃Tt

)10
∣∣∣∣Yt]

≤
(
N5

T 10

)1/5 T∑
t=1

B(Yt)
1/2B(Yt)

1/5 ≤ N

T

1

T

T∑
t=1

B(Yt)
7/10. (83)

Terms M̃T
t . Finally we have, using (Zakai, 1967, Corollary 1,), that

E
[[
M̃T
t

]10
∣∣∣∣Yt] = E

(ˆ δT

0

√
2

N

N∑
i=1

∂u$ (Yt, Ut,i (s) ; θ) dBt,i (s)

)10
∣∣∣∣∣∣Yt


≤ C25

N5
E

(ˆ δT

0

∂u$ (Yt, Ut,1 (s) ; θ) dBt,1 (s)

)10
∣∣∣∣∣∣Yt


≤ C

N5
δ4
T

ˆ δT

0

E
[

(∂u$ (Yt, Ut,1 (s) ; θ))
10
∣∣∣Yt] ds

=
C

N5
δ5
TE
[
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by (69).

Overall control. Bringing all terms together we thus have using (76), (77), (78) and (84), (79) and (82)
that
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≤ C

T 1/4

1

T

T∑
t=1

B(Yt)

for T large enough as NT /T → 0. Hence by combining the bounds (85), (81) and (83), Lemma 13
follows.

A.6.3 Control of RT2

Lemma 14. As T →∞ we have that

sup
θ∈N(θ̄)
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it follows that
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by (71). Thus
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On the other hand using (Corollary 1, Zakai, 1967) twice in combination with Jensen’s inequality we
have
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ŴT
t

)−2
∣∣∣∣YT]E1/2

(√2

N

N∑
i=1

ˆ δT

0

ˆ s

0

∂3
uuu$ (Yt, Ut,i (r) ; θ) dBt,i(r)dBt,i (s)

)4
∣∣∣∣∣∣YT


≤

T∑
t=1

B(Yt)
1/2E1/2

(√2

N

N∑
i=1

ˆ δT

0

ˆ s

0

∂3
uuu$ (Yt, Ut,1 (r) ; θ) dBt,1(r)dBt,1 (s)

)4
∣∣∣∣∣∣YT


≤

T∑
t=1

B(Yt)
1/2

 C

N2
E

(ˆ δT

0

ˆ s

0

√
2∂3
uuu$ (Yt, Ut,1 (r) ; θ) dBt,1(r)dBt,1 (s)

)4
∣∣∣∣∣∣Yt


1/2

≤
T∑
t=1

B(Yt)
1/2

{
C

4

N2
δT

ˆ δT

0

E

[[ˆ s

0

∂3
uuu$ (Yt, Ut,1 (r) ; θ) dBt,1(r)

]4
∣∣∣∣∣Yt
]

ds

}1/2

29



≤
T∑
t=1

B(Yt))
1/2

{
C

4

N2
δT

ˆ δT

0

s

ˆ s

0

E
[[
∂3
uuu$ (Yt, Ut,1 (r) ; θ)

]4∣∣∣Yt] drds

}1/2

≤
T∑
t=1

B(Yt))
1/2

{
C

4

N2
E
[[
∂3
uuu$ (Yt, Ut,1 (0) ; θ)

]4∣∣∣Yt] δT ˆ δT

0

s

ˆ s

0

drds

}1/2

≤
T∑
t=1

B(Yt))
1/2

{
C

4

N2
E
[[
∂3
uuu$ (Yt, Ut,1 (0) ; θ)

]4∣∣∣Yt] δT ˆ δT

0

s2ds

}1/2

≤
T∑
t=1

B(Yt))
1/2

{
C

4

N2
E
[[
∂3
uuu$ (Yt, Ut,1 (0) ; θ)

]4∣∣∣Yt] δ4
T

}1/2

≤
T∑
t=1

B(Yt))
1/2

{
C

4

N2

N4

T 4
E
[[
∂3
uuu$ (Yt, Ut,1 (0) ; θ)

]4∣∣∣Yt]}1/2

≤ N

T

1

T

T∑
t=1

B(Yt),

by (70). Since all bounds obtained are independent of θ we have the desired result.

A.6.4 Control of RT3

Lemma 15. As T →∞ we have that

sup
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ŴT
t

)−2
∣∣∣∣YT]E1/2

[(
M̃T
t

)4
∣∣∣∣YT]

≤ B(Yt)
1/2E1/5

[(
M̃T
t

)10
∣∣∣∣YT]

≤ 1

T
B(Yt)

1/2B(Yt)
1/5,

30



and thus we find that
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ŴT
t

]2 1

TN

N∑
i=1

(∂u$ (Yt, Ut,i (0) ; θ))
2
ξ2
t +RT2,t.

From SectionA.6.3 it follows that

sup
θ∈B(θ̄,ε)

Ẽ
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since ξt is independent of the remaining terms and Eξ2
t = 1. We control the first term using the Cauchy-
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Schwarz inequality, (63), (65) and the triangle inequality

J1 ≤
2

T

T∑
t=1

E1/2

ŴT
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[
|(∂u$ (Yt, Ut,i (0) ; θ))|4

∣∣∣Yt]
≤ 2

T

T∑
t=1

√
εTB(Yt)E1/4

[
|(∂u$ (Yt, Ut,i (0) ; θ))|8

∣∣∣Yt]E1/2

[∣∣∣∣(ŴT
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B(Yt) + Ẽ1/2

∣∣∣∣∣ 1

T

T∑
t=1

[
ξ2
t − 1

]
κ2(Yt, θ)

∣∣∣∣∣
2
∣∣∣∣∣∣Yt
+

∣∣∣∣∣ 1

T

T∑
t=1

κ(Yt, θ)− κ2(θ)

∣∣∣∣∣
≤ 1√

N

1

T

T∑
t=1

B(Yt) +
1

T 2

T∑
t=1

κ4(Yt, θ)V(ξ2
t ) +

∣∣∣∣∣ 1

T

T∑
t=1

κ(Yt, θ)− κ2(θ)

∣∣∣∣∣ .
Except from the very last term, everything else is independent of θ. Therefore from (75) and the strong
law of large numbers we have the following result.

A.6.5 Proof of Theorem 10

The result follows now directly from Lemmas 11, 12, 13, 14 and 15.

A.7 Proof of Theorem 4

Let {ϑ̃Tn ;n ≥ 0} be the first component of the stationary Markov chain {(ϑ̃Tn ,UTn );n ≥ 0} with invariant
distribution π̃T and transition kernel QT , given in (28) and (31) respectively. We write {ϑ̃n;n ≥ 0} for
the stationary Markov chain with invariant distribution ϕ(dθ̃; 0,Σ) and transition kernel P defined in
(32). The proof of Theorem 4 relies on a few preliminary results which we now state and prove. In the
rest of this section, all expectations have to be understood as conditional expectations w.r.t. YT .
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Proposition 16. Under the assumptions of Theorem 4, for any subsequence {Tk; k ≥ 0} we can extract
a further subsequence {T ′k; k ≥ 0} such that almost surely along this subsequence we have

E
(∣∣∣QT f(ϑ̃T0 ,U

T
0 )− Pf(ϑ̃T0 )

∣∣∣)→ 0 (86)

for all f ∈ B
(
Rd
)
.

Remark. We emphasize that the set on which this almost sure convergence occurs is independent of the
test function f .

Proof of Proposition 16. We define

r̃T

(
θ̃0, θ̃1

)
=
π̃T (θ̃1)q̃(θ̃1, θ̃0)

π̃T (θ̃0)q̃(θ̃0, θ̃1)
, r̃

(
θ̃0, θ̃1

)
=
ϕ(θ̃1; 0,Σ)q̃(θ̃1, θ̃0)

ϕ(θ̃0; 0,Σ)q̃(θ̃0, θ̃1)
,

and write
p(Y1:T | θi, ui) =

p̂(Y1:T | θi, ui)
p(Y1:T | θi)

,

where θi = θ̂T + θ̃i/
√
T for i ≥ 0. As Assumption 2 holds, we have

QT f(θ̃0, u0) =

¨
q̃(θ̃0,dθ̃1)f(θ̃1)KρT (u0,du1) min

(
1, r̃T

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
(87)

+ f(θ̃0)

[
1−
¨

q̃(θ̃0,dθ̃1)KρT (u0,du1) min

(
1, r̃T

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)]
,

and

Pf(θ̃0) =

¨
q̃(θ̃0,dθ̃1)f(θ̃1)ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)
(88)

+ f(θ̃0)

[
1−
¨

q̃(θ̃0,dθ̃1)ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)]
.

It follows that

1

2
E
(∣∣∣QT f(ϑ̃T0 ,U

T
0 )− Pf(ϑ̃T0 )

∣∣∣)
≤ 1

2

˚
π̃T (dθ̃0,du0)q̃(θ̃0,dθ̃1)

∣∣∣f(θ̃1)
∣∣∣ ∣∣∣∣ˆ KρT (u0,du1) min

(
1, r̃T

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
−
ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣
+

1

2

˚
π̃T (dθ̃0,du0)q̃(θ̃0,dθ̃1)

∣∣∣f (θ̃0

)∣∣∣ ∣∣∣∣ˆ KρT (u0,du1) min

(
1, r̃T

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
−
ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣
≤
˚

π̃T (dθ̃0,du0)q̃(θ̃0,dθ̃1)

∣∣∣∣ˆ KρT (u0,du1) min

(
1, r̃T

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
−
ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣ .
Hence, we have

1

2
E
(∣∣∣QT f(ϑ̃T0 ,U

T
0 )− Pf(ϑ̃T0 )

∣∣∣)
=

˚
π̃T (du0| θ̃0)q̃(θ̃0,dθ̃1)

∣∣∣∣∣
ˆ
KρT (u0,du1) min

(
π̃T (θ̃0), π̃T (θ̃1)

q̃(θ̃1, θ̃0)

q̃(θ̃0, θ̃1)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)

− π̃T (θ̃0)

ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣dθ̃0
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≤
˚

π̃T (du0| θ̃0)

ˆ
KρT (u0,du1)

∣∣∣∣min

(
π̃T (θ̃0)q̃(θ̃0, θ̃1), π̃T (θ̃1)q̃(θ̃1, θ̃0)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
(89)

− min

(
ϕ(θ̃0; 0,Σ)q̃(θ̃0, θ̃1), ϕ(θ̃1; 0,Σ)q̃(θ̃1, θ̃0)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)∣∣∣∣ dθ̃0dθ̃1

+

˚
π̃T (du0| θ̃0)q̃(θ̃0,dθ̃1)

∣∣∣∣ϕ(θ̃0; 0,Σ)

ˆ
KρT (u0,du1) min

(
1, r̃

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
(90)

− π̃T

(
θ̃0

)ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣dθ̃0.

For the first term given in (89), using the inequality |min (x, y)−min (w, z)| ≤ |x− w| + |y − z|, we
obtain the bound˚

π̃T (du0| θ̃0)

ˆ
KρT (u0,du1)

∣∣∣∣min

(
π̃T (θ̃0)q̃(θ̃0, θ̃1), π̃T (θ̃1)q̃(θ̃1, θ̃0)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
− min

(
ϕ(θ̃0; 0,Σ)q̃(θ̃0, θ̃1), ϕ(θ̃1; 0,Σ)q̃(θ̃1, θ̃0)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)∣∣∣∣dθ̃0dθ̃1

≤
˘

π̃T (du0| θ̃0)q̃(θ̃0,dθ̃1)KρT (u0,du1)
∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)

∣∣∣dθ̃0 (91)

+

˘
π̃T (du0| θ̃0)KρT (u0,du1)

∣∣∣π̃T (θ̃1)− ϕ(θ̃1; 0,Σ)
∣∣∣ q̃(θ̃1,dθ̃0)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)
dθ̃1. (92)

The term (91) satisfies
˘

π̃T (du0| θ̃0)q̃(θ̃0,dθ̃1)KρT (u0,du1)
∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)

∣∣∣dθ̃0

=

ˆ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)
∣∣∣ dθ̃0 →PY 0,

by Assumption 1. Therefore, for any subsequence {Tk; k ≥ 0} we can extract a further subsequence{
T 1
k ; k ≥ 0

}
such that along this subsequence

ˆ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)
∣∣∣dθ̃0 → 0,

almost surely. Since
π̃T (du0| θ̃0) = mT (du0) p(Y1:T | θ0, u0),

then the term (92) satisfies along
{
T 1
k ; k ≥ 0

}
˘

π̃T (du0| θ̃0)q̃(θ̃1,dθ̃0)KρT (u0,du1)
∣∣∣π̃T (θ̃1)− ϕ(θ̃1; 0,Σ)

∣∣∣ p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)
dθ̃1

=

˘
mT (du0) q̃(θ̃1,dθ̃0)KρT (u0,du1)

∣∣∣π̃T (θ̃1)− ϕ(θ̃1; 0,Σ)
∣∣∣ p(Y1:T | θ1, u1)dθ̃1

=

˚
q̃(θ̃1,dθ̃0)mT (du1)

∣∣∣π̃T (θ̃1)− ϕ(θ̃1; 0,Σ)
∣∣∣ p(Y1:T | θ1, u1)dθ̃1 (KρT m-invariant)

=

˚
q̃(θ̃1,dθ̃0)π̃T (du1| θ̃1)

∣∣∣π̃T (θ̃1)− ϕ(θ̃1; 0,Σ)
∣∣∣dθ̃1

=

ˆ ∣∣∣π̃T (θ̃1)− ϕ(θ̃1; 0,Σ)
∣∣∣dθ̃1 → 0,

almost surely.

Going back to the term given by (90), we note that
˚

π̃T (du0| θ̃0)q̃(θ̃0,dθ̃1)

∣∣∣∣ϕ(θ̃0; 0,Σ)

ˆ
KρT (u0,du1) min

(
1, r̃

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
− π̃T (θ̃0)

ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣dθ̃0

≤
˚

π̃T (du0| θ̃0)q̃(θ̃0,dθ̃1)

∣∣∣∣ϕ(θ̃0; 0,Σ)

ˆ
KρT (u0,du1) min

(
1, r̃

(
θ̃0, θ̃1

) p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)
(93)
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− ϕ
(
θ̃0; 0,Σ

)ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)∣∣∣∣dθ̃0

+

˚ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)
∣∣∣ q̃(θ̃0,dθ̃1)ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)
dθ̃0, (94)

where (94) satisfies
˚ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)

∣∣∣ q̃(θ̃0,dθ̃1)ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1, r̃

(
θ̃0, θ̃1

)
exp (w)

)
dθ̃0

≤
˚ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)

∣∣∣ q̃(θ̃0,dθ̃1)ϕ

(
dw;−κ

2

2
, κ2

)
dθ̃0

=

ˆ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)
∣∣∣ dθ̃0 → 0,

almost surely along
{
T 1
k ; k ≥ 0

}
. We can rewrite (93) as

˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
πT (du0| θ0) q (θ0,dθ1)

∣∣∣∣∣
ˆ
KρT (u0,du1) min

(
1,
ϕ(
√
T (θ1 − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

p(Y1:T | θ1, u1)

p(Y1:T | θ0, u0)

)

−
ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1,
ϕ(
√
T (θ1 − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

exp (w)

)∣∣∣∣∣
=

˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
πT (du0| θ0) υ (dξ)

∣∣∣∣∣
ˆ
KρT (u0,du1) min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

× p(Y1:T | θ0 + ξ/
√
T , u1)

p(Y1:T | θ0, u0)

)
−
ˆ
ϕ

(
dw;−κ

2

2
, κ2

)
min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

exp (w)

)∣∣∣∣∣ .
As θ̂T →PY θ, we can extract a further subsequence

{
T 2
k ; k ≥ 0

}
of
{
T 1
k ; k ≥ 0

}
such that along this

subsequence θ̂T → θ almost surely. Letting AT (ε) = {Y1:T : ‖θ̂T −θ‖ < ε/2}, since PY ((AT (ε))C) = o (1)
it follows that I(AT (ε)) → 1 almost surely along this subsequence and therefore (93) is equal almost
surely to

I
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
πT (du0| θ0) υ (dξ)

∣∣∣∣∣
ˆ
KρT (u0,du1) min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

× p(Y1:T | θ0 + ξ/
√
T , u1)

p(Y1:T | θ0, u0)

)
−
ˆ
ϕ(dw;−κ2/2, κ2) min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

exp (w)

)∣∣∣∣∣
+ o (1) .

Along
{
T 2
k ; k ≥ 0

}
, we can rewrite the integral in the above expression as

I
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)
πT (du0| θ0) υ (dξ)∣∣∣∣∣

ˆ
KρT (u0,du1) min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

p(Y1:T | θ0 + ξ/
√
T , u1)

p(Y1:T | θ0, u0)

)

−
ˆ
ϕ(dw;−κ2/2, κ2) min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

exp (w)

)∣∣∣∣∣+ o (1) .

Notice that the functions

x 7→ min

(
1,
ϕ(
√
T (θ0 + ξ/

√
T − θ̂T ); 0,Σ)

ϕ(
√
T (θ0 − θ̂T ); 0,Σ)

exp (x)

)
are bounded above by 1 and Lipschitz, with Lipschitz constants bounded by 1 uniformly in all parameters.
Therefore (93) is bounded almost surely along

{
T 2
k ; k ≥ 0

}
by

I
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)
πT (du0| θ0) υ (dξ)
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× sup
f :‖f‖BL≤2

∣∣∣∣∣
ˆ
KρT (u0,du1) f

{
log

(
p(Y1:T | θ0 + ξ/

√
T , u1)

p(Y1:T | θ0, u0)

)}
−
ˆ
ϕ(dw;−κ2/2, κ2)f (w)

∣∣∣∣∣+ o (1) ,

(95)

where ‖f‖BL is defined in (105).

We further decompose (95) as

I
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)
πT (du0| θ0) υ (dξ)

× sup
f :‖f‖BL≤2

∣∣∣∣∣
ˆ
KρT (u0,du1) f

{
log

(
p(Y1:T | θ0 + ξ/

√
T , u1)

p(Y1:T | θ0, u0)

)}
−
ˆ
ϕ
(
dw;−κ2(θ0)/2, κ2(θ0)

)
f (w)

∣∣∣∣∣
+ I
(
AT (ε)

)˚ {
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)
πT (du0| θ0) υ (dξ) (96)

× dBL
(
N
(
−κ2(θ0)/2, κ2(θ0)

)
,N
(
−κ2/2, κ2

))}
+ o(1).

The second term can be easily bounded above by

I
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)[1

2

∣∣κ2(θ0)− κ2(θ̄)
∣∣+
∣∣κ(θ0)− κ(θ̄)

∣∣√ 2

π

]

≤ I
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
) ∣∣κ(θ0)− κ(θ̄)

∣∣ [1

2

(
κ(θ0) + κ(θ̄)

)
+

√
2

π

]

≤ CI
(
AT (ε)

)˚
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)(∣∣∣κ(θ0)− κ(θ̂T )

∣∣∣+
∣∣∣κ(θ̄)− κ(θ̂T )

∣∣∣)
≤C ′I

(
AT (ε)

)ˆ
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
) [∥∥∥θ0 − θ̂T

∥∥∥+
∥∥∥θ̂T − θ̄∥∥∥]

≤C ′I
(
AT (ε)

) [
T−1/2

ˆ
ϕ (dζ; 0, Id)

∥∥∥(Σ)1/2 ζ∥∥∥+
∥∥∥θ̂T − θ̄∥∥∥] ,

where we have used the fact that κ is locally Lipschitz around θ̄. As we are in a subsequence along which
θ̂T → θ almost surely, then this quantity converges to zero almost surely along this subsequence. Finally
the first term of (96) can be controlled for ε small enough by

I
(
AT (ε)

)ˆ
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)

× sup
θ0∈N(θ̄)

¨
{πT (du0| θ0) υ (dξ)

× sup
f :‖f‖BL≤2

∣∣∣∣∣
ˆ
KρT (u0,du1) f

{
log

(
p(Y1:T | θ0 + ξ/

√
T , u1)

p(Y1:T | θ0, u0)

)}
−
ˆ
ϕ(dw;−κ2(θ0)/2, κ2(θ0))f (w)

∣∣∣∣∣
}

=I
(
AT (ε)

)ˆ
ϕ

(
dθ0; θ̂T ,

Σ

T

)
I
(∥∥∥θ̂T − θ0

∥∥∥ < ε/2
)

× sup
θ0∈N(θ̄)

¨
{πT (du0| θ0) υ (dξ) ,

× sup
f :‖f‖BL≤2

∣∣∣∣∣
ˆ
KρT (u0,du1) f

{
log

(
p(Y1:T | θ0 + ξ/

√
T , u1)

p(Y1:T | θ0, u0)

)}
−
ˆ
ϕ(dw;−κ2(θ0)/2, κ2(θ0))f (w)

∣∣∣∣∣
}
,

which vanishes in probability by Assumption 3. Hence we can extract a further subsequence along which
this convergence happens almost surely. The result follows.

Lemma 17. If along a subsequence {Tk; k ≥ 0} we have almost surely

E
(∣∣∣QT f(ϑ̃T0 ,U

T
0 )− Pf(ϑ̃T0 )

∣∣∣)→ 0
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for all f ∈ B
(
Rd
)
, then along {Tk; k ≥ 0} we have almost surely

E
(∣∣∣QkT f(ϑ̃T0 ,U

T
0 )− P kf(ϑ̃T0 )

∣∣∣)→ 0

for all f ∈ B
(
Rd
)
and all k ≥ 1.

Remark. We emphasize again that the set on which this almost sure convergence occurs is independent
of f and k.

Proof of Lemma 17. We prove the result by induction. For k = 1, this follows from the assumption.
Now we have

Qk+1
T f(θ̃0, u0)− P k+1f(θ̃0)

= Qk+1
T f(θ̃0, u0)−QT (P kf)(θ̃0, u0) +QT (P kf)(θ̃0, u0)− P k+1f(θ̃0).

and therefore

E
(∣∣∣Qk+1

T f(ϑ̃T0 ,U
T
0 )− P k+1f(ϑ̃T0 )

∣∣∣)
≤ E

(∣∣∣Qk+1
T f(ϑ̃T0 ,U

T
0 )−QT (P kf)(ϑ̃T0 ,U

T
0 )
∣∣∣)+ E

(∣∣∣QT (P kf)(ϑ̃T0 ,U
T
0 )− P k+1f(ϑ̃T0 )

∣∣∣)
≤ E

(∣∣∣QkT f(ϑ̃T0 ,U
T
0 )− P kf(ϑ̃T0 ,U

T
0 )
∣∣∣)+ E

(∣∣∣QT (P kf)(ϑ̃T0 ,U
T
0 )− P (P kf)(ϑ̃T0 )

∣∣∣) ,
since QT is π̃T -invariant. We can now apply the induction hypothesis to the functions f and P kf as
P kf ∈ B

(
Rd
)
.

Proposition 18. Under the assumptions of Theorem 4, for any subsequence {Tk; k ≥ 0} we can extract
a further subsequence {T ′k; k ≥ 0} such that along this subsequence we have almost surely

E
[
n∏
i=0

fi

(
ϑ̃Tki

)]
→ E

[
n∏
i=0

fi

(
ϑ̃ki

)]
for any n ≥ 0, any 0 ≤ k0 < k1 < k2 < · · · < kn ∈ N and f0, . . . , fn ∈ B

(
Rd
)
.

Proof of Proposition 18. In Proposition 16, we have extracted a subsequence {T ′k; k ≥ 0} of {Tk; k ≥ 0}
such that along this subsequence

ˆ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)
∣∣∣dθ̃0 → 0

almost surely. Hence, along this subsequence, the result holds for n = 0. For n = 1, we have∣∣∣E [f0(ϑ̃Tk0)f1(ϑ̃Tk1)
]
− E

[
f0(ϑ̃k0)f1(ϑ̃k1)

]∣∣∣
=

∣∣∣∣ˆ f0(θ̃0)π̃T (θ̃0, u0)Qk1−k0T f1(θ̃0, u0)dθ̃0du0 −
ˆ
f0(θ̃0)ϕ(θ̃0; 0,Σ)P k1−k0f1(θ̃0)dθ̃0

∣∣∣∣
≤
∣∣∣∣ˆ f0(θ̃0)π̃T (θ̃0, u0){Qk1−k0T f1(θ̃0, u0)− P k1−k0f1(θ̃0)}dθ̃0du0

∣∣∣∣
+

∣∣∣∣ˆ f0(θ̃0){π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)}P k1−k0f1(θ̃0)dθ̃0

∣∣∣∣
≤ E

[∣∣∣Qk1−k0T f1(ϑ̃T0 ,U
T
0 )− P k1−k0f1(ϑ̃T0 )

∣∣∣]+

ˆ ∣∣∣π̃T (θ̃0)− ϕ(θ̃0; 0,Σ)
∣∣∣ dθ̃0.

Hence from Lemma 17, the result also follows for n = 1. Now for any n ≥ 1, we have

E
[∏n+1

j=0 fj(ϑ̃
T
kj )
]

= E
[∏n

j=0fj(ϑ̃
T
kj )Q

kn+1−kn
T fn+1(ϑ̃Tkn , U

T
kn)
]

= E
[∏n

j=0fj(ϑ̃
T
kj )P

kn+1−knfn+1(ϑ̃Tkn)
]

(97)

+ E
[∏n

j=0fj(ϑ̃
T
kj ){Q

kn+1−kn
T fn+1(ϑ̃Tkn , U

T
kn)− P kn+1−knfn+1(ϑ̃Tkn)}

]
. (98)
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By the induction hypothesis, the first term (97) converges to

E
[∏n

j=0fj(ϑ̃kj )P
kn+1−knfn+1(ϑ̃kn)

]
= E

[∏n+1
j=0 fj(ϑ̃kj )

]
.

So it remains to show that the remainder (98) vanishes. We have∣∣∣E [∏n
j=0fj(ϑ̃

T
kj ){Q

kn+1−kn
T fn+1(ϑ̃Tkn , U

T
kn)− P kn+1−knfn+1(ϑ̃Tkn)}

]∣∣∣
≤ E

[∣∣∣Qkn+1−kn
T fn+1(ϑ̃Tkn , U

T
kn)− P kn+1−knfn+1(ϑ̃Tkn)

∣∣∣] .
So using Lemma 17, this term vanishes and the result follows.

Proof of Theorem 4. We have shown that for any subsequence {Tk; k ≥ 0} there exists a further subse-
quence {T ′k; k ≥ 0} such that we have almost surely

E
(∏n

j=0fj(ϑ̃
T
kj )
)
→ E

(∏n
j=0fj(ϑ̃kj )

)
, (99)

for any n ≥ 0, any 0 ≤ k0 < k1 < k2 < · · · < kn ∈ N and any bounded functions f0, . . . , fn. Therefore, we
have by (Ethier and Kurtz, 2005, Proposition 3.4.6) that on this subsequence the probability measures
on
(
Rd
)∞ given by the laws of {ΘT ;T ≥ 1} converge weakly towards the probability measure induced

by the law of
{
ϑ̃n;n ≥ 0

}
almost surely. From this, the result follows from a standard argument; see,

e.g., (Durrett, 2010, Theorem 2.3.2).

A.8 Proofs for the bounding chain 4

Proof of Proposition 5. It is straightforward to check that Q∗ is π−reversible since it follows from (34)
that

π (dθ)Q∗ (θ,dθ′) = %U (κ)π (dθ)Qmh (θ,dθ′) + {1− %U (κ)}π (dθ) δθ (dθ′)

= %U (κ)π (dθ′)Qmh (θ′,dθ) + {1− %U (κ)}π (dθ′) δθ′ (dθ)

= π (dθ′)Q∗ (θ′,dθ)

and we know that Qmh is π−reversible. We can also write Q∗ as

Q∗ (θ,dθ′) = %U (κ)αmh(θ, θ′)q (θ,dθ′) + {1− %U (κ) %mh (θ)} δθ (dθ′) , (100)

and thus the acceptance probability is given by %U (κ)αmh(θ, θ′) ≤ αQ̂ (θ, θ′) for any (θ, θ′) as
min (1, a) min (1, b) ≤ min (1, ab) for a, b ≥ 0. This proves inequality (37). Moreover, from (Tierney,
1998, Theorem 4) it follows that IF (h,Q∗) ≤ IF(h, Q̂).

To establish the expression of IF (h,Q∗), we first note that there exists a probability measure e(h,Qmh)
on [−1, 1] such that

φn(h,Qmh) =

ˆ 1

−1

λne(h,Qmh)(dλ), IF(h,Qmh) =

ˆ 1

−1

1 + λ

1− λ
e(h,Qmh)(dλ).

This follows from the spectral representation of reversible Markov chains; see, e.g., (Geyer, 1992) and
(Kipnis and Varadhan, 1986). From the expression (34) of Q∗, we obtain

(Q∗)
n

=

n∑
k=0

(
n
k

)
%kU (κ) {1− %U (κ)}n−kQkmh.

Therefore, if we let X ∼Bin(n; %U (κ)) be the number of acceptances from 0 to n, we have

φn(h,Q∗) =
∑n

k=0

ˆ
λk Pr(X = k)e(h,Qmh)(dλ) =

ˆ
{(1− %U (κ)) + %U (κ)λ}ne(h,Qmh)(dλ), . (101)

It follows that

IF (h,Q∗) = 1 + 2
∑∞
n=1φn(h,Q∗)
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=

ˆ
1 + (1− %U (κ)) + %U (κ)λ

%U (κ)− %U (κ)λ
e(h,Qmh)(dλ) =

1

%U (κ)
(IF(h,Qmh) + 1)− 1.

Assuming Qmh is geometrically ergodic we can write φn(h,Qmh) =
´ 1−ε
−1+ε

λne(h,Qmh)(dλ), where 0 <
ε < 1 is the spectral gap. From (101), a simple change of variables yields

φn(h,Q∗) =

ˆ 1−ε

−1+ε

[(1− %U (κ)) + %U (κ)λ]
n
e(h,Qmh)(dλ) =

ˆ 1−ε%U(κ)

1−2%U(κ)+ε%U(κ)

λ̃nẽ(h,Q∗)(dλ̃).

Thus Q∗ is also geometrically ergodic.

Proof of Proposition 6. Parts 1 and 2 are immediate. To simplify notation, we write here ARCT =
ARCT (h,Q∗), IF = IF(h,Qmh), %U(κ) = %(κ), ϕ (x) = ϕ (x; 0, 1). To prove Part 3, we first note that

log (ARCT) =
1

2
log {IF + 1− % (κ)} − log (κ)− log (% (κ))− 1

2
log {IF} ,

so we obtain
∂ log (ARCT)

∂IF
=

1

2

{
1

IF + 1− % (κ)
− 1

IF

}
< 0,

which shows that ARCT decreases with IF. We also have

∂ log (ARCT)

∂κ
=

1

2
ϕ
(κ

2

)
G (κ)− 1

κ
, G (κ) =

1

2− % (κ)
+

2

% (κ)
.

The minimizing argument κ̂ satisfies

J (κ̂, IF) =
∂ log (ARCT)

∂κ

∣∣∣∣
κ̂

= 0.

By implicit differentiation
dκ̂

dIF
= −∂J (κ̂, IF)

∂IF
/
∂J (κ̂, IF)

∂κ̂
, (102)

where
∂J (κ̂, IF)

∂IF
= −1

2
ϕ

(
κ̂

2

)
1

(IF + 1− % (κ̂))
2 < 0 (103)

and

∂J (κ̂, IF)

∂κ̂
=

1

2
ϕ

(
κ̂

2

){
∂G (κ̂, IF )

∂κ̂
− κ̂

4
G (κ̂, IF )

}
+

1

κ̂2

=
1

2

{
ϕ

(
κ̂

2

)
∂G (κ̂, IF )

∂κ̂
− 1

2

}
+

1

κ̂2

≥ 1

2

{
ϕ

(
κ̂

2

)2
[

2

% (κ̂)
2 −

1

(2− % (κ̂))
2

]
− 1

2

}
+

1

κ̂2
> 0. (104)

We have used J (κ̂, IF) = 0 to simplify the expression of this derivative. It follows from (102), (103) and
(104) that the minimizing argument of ARCT increases with IF.

A.9 Conditional weak convergence

Let Cb the space of bounded continuous functions and BL (1) the space of bounded Lipschitz functions
f with ‖f‖BL ≤ 1 where

‖f‖BL = ‖f‖∞ + sup
x,y:x 6=y

∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ . (105)

For sake of completeness, we present a version of the conditional CLT for triangular arrays which allows
us to conclude that the expectations of any function f ∈ Cb converge in probability. We have not been
able to find this precise statement in the literature so we present a proof mimicking the steps of the proof
of (Billingsley, 1968, Theorem 7.2) without any claim of originality.
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Lemma 19. Let {Xn,i}1≤i≤kn be a triangular array of real-valued random variables on a common
probability space (Ω,F , P ) and {Fn}n≥0 a sequence of sub-σ-algebras of F such that {Xn,i}1≤i≤kn are
conditionally independent given Fn, E (Xn,i | Fn) = 0 and σ2

n,i := E
(
X2
n,i | Fn

)
<∞. Suppose also that

as n→∞
s2
n :=

∑kn

i=1
σ2
n,i →P σ

2, (106)

for some σ2 > 0 and that for all ε > 0∑kn

i=1
E
(
X2
n,i1 {|Xn,i| ≥ ε}

∣∣∣Fn)→P 0. (107)

Then we have ∑kn

i=1
Xn,i|Fn ⇒ µ,

where µ (dx) = ϕ(dx; 0, σ2) in the sense that for all f ∈ Cb

E
[
f

(∑kn

i=1
Xn,i

) ∣∣∣Fn]→P µ (f) .

In particular, the random measures µn defined by a regular version of the conditional probability distri-
butions

µn(A) = P
(∑kn

i=1
Xn,i ∈ A

∣∣∣∣Fn) for A ∈ B(R) (108)

converge weakly to µ in probability in the sense that

dBL (µn, µ) := sup
f∈BL(1)

|µn (f)− µ (f)| →P 0. (109)

Remark 20. A random probability measure µ on a metric space X equipped with its Borel σ-algebra B (X )
is usually defined as a map µ from some probability space (Ω,F , P ) to the space P (X ) of probability
measures on (X ,B (X )) such that for all ω ∈ Ω, µ (ω, ·) ∈ P (X ) and for all A ∈ B (X ), the map
ω 7−→ µ (ω,A) is measurable. As explained in (Crauel, 2003, Remark 3.20), such a random measure is a
measurable map from Ω to P (X ) w.r.t. the Borel σ-algebra on P (X ) induced by the topology of weak
convergence. Indeed, from the above definition of random measures, it follows that for any function
g ∈ Cb (X ), the map ω 7−→ µ (ω) (g) is measurable. Since the map ω 7−→ µ (ω) (g) can be written as a
composition of

ω 7−→ µ (ω, ·) Ig7−→ µ (ω) (g) ,

measurability of this map implies that for any B ∈B (R) we have (Ig ◦µ)−1 (B) ∈ F or equivalently that
µ−1(I−1

g (B)) ∈ F . Since the collection of sets
{
I−1
g (B) ;B ∈ B (R) , g ∈ Cb (X )

}
generates B (P (X )),

the mapping ω 7−→ µ (ω, ·) is measurable w.r.t. P (X ). In particular if X is Polish, the topology of
weak convergence is metrized by the bounded Lipschitz metric which is then continuous and therefore
measurable. One can easily check that the random probability measures specified in Lemma 19 falls
within this context. Therefore the quantity on the l.h.s. of (109) is measurable.

Proof of Lemma 19. We first prove the result for f bounded and infinitely differentiable, with bounded
derivatives of all orders. Without loss of generality, we can assume that the probability space also
supports a triangular array of independent standard normal random variables {ξn,i}1≤i≤kn , independent
of {Xn,i}n,i and of Fn for all n. For all n and 1 ≤ i ≤ kn define ηn,i := σn,iξn,i.

The standard Lindeberg approach, employed in the proof of (Billingsley, 1968, Theorem 7.2), relies on
the following telescoping identity

f

(∑kn

i=1
Xn,i

)
= f

(∑kn

i=1
Xn,i

)
− f

(∑kn−1

i=1
Xn,i + ηn,kn

)
+ f

(∑kn−1

i=1
Xn,i + ηn,kn

)
− f

(∑kn−2

i=1
Xn,i + ηn,kn−1 + ηn,kn

)
+ · · ·

+ f

(
Xn,1 +

∑kn

j=2
ηn,j

)
− f

(∑kn

i=1
ηn,i

)
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+ f

(∑kn

i=1
ηn,i

)
.

Writing Z for a standard normal, independent of all other variables and Fn and {Xn,i}i, notice first that

E
[
f

(∑kn

i=1
ηn,i

) ∣∣∣Fn] = E
[
f(snZ)

∣∣∣Fn]→P E [f(σZ)] .

Therefore
E
[
f

(∑kn

i=1
Xn,i

) ∣∣∣Fn] = oP (1) + E [f(σZ)] +
∑kn

i=1
E[En,i|Fn],

where

E[En,i|Fn] := E
[
f

(∑i

j=1
Xn,j +

∑kn

j=i+1
ηn,j

) ∣∣∣Fn]− E
[
f

(∑i−1

j=1
Xn,j +

∑kn

j=i
ηn,j

) ∣∣∣Fn]
= E

[
f

(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j +Xn,i

) ∣∣∣Fn]
− E

[
f

(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j + ηn,i

) ∣∣∣Fn] .
Letting

g(h) := sup
x
|f(x+ h)− f(x)− f ′(x)h− 1

2
f ′′ (x)h2|,

we have by the mean value theorem, and the fact that f has bounded derivative of order two that

f(x+ h)− f(x) =

ˆ x+h

x

f ′(s)ds = f ′(x)h+

ˆ x+h

x

ˆ s

x

f ′′(t)dtds

= f ′(x)h+
1

2
f ′′ (x)h2 +

ˆ x+h

x

ˆ s

x

f ′′(t)− f ′′(x)dtds,

and the last term can be bounded above by∣∣∣∣∣
ˆ x+h

s=x

ˆ s

t=x

f ′′(t)− f ′′(x)dtds

∣∣∣∣∣ ≤
ˆ x+h

s=x

ˆ s

t=x

|f ′′(t)− f ′′(x)|dtds ≤ h2‖f ′′‖∞,

and by ˆ x+h

s=x

ˆ s

t=x

|f ′′(t)− f ′′(x)|dtds ≤ ch3‖f ′′′‖∞

Therefore there exists K such that
g(h) ≤ K min{h2, |h|3}.

Let us look at one of these remainder terms. Write

En,i = f

(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j +Xn,i

)
− f

(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j + ηn,i

)
= f ′

(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j

)
(Xn,i − ηn,i)

+
1

2
f ′′
(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j

)
(X2

n,i − η2
n,i) +Rn,i,

where
|Rn,i| ≤ g(Xn,i) + g(ηn,i).

Taking conditional expectations we observe that

E
[
f ′
(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j

)
(Xn,i − ηn,i)

∣∣∣Fn]
= E

[
f ′
(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j

) ∣∣∣Fn]× E
[
(Xn,i − ηn,i)

∣∣∣Fn] = 0,
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by independence, conditional independence and the fact that Xn,i are conditionally centred. Similarly

E
[
f ′′
(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j

)
(X2

n,i − η2
n,i)
∣∣∣Fn]

= E
[
f ′
(∑i−1

j=1
Xn,j +

∑kn

j=i+1
ηn,j

) ∣∣∣Fn]× E
[
(X2

n,i − η2
n,i)
∣∣∣Fn] = 0,

since
E[η2

n,i|Fn] = σ2
n,iE[ξ2

n,i|Fn] = σ2
n,i.

It remains to control the expression

kn∑
i=1

E[g(Xn,i)|Fn] + E[g(ηn,i)|Fn].

For the first term, letting ε > 0 we have∑kn

i=1
E[g(Xn,i)|Fn] =

∑kn

i=1
E
[
g(Xn,i)1{|Xn,i| < ε}

∣∣∣Fn]+
∑kn

i=1
E
[
g(Xn,i)1{|Xn,i| ≥ ε}

∣∣∣Fn]
≤ K

∑kn

i=1
E
[
|Xn,i|31{|Xn,i| < ε}

∣∣∣Fn]+K
∑kn

i=1
E
[
|Xn,i|21{|Xn,i| ≥ ε}

∣∣∣Fn]
≤ Kε

∑kn

i=1
E
[
|Xn,i|21{|Xn,i| < ε}

∣∣∣Fn]+K
∑kn

i=1
E
[
|Xn,i|21{|Xn,i| ≥ ε}

∣∣∣Fn]
≤ Kε

∑kn

i=1
σ2
n,i +K

∑kn

i=1
E
[
|Xn,i|21{|Xn,i| ≥ ε}

∣∣∣Fn]→P 0,

because ε > 0 is arbitrary, and the second term vanishes in probability by hypothesis.

For the second term, we obtain similarly∑kn

i=1
E[g(ηn,i)|Fn] ≤ Kε

∑kn

i=1
E
[
|ηn,i|21{|ηn,i| < ε}

∣∣∣Fn]+K
∑kn

i=1
E
[
|ηn,i|21{|ηn,i| ≥ ε}

∣∣∣Fn]
≤ KCε

∑kn

i=1
σ2
n,i +K

∑kn

i=1
E
[
σ2
n,i|Z|21{σn,i|Z| ≥ ε}

∣∣∣Fn] ,
where the second term on the r.h.s. of this inequality satisfies

K
∑kn

i=1
ε2E

[
ε−2σ2

n,i|Z|21{σn,i|Z| ≥ ε}
∣∣∣Fn] ≤ K

ε

∑kn

i=1
E
[
σ3
n,i|Z|3

∣∣∣Fn] =
K

ε

∑kn

i=1
σ3
n,iE[|Z|3].

Since

σ2
n,i = E[X2

n,i|Fn]

= E
[
X2
n,i1 {|Xn,i| ≤ ε}

∣∣∣Fn]+ E
[
X2
n,i1 {|Xn,i| > ε}

∣∣∣Fn]
= ε2 + E

[
X2
n,i1 {|Xn,i| > ε}

∣∣∣Fn] ,
we have that

max
i≤kn

σ2
n,i ≤ ε2 +

∑kn

i=1
E
[
X2
n,i1 {|Xn,i| > ε}

∣∣∣Fn] .
Since ε > 0 is arbitrary, maxi≤kn σ

2
n,i →P 0, and therefore∑kn

i=1
σ3
n,i ≤ max

i≤kn
σ2
n,i

∑kn

i=1
σ2
n,i →P 0.

To complete the proof, let f ∈ Cb and Zn :=
∑
Xn,i. Let K > 0 be arbitrary and notice that

E [f(Zn)| Fn] = E [fK(Zn)| Fn] + E1,

|E1| = |E [fK(Zn)| Fn]− E [f(Zn)| Fn]|
≤ E [ |fK(Zn)− f(Zn)|| Fn]

≤ (2‖f‖∞ + 1)P ( |Zn| ≥ K| Fn) .
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Since fK is continuous and compactly supported, for any ε > 0 we can find gK,ε ∈ C∞b , the space of
continuous functions with continuous bounded derivatives of all orders, such that supx |gK,ε(x)−fK(x)| <
ε. Therefore we also have

E [fK(Zn)| Fn] = E [gK,ε(Zn)| Fn] + E2,

where
|E2| = |E [fK(Zn)| Fn]− E [gK,ε(Zn)| Fn]| < ε.

Since gK,ε ∈ C∞b we know by the first result that

E [gK,ε(Zn)| Fn] = E [gK,ε(σZ)] + E3(n),

where E3(n)→P 0.

Moreover, we also have that

E [f(σZ)] = E [gK,ε(σZ)] +D1 +D2,

|D1| ≤ P (|σZ| ≥ K) ,

|D2| ≤ ε.

Thus, overall we get that, for any K > 0 and ε > 0

|E [f(Zn)| Fn]− E [f(σZ)]|
≤ 2ε+ E3(n) + (2‖f‖∞ + 1)P ( |Zn| ≥ K| Fn) + P (|σZ| ≥ K) .

We know that for any K, ε > 0, E3(n)→P 0. It is clear that as K →∞ the last term vanishes, while we
also have that

P ( |Zn| ≥ K| Fn) ≤
E
(
Z2
n

∣∣Fn)
K2

=

∑kn
i=1 σ

2
n,i

K2
→P

σ2

K2
,

as n→∞ by assumption. Letting K →∞ we obtain the result.

Result (108) follows from Corollary 2.4 in (Berti et al., 2006) while (109) follows from the discussion
after Eq. (3) in this paper since µn and µ are measures on R.

Lemma 21. Suppose that Zn :=
∑kn
i=1Xn,i and Fn are as in Lemma 19. If Tn →P c, then

Zn + Tn|Fn ⇒ N (c, σ2).

Proof of Lemma 21. Let f ∈ Cb. LetK > 0 be arbitrary, and let fK be continuous so that fK(x) = f(x)
for |x| ≤ K, fK(x) = 0 for |x| > K + 1 and ‖fK‖∞ ≤ ‖f‖∞. Then fK is continuous, and compactly
supported, so also bounded and uniformly continuous. Then

E [f(Zn + Tn)| Fn] = E [fK(Zn + Tn)| Fn] + E1(n),

|E1(n)| ≤ (2‖f‖∞ + 1)P ( |Zn + Tn| ≥ K| Fn) .

Then

|E [fK(Zn + Tn)| Fn]− E [fK(σZ + c)]|
≤ |E [fK(Zn + Tn)| Fn]− E [fK(Zn + c)| Fn]|+ |E [fK(Zn + c)| Fn]− E [fK(σZ + c)]| .

For the first term notice that since fK is uniformly continuous, for any ε > 0, we can find ε′ > 0, so that
|x− y| < ε′ implies that |fK(x)− fK(y)| < ε. Therefore

|E [fK(Zn + Tn)| Fn]− E [fK(Zn + c)| Fn]|
≤ 2‖f‖∞P ( |Tn − c| ≥ ε′| Fn) + E [ |fK(Zn + Tn)− fK(Zn + c)|1 {|Tn − c| ≤ ε′}| Fn]

≤ 2‖f‖∞P ( |Tn − c| ≥ ε′| Fn) + ε.

We know that
E [P ( |Tn − c| ≥ ε′| Fn)]→ 0,

and thus
P ( |Tn − c| ≥ ε′| Fn)→P 0.

This proves that the first term vanishes in probability. For the second term notice that z 7→ fK(·+ c) is
continuous and bounded, and therefore the second term also vanishes in probability.
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A.10 Proof of Proposition 7

We want to study IF (Ψ, QT ) where Ψ (u) = ∇ϑ logW (θ̂, u) is only a function of the auxiliary variables.
To be precise, we should write ΨT

(
uT
)

= ∇ϑ logWT (θ̂T , u
T ), however for presentation brevity, we drop

the index T whenever there is no possible confusion. The kernel QT has been designed as a pseudo-
marginal-like algorithm targeting π (dθ) while U are auxiliary variables. However, we can also think of
QT as a pseudo-marginal algorithm targeting

π (du) =

ˆ
π (dθ,du) = m (du)

ˆ
p̂(y | θ, u)

p(y | θ)
π (dθ) ,

while θ is an auxiliary variable. In particular, the acceptance probability of the CPM kernel (7) can be
rewritten as

αQ {(θ, u) , (θ′, u′)} = min

{
1, r (u, u′)

π(θ′|u′)q (θ′, θ)

π(θ|u)q (θ, θ′)

}
,

with
r (u, u′) =

π(u′)m (u)

π(u)m (u′)
.

Let us consider the following MH algorithm

Q {(θ, u) , (dθ′,du′)} = K (u,du′)π(dθ′|u′)αQ (u, u′) +
{

1− %Q (u)
}
δ(θ,u) (dθ′,du′) ,

where
αQ (u, u′) = min {1, r (u, u′)}

and 1 − %Q (u) is the corresponding rejection probability. This kernel admits the same invariant distri-
bution as Q and we have ˆ

Θ

Q {(θ, u) , (dθ′,du′)} = Q(u,du′)

where
Q (u,du′) = K (u,du′)αQ (u, u′) +

{
1− %Q (u)

}
δu (du′)

is the ‘ideal’ marginal MH algorithm. The following lemma is an adaptation from (Andrieu and Vihola,
2015, Proposition 2).

Lemma 22. Let g : U2 → R+ be a measurable function. Define

∆Q (g) =

¨
π (dθ,du)

¨
K (u,du′)π(dθ′|u′)αQ (u, u′) g (u, u′) ,

∆Q (g) =

¨
π (dθ,du)

¨
K (u,du′) q (θ,dθ′)αQ {(θ, u) , (θ′, u′)} g (u, u′) .

Then we have ∆Q (g) ≥ ∆Q (g) .

Proof of Lemma 22. We can write for a bounded function g

∆Q (g)−∆Q (g) =

¨
π (du)K (u,du′) g (u, u′)

¨
π (dθ|u) q (θ,dθ′)

[
αQ (u, u′)− αQ {(θ, u) , (θ′, u′)}

]
.

Now we have by Jensen’s inequality
¨

π (dθ|u) q (θ,dθ′)αQ {(θ, u) , (θ′, u′)} =

¨
π (dθ|u) q (θ,dθ′) min

{
1, r (u, u′)

π(θ′|u′)q (θ′, θ)

π(θ|u)q (θ, θ′)

}
≤ min

{
1, r (u, u′)

¨
π (dθ|u) q (θ,dθ′)

π(θ′|u′)q (θ′, θ)

π(θ|u)q (θ, θ′)

}
= αQ (u, u′) .

Hence ∆Q (g) ≥ ∆Q (g) for bounded g. Monotone convergence and a truncation argument shows this is
true for general g.
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The following Proposition follows now directly from Lemma 22 and by checking that the arguments of
the proof of Theorem 7 in (Andrieu and Vihola, 2015, Proposition 2) are still valid in our scenario.

Proposition 23. Let h : U → R satisfying π
(
h2
)
<∞ then IF(h,Q) ≥ IF(h,Q).

Armed with Proposition 23, we will show that almost surely IF(Ψ, Q) ≥ CVπ (Ψ) which implies that
IF(Ψ, Q) ≥ CVπ (Ψ). Let e

(
Ψ, Q

)
(dλ) denote the spectral measure of Ψ w.r.t Q; see, e.g., (Geyer,

1992), (Kipnis and Varadhan, 1986). This measure e
(
Ψ, Q

)
is supported on [−1, 1] as Q is reversible

and
´ 1

−1
e
(
Ψ, Q

)
(dλ) = Vπ (Ψ) . We will show that

ˆ
(1− λ) e

(
Ψ, Q

)
(dλ) ≤ C, (110)

almost surely where the l.h.s. of (110) is the Expected Square Jump Distance (ESJD) of Ψ . By applying
Jensen’s inequality w.r.t. the probability measure e

(
Ψ, Q

)
(dλ) /Vπ (Ψ), the above inequality will imply

that

IF(Ψ, Q) = 2

ˆ
1

1− λ
e
(
Ψ, Q

)
(dλ)

Vπ (Ψ)
− 1

≥ 2´
(1− λ)

e(Ψ,Q)(dλ)

Vπ(Ψ)

− 1 = 2CVπ (Ψ)− 1

almost surely. We now show that (110) holds, at least under severe regularity conditions listed in the
proof which however make the calculations tractable. We postulate that this result holds under much
weaker assumptions.

Proposition 24. Under Assumptions 1 and 8-14, stated below, the inequality (110) holds almost surely.

The lengthy proof of this proposition is deferred to the next section.

A.11 Proof of Proposition 24

For presentation brevity, we will only prove the result for d = 1 and p = 1. Using the notation of Section
A.5 and a similar continuous-time embedding approach, we have for UT (δT ) ∼ KρT

(
UT (0) , ·

)
∇ logWT (θ̂T , U (δT ))−∇ logWT (θ̂T , U (0))

=

T∑
t=1

∇ log ŴT
t (Yt | θ̂T ;U (δT ))−∇ log ŴT

t (Yt | θ̂T ;Ut (0))

=

T∑
t=1

∇ log
(
1 + ηTt

)
=

T∑
t=1

∇ηTt
1 + ηTt

where

ηTt =
ŴT
t (Yt | θ̂T ;U (δT )

ŴT
t (Yt | θ̂T ;Ut (0)

− 1.

To simplify notation, we have written ∇ to denote the derivative w.r.t. ϑ evaluated at θ̂T .

We will make here the following assumptions. Here B
(
θ
)
denotes a neighbourhood of θ.

Assumption 8. There exists ε > 0 such that for T large enough we have ηTt > −1 + ε for all t in
probability.

Assumption 9. The function u 7−→ πT (u) /πT (u| θ̂T ) is bounded w.r.t u for T large enough in proba-
bility.

Assumption 10. We have

lim sup
T

sup
θ∈B(θ)

E
[(
ŴT

1 (θ)
)−14

∣∣∣∣Y1

]
< B (Y1) .

45



Assumption 11. We have

lim sup
T

sup
θ∈B(θ)

E
[(
∇ŴT

1 (θ)
)16
∣∣∣∣Y1

]
< B (Y1) .

Assumption 12. We have

lim sup
T

sup
θ∈B(θ)

{
E
[
|∂u$ (Y1, U1,1 (0) ; θ)|8 + |∂u$ (Y1, U1,1 (0) ; θ)U1,1 (0)|8

∣∣∣Y1

]
+ E

[
|∂u,u$ (Y1, U1,1 (0) ; θ)|8

∣∣∣Y1

]}
< B (Y1) .

Assumption 13. We have

lim sup
T

sup
θ∈B(θ)

E
[
|∂u,ϑ$ (Y1, U1,1 (0) ; θ)|16

+ |∂u,ϑ$ (Y1, U1,1 (0) ; θ)U1,1 (0)|8

+ |∂u,u,ϑ$ (Y1, U1,1 (0) ; θ)|8
∣∣∣Y1

]
< B (Y1) .

Assumption 14. We have
EY1∼µ

[
B (Y1)

4
]
<∞.

To establish the result of the proposition, it is enough to show that the ESJD is O (1) almost surely.
All the expectations in this section have to be understood conditional expectations w.r.t. YT . Under
Assumption 8, we have

∇ logWT (θ̂, U (δT ))−∇ logWT (θ̂, U (0)) =

T∑
t=1

∇ηTt +∇ηTt .f(ηTt ),

with|f(x)| . x. In the sequel, the generic notation c is used to denote a constant that is independent
of T . To alleviate notations, we do not use distinct indices each time such a constant appears, and keep
using the notation c even though the corresponding constant may vary from one statement to the other.
However, to avoid confusion, we sometimes make a distinction between such constants by using c, c′, c′′
inside an argument. We also further drop the dependence of WT , θ̂T and δT on T when no confusion is
possible.

Using Assumption 9, the ESJD satisfies

EU(0)∼π


∇W

(
θ̂, U (0)

)
W
(
θ̂, U (0)

) − ∇W
(
θ̂, U (δ)

)
W
(
θ̂, U (δ)

)
2

·min

{
1,

(
π (U (δ))

m (U (δ))

)
/

(
π (U (0))

m (U (0))

)}
= Ẽ

 π (U (0))

π
(
U (0)| θ̂

)
∇W

(
θ̂, U (0)

)
W
(
θ̂, U (0)

) − ∇W
(
θ̂, U (δ)

)
W
(
θ̂, U (δ)

)
2

·min

{
1,

(
π (U (δ))

m (U (δ))

)
/

(
π (U (0))

m (U (0))

)}
≤ Ẽ

 π (U (0))

π
(
U (0)| θ̂

)
∇W

(
θ̂, U (0)

)
W
(
θ̂, U (0)

) − ∇W
(
θ̂, U (δ)

)
W
(
θ̂, U (δ)

)
2
 .

≤ c Ẽ

( T∑
t=1

∇ηTt +∇ηTt .f(ηTt )

)2


≤ c′
Ẽ

( T∑
t=1

∇ηTt

)2
+ Ẽ

( T∑
t=1

∇ηTt .f(ηTt )

)2


where Ẽ is to be understood in the rest of this section as having U (0) ∼ π
(
·| θ̂
)
.
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A.11.1 Decomposition of ηTt

We have
ηTt = LTt +MT

t ,

where

LTt =

ˆ δT

0

1

NŴT
t

(
θ̂
) N∑
i=1

{
−∂u$

(
Yt, Ut,i (s) ; θ̂

)
UTt,i (s) + ∂2

u,u$
(
Yt, Ut,i (s) ; θ̂

)}
ds,

MT
t =

ˆ δT

0

√
2

NŴT
t

(
θ̂
) N∑
i=1

∂u$
(
Yt, Ut,i (s) ; θ̂

)
dBit,s.

Here we write
∇LTt = ∇LTt,1 +∇LTt,2, ∇MT

t = ∇MT
t,1 +∇MT

t,2,

where

∇LTt,1 =

ˆ δT

0

1

NŴT
t

(
θ̂
) N∑
i=1

{
−∂u,ϑ$

(
Yt, Ut,i (s) ; θ̂

)
UTt,i (s) + ∂u,u,ϑ$

(
Yt, Ut,i (s) ; θ̂

)}
ds,

∇LTt,2 = −
ˆ δT

0

∑N
i=1

{
−∂u$

(
Yt, Ut,i (s) ; θ̂

)
UTt,i (s) + ∂2

u,u$
(
Yt, Ut,i (s) ; θ̂

)}
∇ log ŴT

t

(
θ̂
)

NŴT
t

(
θ̂
) ds,

∇MT
t,1 =

ˆ δT

0

√
2

NŴT
t

(
θ̂
) N∑
i=1

∂u,ϑ$
(
Yt, Ut,i (s) ; θ̂

)
dBit,s,

∇MT
t,2 = −

ˆ δT

0

√
2∇ŴT

t

(
θ̂
)

N
(
ŴT
t

(
θ̂
))2

(
N∑
i=1

∂u$
(
Yt, Ut,i (s) ; θ̂

))
dBit,s.

A.11.2 Control of the term
(∑T

t=1∇ηTt
)2

By the Cp inequality, we have

Ẽ

( T∑
t=1

∇LTt,1 +∇LTt,2 +∇MT
t

)2
 ≤ c

Ẽ

( T∑
t=1

∇LTt,1

)2
+ Ẽ

( T∑
t=1

∇LTt,2

)2
+ Ẽ

( T∑
t=1

∇MT
t

)2
 .

(111)
We now need to control the three terms appearing on the r.h.s. of (111).

Term ∇LTt,1. We have

Ẽ

( T∑
t=1

∇LTt,1

)2
 =

T∑
t=1

Ẽ
[(
∇LTt,1

)2]
+

T∑
t,s:t 6=s

Ẽ
[
∇LTt,1.∇LTs,1

]
. (112)

We have for s 6= t

Ẽ
[
∇LTt,1 ∇LTs,1

]
= Ẽ

[
∇LTt,1 ∇LTs,1

]
= Ẽ

[
∇LTt,1

]
Ẽ
[
∇LTs,1

]
= 0.

Now we have

Ẽ
[(
∇LTt,1

)2]
= Ẽ


ˆ δT

0

1

NŴT
t

(
θ̂
) N∑
i=1

{
−∂u,ϑ$

(
Yt, Ut,i (s) ; θ̂

)
UTt,i (s) + ∂u,u,ϑ$

(
Yt, Ut,i (s) ; θ̂

)}
ds

2

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= E

[(∏
r 6=t

ŴT
r

(
θ̂
))(

ŴT
t

(
θ̂
))−1

×

(ˆ δT

0

1

N

N∑
i=1

{
−∂u,ϑ$

(
Yt, Ut,i (s) ; θ̂

)
Ut,i (s) + ∂u,u,ϑ$

(
Yt, Ut,i (s) ; θ̂

)}
ds

)2 ]

≤ sup
θ∈B(θ)

E

(ˆ δT

0

1

N

N∑
i=1

{
−∂u,ϑ$ (Yt, Ut,i (s) ; θ)UTt,i (s) + ∂u,u,ϑ$ (Yt, Ut,i (s) ; θ)

}
ds

)4
1/2

× sup
θ∈B(θ)

E
[(
ŴT
t (θ)

)−2
]1/2

≤ c (δT )
2

N
B (Yt)

1/14+1/4 ≤ c′ N
T 2
B (Yt)

1/14+1/4
,

where we have used Assumptions 10 and 13, the Cauchy-Schwarz inequality and the fact that for any f

E

(ˆ δT

0

f (Ut (s)) ds

)4
 = δ4

TE

(ˆ δT

0

f (Ut (s))
ds

δT

)4


≤ δ4
TE

[ˆ δT

0

f4 (Ut (s))
ds

δT

]
= δ4

TE
[
f4 (Ut (0))

]
(by stationarity).

Further on, we will not emphasize that the constant appearing in our upper bounds are a power of B (Yt),
which is assumed to have a finite expectation under the distribution µ of the observations under Assump-
tion 14. Overall (112) thus contributes O (N/T ) almost surely by the SLLN. To shorten presentation,
we keep the details to a minimum from now on.

Term ∇LTt,2.We have

Ẽ

( T∑
t=1

∇LTt,2

)2
 =

T∑
t=1

Ẽ
[(
∇LTt,2

)2]
+

T∑
t,s:t 6=s

Ẽ
[
∇LTt,2.∇LTs,2

]
. (113)

We have for s 6= t
Ẽ
[
∇LTt,2.∇LTs,2

]
= Ẽ

[
∇LTt,2

]
Ẽ
[
∇LTs,2

]
and∣∣∣Ẽ [∇LTt,2]∣∣∣ =

1

N

∣∣∣∣∣E
[
−∇ log ŴT

t

(
θ̂
)ˆ δT

0

N∑
i=1

{
−∂u$

(
Yt, U

T
t,i (s) ; θ̂

)
UTt,i (s) + ∂2

u,u$
(
Yt, U

T
t,i (s) ; θ̂

)}
ds

]∣∣∣∣∣
≤ 1

N
sup

θ∈B(θ)
E
[(
∇ log ŴT

t (θ)
)2
]1/2

× sup
θ∈B(θ)

E

(ˆ δT

0

N∑
i=1

{
−∂u$

(
Yt, U

T
t,i (s) ; θ

)
UTt,i (s) + ∂2

u,u$
(
Yt, U

T
t,i (s) ; θ

)}
ds

)2


1/2

=
1

N
sup

θ∈B(θ)
E


(
∇ŴT

t (θ)
)2

(
ŴT
t (θ)

)2


1/2

× sup
θ∈B(θ)

E

(ˆ δT

0

N∑
i=1

{
−∂u$

(
Yt, U

T
t,i (s) ; θ

)
UTt,i (s) + ∂2

u,u$
(
Yt, U

T
t,i (s) ; θ

)}
ds

)2
1/2

=
1

N
sup

θ∈B(θ)
E
[(
∇ŴT

t (θ)
)4
]1/2

sup
θ∈B(θ)

E
[(
ŴT
t (θ)

)−4
]1/2
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×
√
N sup

θ∈B(θ)
E

(ˆ δT

0

{
−∂u$

(
Yt, U

T
t,1 (s) ; θ

)
UTt,i (s) + ∂2

u,u$
(
Yt, U

T
t,1 (s) ; θ

)}
ds

)2


1/2

≤ c 1

N
√
N

√
NδT ≤ c′

1

T
.

We have

Ẽ
[(
∇LTt,2

)2]

= E

W (
θ̂, U (0)

)
.

− ˆ δT

0

∑N
i=1

{
−∂u$

(
Yt, U

T
t,i (s) ; θ̂

)
UTt,i (s) + ∂2

u,u$
(
Yt, U

T
t,i (s) ; θ̂

)}
∇ŴT

t

N
(
ŴT
t

)2 ds


2

= E


(
∇ log ŴT

t

(
θ̂
))2

ŴT
t

(
θ̂
) .

(
−
ˆ δT

0

1

N
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ŴT
t (θ)

)2


1/2

× sup
θ∈B(θ)

E

(−ˆ δT

0

1

N

N∑
i=1

{
−∂u$

(
Yt, U

T
t,i (s) ; θ

)
UTt,i (s) + ∂2

u,u$
(
Yt, U

T
t,i (s) ; θ

)}
ds

)4


1/2

≤ c N
T 2

sup
θ∈B(θ)

E
[(
ŴT
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Thus the term (113) is O (1) almost surely.
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Hence the term (114) is overall O (1) almost surely.

Term ∇MT
t,2. We have

Ẽ
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Hence the term (115) is overall O (1) almost surely.

A.11.3 Control of
∑T
t=1∇ηTt .f(ηTt )

We have
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( T∑
t=1

(
∇ηTt

)2)2
1/2

Ẽ
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Control of
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ŴT
t (θ)

)−6
]1/2

1

N2

ˆ δT

0

sup
θ∈B(θ)

E
((
∂u,ϑ$

(
Yt, U

T
t,1 (0) ; θ

))8)1/4

ds

2

≤ c′′

T 2

and

Ẽ
[(
∇MT

t,2

)4]
= E

W (
θ̂, U (0)

)
.

ˆ δT

0

√
2∇ŴT
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Combining all the terms, we have shown that the ESJD is O (1) almost surely.
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