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ABSTRACT
Many Markov chain Monte Carlo techniques currently available rely on discrete-time reversible Markov
processes whose transition kernels are variations of the Metropolis–Hastings algorithm. We explore and
generalize an alternative scheme recently introduced in the physics literature (Peters and de With 2012)
where the target distribution is explored using a continuous-time nonreversible piecewise-deterministic
Markov process. In the Metropolis–Hastings algorithm, a trial move to a region of lower target density,
equivalently of higher “energy,” than the current state can be rejected with positive probability. In this
alternative approach, a particle moves along straight lines around the space and, when facing a high
energy barrier, it is not rejected but its path is modified by bouncing against this barrier. By reformulating
this algorithm using inhomogeneous Poisson processes, we exploit standard sampling techniques to
simulate exactly this Markov process in a wide range of scenarios of interest. Additionally, when the target
distribution is given by a product of factors dependent only on subsets of the state variables, such as
the posterior distribution associated with a probabilistic graphical model, this method can be modified
to take advantage of this structure by allowing computationally cheaper “local” bounces, which only
involve the state variables associated with a factor, while the other state variables keep on evolving. In this
context, by leveraging techniques from chemical kinetics, we propose several computationally efficient
implementations. Experimentally, this new class of Markov chain Monte Carlo schemes compares favorably
to state-of-the-art methods on various Bayesian inference tasks, including for high-dimensional models
and large datasets. Supplementary materials for this article are available online.

1. Introduction

Markov chain Monte Carlo (MCMC) methods are standard
tools to sample from complex high-dimensional probability
measures. Many MCMC schemes available at present are based
on the Metropolis-Hastings (MH) algorithm and their effi-
ciency is strongly dependent on the ability of the user to design
proposal distributions capturing the main features of the target
distribution; see Liu (2008) for a comprehensive review. We
examine, analyze, and generalize here a different approach to
sample from distributions on R

d that has been recently pro-
posed in the physics literature (Peters and deWith 2012). Let the
energy be defined as the negative logarithm of an unnormalized
version of the target density. In this methodology, a particle
explores the space by moving along straight lines and, when it
faces a high energy barrier, it bounces against the contour lines
of this energy. This nonreversible rejection-freeMCMCmethod
will be henceforth referred to as the bouncy particle sampler
(BPS). This algorithm and closely related schemes have already
been adopted to simulate complex physical systems such as
hard spheres, polymers, and spin models (Michel, Kapfer, and
Krauth 2014; Kampmann, Boltz, and Kierfeld 2015; Michel,
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Mayer, and Krauth 2015; Nishikawa, Michel, and Krauth 2015).
For these models, it has been demonstrated experimentally that
such methods can outperform state-of-the-art MCMCmethods
by up to several orders of magnitude.

However, the implementation of the BPS proposed in Peters
and de With (2012) is not applicable to most target distribu-
tions arising in statistics. In this article, we make the following
contributions:

Simulation schemes based on inhomogeneous Poisson processes:
By reformulating explicitly the bounces times of the BPS as
the first arrival times of inhomogeneous Poisson processes
(PP), we leverage standard sampling techniques (Devroye
1986, chap. 6) and methods from chemical kinetics (Thanh
and Priami 2015) to obtain new computationally efficient
ways to simulate the BPS process for a large class of target
distributions.

Factor graphs:When the target distribution can be expressed as a
factor graph (Wainwright and Jordan 2008), a representation
generalizing graphical models where the target is given by a
product of factors and each factor can be a function of only a
subset of variables, we adapt a physical multi-particle system
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method discussed in Peters and de With (2012, sec. III) to
achieve additional computational efficiency. This local ver-
sion of the BPS only manipulates a restricted subset of the
state components at each bounce but results in a change of all
state components, not just the one being updated contrary to
the Gibbs sampler.

Ergodicity analysis: We present a proof of the ergodicity of BPS
when the velocity of the particle is additionally refreshed at
the arrival times of a homogeneous PP. When this refresh-
ment step is not carried out, we exhibit a counter-example
where ergodicity does not hold.

Efficient refreshment: We propose alternative refreshment
schemes and compare their computational efficiency
experimentally.

Empirically, these new MCMC schemes compare favorably
to state-of-the-art MCMC methods on various Bayesian infer-
ence problems, including for high-dimensional scenarios and
large datasets. Several additional original extensions of the BPS
including versions of the algorithm and distributions restricted
to a compact support can be found in Bouchard-Côté, Vollmer,
and Doucet (2015). For brevity, these are not discussed here.

The rest of this article is organized as follows. In Section 2, we
introduce the basic version of the BPS, propose original ways
to implement it, and prove its ergodicity under weak assump-
tions. Section 3 presents a modification of the basic BPS, which
exploits a factor graph representation of the target distribution
and develops computationally efficient implementations of this
scheme. In Section 4, we demonstrate this methodology on var-
ious Bayesian models. The proofs are given in the the supple-
mentary material available online.

2. The Bouncy Particle Sampler

2.1. Problem Statement and Notation

Consider a probability distribution π on R
d, equipped with the

Borel σ -algebra B(Rd ). We assume that π admits a probabil-
ity density with respect to the Lebesgue measure dx and slightly
abuse notation by denoting also this density by π . In most prac-
tical scenarios, we only have access to an unnormalized version

of this density, that is,

π (x) = γ (x)
Z ,

where γ : Rd → (0,∞) can be evaluated pointwise but the nor-
malizing constant Z = ∫

Rd γ (x)dx is unknown. We call

U (x) = −log γ (x)
the associated energy, which is assumed continuously differen-
tiable, and we denote by ∇U (x) = ( ∂U (x)

∂x1
, . . . , ∂U (x)

∂xd
)� the gra-

dient of U evaluated at x. We are interested in approximating
numerically the expectation of arbitrary test functionsϕ : Rd →
R with respect to π .

2.2. AlgorithmDescription

The BPS methodology introduced in Peters and deWith (2012)
simulates a continuous piecewise linear trajectory {x(t )}t≥0 in
R

d . It has been informally derived as a continuous-time limit
of the Metropolis algorithm in Peters and de With (2012). Each
segment in the trajectory is specified by an initial position
x(i) ∈ R

d , a length τi+1 ∈ R
+, and a velocity v (i) ∈ R

d (example
shown in Figure 1, left). We denote the times where the velocity
changes by ti =

∑i
j=1 τ j for i ≥ 1, and set t0 = 0 for conve-

nience. The position at time t ∈ [ti, ti+1) is thus interpolated
linearly, x(t ) = x(i) + v (i)(t − ti), and each segment is con-
nected to the next, x(i+1) = x(i) + v (i)τi+1. The length of these
segments is governed by an inhomogeneous PP of intensity
function λ : Rd × R

d → [0,∞)
λ (x, v ) = max {0, 〈∇U (x) , v〉} . (1)

When the particle bounces, its velocity is updated in the same
way as a Newtonian elastic collision on the hyperplane tangen-
tial to the gradient of the energy. Formally, the velocity after
bouncing is given by

R (x) v =
(
Id − 2

∇U (x) {∇U (x)}�
‖∇U (x)‖2

)
v

= v − 2
〈∇U (x) , v〉
‖∇U (x)‖2 ∇U (x) , (2)

Figure . Illustration of BPS on a standard bivariate Gaussian distribution. Left and top right: see Section .; bottom right: see Example . The stars represent a realization
of an inhomogeneous Poisson process with intensity given by the solid line.
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where Id denotes the d × d identity matrix, ‖ · ‖ the Euclidean
norm, and 〈w, z〉 = wt z the scalar product between column
vectorsw, z. (Computations of the formR(x)v are implemented
via the right-hand side of Equation (2), which takes time O(d)
rather than the left-hand side, which would take time O(d2).)
Peters and deWith (2012) also refreshed the velocity at periodic
times. We slightly modify their approach by performing a
velocity refreshment at the arrival times of a homogeneous PP
of intensity λref ≥ 0, λref being a parameter of the algorithm.
A similar refreshment scheme was used for a related process in
Michel, Kapfer, and Krauth (2014). Throughout the article, we
use the terminology “event” for a time at which either a bounce
or a refreshment occurs. The basic version of the BPS algorithm
proceeds as follows:

Algorithm 1 Basic BPS algorithm
1. Initialize

(
x(0), v (0)

)
arbitrarily on R

d × R
d and let T

denote the requested trajectory length.
2. For i = 1, 2, . . .

a. Simulate the first arrival time τ bounce ∈ (0,∞) of a PP
of intensity

χ (t ) = λ(x(i−1) + v (i−1)t, v (i−1)).

b. Simulate τ ref ∼ Exp
(
λref
)
.

c. Set τi← min (τ bounce, τ ref ) and compute the next
position using

x(i)← x(i−1) + v (i−1)τi. (3)

d. If τi = τ ref , sample the next velocity v (i) ∼ N (0d, Id ).
e. If τi = τ bounce, compute the next velocity v (i) using

v (i)← R
(
x(i)
)
v (i−1). (4)

f. If ti =
∑i

j=1 τ j ≥ T exit For Loop (line 2).

In the algorithm above, exp(δ) denotes the exponential
distribution of rate δ and N (0d, Id ) the standard normal on
R

d . Refer to Figure 1 for an example of a trajectory gener-
ated by BPS on a standard bivariate Gaussian target distribu-
tion. An example of a bounce time simulation is shown in
Figure 1, top right, for the segment between the first and second
events—the intensity χ(t ) (turquoise) is obtained by threshold-
ing
〈∇U (x(1) + v (1)t ), v (1)

〉
(purple, dashed); arrival times of the

PP of intensity χ(t ) are denoted by stars.
We will show further that the transition kernel of the BPS

process admits π as invariant distribution for any λref ≥ 0 but
it can fail to be irreducible when λref = 0 as demonstrated in
Section 4.1.

It is thus critical to use λref > 0. Our proof of invariance and
ergodicity can accommodate some alternative refreshment steps
2d. One such variant, which we call restricted refreshment, sam-
ples v (i) uniformly on the unit hypersphere Sd−1 = {x ∈ R

d :
‖x‖ = 1}. We compare experimentally these two variants and
others in Section 4.3.

2.3. Algorithms for Bounce Time Simulation

Implementing BPS requires sampling the first arrival time
τ of a one-dimensional inhomogeneous PP � of intensity

χ(t ) = λ(x+ vt, v ) given by (1). Simulating such a process is a
well-studied problem; see Devroye (1986, chap. 6, sec. 1.3). We
review here threemethods and illustrate how they can be used to
implement BPS for examples from Bayesian statistics. The first
method described in Section 2.3.1 will be particularly useful
when the target is log-concave, while the two others described
in Sections 2.3.2 and 2.3.3 can be applied to more general
scenarios.

... Simulation Using a Time-Scale Transformation
If we letΞ(t ) = ∫ t0 χ(s)ds, then the PP� satisfies

P(τ > u) = P(� ∩ [0, u) = ∅) = exp(−Ξ(u)),
and therefore τ can be simulated from a uniform variate V ∼
U (0, 1) via the identity

τ = Ξ−1(− log(V )), (5)

where Ξ−1 denotes the quantile function of Ξ, Ξ−1(p) =
inf {t : p ≤ Ξ(t )} . Refer to Figure 1, top right for a graphical
illustration. This identity corresponds to the method proposed
in Peters and deWith (2012) to determine the bounce times and
is also used inMichel, Kapfer, andKrauth (2014);Michel,Mayer,
and Krauth (2015); Nishikawa, Michel, and Krauth (2015) to
simulate related processes.

In general, it is not possible to obtain an analytical expres-
sion for τ . However, when the target distribution is strictly log-
concave and differentiable, it is possible to solve Equation (5)
numerically (see Example 1).

Example 1. Log-concave densities. If the energy is strictly convex
(see Figure 1, bottom right), we can minimize it along the line
specified by (x, v )

τ∗ = argmint :t≥0 U (x+ vt ) ,

where τ∗ is well defined and unique by strict convexity. On
the interval [0, τ∗), which might be empty, we have dU (x+
vt )/dt < 0 and dU (x+ vt )/dt ≥ 0 on [τ∗,∞). The solution τ
of (5) is thus necessarily such that τ ≥ τ∗ and (5) can be rewrit-
ten using the gradient theorem as∫ τ

τ∗

dU (x+ vt )
dt

dt = U (x+ vτ )−U (x+ vτ∗) = − logV.

(6)
Even if we only compute U pointwise through a black box, we
can solve (6) through line search within machine precision.

We note that (6) also provides an informal connection
between the BPS andMHalgorithms. Exponentiating this equa-
tion, we get indeed

π(x+ vτ )

π(x+ vτ∗)
= V.

Hence, in the log-concave case, andwhen the particle is climbing
the energy ladder (i.e., τ∗ = 0), BPS can be viewed as “swapping”
the order of the steps taken by theMHalgorithm. In the latter, we
first sample a proposal and second sample a uniform V to per-
form an accept-reject decision. With BPS,V is first drawn then
the maximum distance allowed by the same MH ratio is trav-
eled. As for the case of a particle going down the energy ladder,
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the behavior of BPS is simpler to understand: bouncing never
occurs. We illustrate this method for Gaussian distributions.

Multivariate Gaussian distributions. Let U (x) = ‖x‖2, then
simple calculations yield

τ = 1
‖v‖2

⎧⎨
⎩−〈x, v〉 +

√
−‖v‖2 logV if 〈x, v〉 ≤ 0,

−〈x, v〉 +
√
〈x, v〉2 − ‖v‖2 logV otherwise.

(7)

... Simulation Using Adaptive Thinning
When it is difficult to solve (5), the use of an adaptive thinning
procedure provides an alternative. Assume we have access to
local-in-time upper bounds χ̄ s(t ) on χ(t ), that is,

χ̄s(t ) = 0 for all t < s,
χ̄ s(t ) ≥ χ(t ) for all s ≤ t ≤ s+
(s),

where � is a positive function (standard thinning corresponds
to
 = +∞). Assume additionally that we can simulate the first
arrival time of the PP �̄s with intensity χ̄s(t ). Such bounds can
be constructed based on upper bounds on directional deriva-
tives of U provided the remainder of the Taylor expansion can
be controlled . Algorithm 2 shows the pseudocode for the adap-
tive thinning procedure.

Algorithm 2 Simulation of the first arrival time of a PP through
thinning

1. Set s← 0, τ ← 0.
2. Do

a. Set s← τ .
b. Sample τ as the first arrival point of the PP �̄s of

intensity χ̄s.
c. If �̄s = {∅} then set τ ← s+�(s).
d. If s+�(s) ≤ τ set s← s+�(s) and go to (b).
e. WhileV > {χ (τ ) /χ̄s (τ )}whereV ∼ U (0, 1).

3. Return τ .

The case V > {χ(τ )/χ̄s(τ )} corresponds to a rejection step
in the thinning algorithm but, in contrast to rejection steps that
occur in standard MCMC samplers, in the BPS algorithm this
means that the particle does not bounce and just coasts. Prac-
tically, we would like ideally � and the ratio χ(τ )/χ̄s(τ ) to be
large. Indeed this would avoid having to simulate toomany can-
didate events from �̄s, which would be rejected as these rejec-
tion steps incur a computational cost.

... Simulation Using Superposition and Thinning
Assume that the energy can be decomposed as

U (x) =
m∑
j=1

U [ j] (x) , (8)

then

χ (t ) ≤
m∑
j=1
χ [ j] (t ) ,

where χ [ j](t ) = max(0,
〈∇U [ j](x+ tv ), v

〉
) for j = 1, . . . ,m.

It is therefore possible to use the thinning algorithm of
Section 2.3.2 with χ̄0(t ) =

∑m
j=1 χ

[ j](t ) for t ≥ 0 (and 
 =

+∞), as we can simulate from �̄0 via superposition by simulat-
ing the first arrival time τ [ j] of each PPwith intensityχ [ j](t ) ≥ 0
then returning

τ = min j=1,...,m τ [ j].

Example 2. Exponential families. Consider a univariate expo-
nential family with parameter x, observation y, sufficient statis-
tic φ(y), and log-normalizing constant A(x). If we assume a
Gaussian prior on x, we obtain

U (x) = x2/2︸︷︷︸
U [1](x)

+−xφ(y)︸ ︷︷ ︸
U [2](x)

+ A(x)︸︷︷︸
U [3](x)

.

The time τ [1] is computed analytically in Example 1 whereas the
times τ [2] and τ [3] are given by

τ [2] =
{

logV [2]

vφ(y) if vφ(y) < 0,
+∞ otherwise,

and

τ [3] =
{
τ̃ [3] if τ̃ [3] > 0,
+∞ otherwise,

with τ̃ [3] = (A−1(− logV [3] + A(x))− x)/v and V [2],V [3] ∼
U (0, 1). For example, with a Poisson distribution with natural
parameter x, we obtain

τ̃ [3] = log(− logV [3] + exp(x))− x
v

.

Example 3. Logistic regression. The class label of the data point
r ∈ {1, 2, . . . ,R} is denoted by yr ∈ {0, 1} and its covariate k ∈
{1, 2, . . . , d} by ιr,k where we assume that ιr,k ≥ 0 (this assump-
tion can be easily relaxed as demonstrated but would make the
notation more complicated; see Galbraith (2016) for details).
The parameter x ∈ R

d is assigned a standard Gaussian prior
density denoted by ψ , yielding the posterior density

π(x) ∝ ψ(x)
R∏

r=1

exp(yr 〈ιr, x〉)
1+ exp 〈ιr, x〉 . (9)

Using the superposition and thinning method (Section 2.3.3),
simulation of the bounce times can be broken into subprob-
lems corresponding to R+ 1 factors: one factor coming from
the prior, with corresponding energy

U [R+1](x) = − logψ(x) = ‖x‖2/2+ constant, (10)

and R factors coming from the likelihood of each data point,
with corresponding energy

U [r](x) = log(1+ exp 〈ιr, x〉)− yr 〈ιr, x〉 . (11)

Simulation of τ [R+1] is covered in Example 1. Simulation of
τ [r] for r ∈ {1, 2, . . . ,R} can be approached using thinning. In
Section 3.1 of the supplementary material, we show that

χ [r](t ) ≤ χ̄ [r] =
d∑

k=1
1[vk(−1)yr ≥ 0]ιr,k|vk|. (12)

Since the bound is constant for a given v , we sample τ [r] by sim-
ulating an exponential random variable.
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2.4. Estimating Expectations

Given a realization of x(t ) over the interval [0,T ], where T is
the total trajectory length, the expectation

∫
Rd ϕ(x)π(dx) of a

function ϕ : Rd → R with respect to π can be estimated using

1
T

∫ T

0
ϕ (x (t )) dt = 1

T

(n−1∑
i=1

∫ τi

0
ϕ
(
x(i−1) + v (i−1)s

)
ds

+
∫ tn−T

0
ϕ
(
x(n−1) + v (n−1)s

)
ds
)
;

see, for example, Davis (1993). When ϕ(x) = xk, k ∈
{1, 2, . . . , d}, we have∫ τi

0
ϕ
(
x(i−1) + v (i−1)s

)
ds = x(i−1)k τi + v (i−1)k

τ 2i

2
.

When the above integral is intractable, we may just discretize
x(t ) at regular time intervals to obtain an estimator

1
L

L−1∑
l=0

ϕ (x (lδ)) ,

where δ > 0 is the mesh size and L = 1+ �T/δ�. Alterna-
tively, we could approximate these univariate integrals through
quadrature.

2.5. Theoretical Results

An informal proof establishing that the BPSwithλref = 0 admits
π as invariant distribution is given in Peters and deWith (2012).
As the BPS process z(t ) = (x(t ), v(t )) is a piecewise determin-
istic Markov process, the expression of its infinitesimal genera-
tor can be established rigorously using Davis (1993). We show
here that this generator has invariant distribution π whenever
λref ≥ 0 and prove that the resulting process is additionally
ergodic when λref > 0. We denote by Ez[h(z(t ))] the expecta-
tion of h(z(t )) under the law of the BPS process initialized at
z(0) = z.

Proposition 1. For any λref ≥ 0, the infinitesimal generator L of
the BPS is defined for any sufficiently regular bounded function
h : Rd × R

d → R by

Lh(z) = lim
t↓0

Ez [h (z (t ))]− h(z)
t

= 〈∇xh (x, v ) , v〉 + λ (x, v ) {h(x,R (x) v )− h(z)}
+ λref

∫ (
h(x, v ′)− h(x, v )

)
ψ
(
v ′
)
dv ′, (13)

where we recall that ψ(v ) denotes the standard multivariate
Gaussian density on R

d .
This transition kernel of the BPS is nonreversible and admits

ρ as invariant probability measure, where the density of ρ w.r.t.
Lebesgue measure on R

d × R
d is given by

ρ(z) = π (x) ψ (v ) . (14)

If we add the conditionλref > 0,we get the following stronger
result.

Theorem 1. If λref > 0 then ρ is the unique invariant probability
measure of the transition kernel of the BPS and for ρ-almost
every z(0) and h integrable with respect to ρ

lim
T→∞

1
T

∫ T

0
h(z (t ))dt =

∫
h(z)ρ(z)dz a.s.

In fact, Lemma A.3 establishes a minorization so it is only
left to establish a Lyapunov function to establish polynomial or
geometric ergodicity in total variation.We exhibit in Section 4.1
a simple example where Pt is not ergodic for λref = 0.

3. The Local Bouncy Particle Sampler

3.1. Structured Target Distribution and Factor Graph
Representation

In numerous applications, the target distribution admits some
structural properties that can be exploited by sampling algo-
rithms. For example, the Gibbs sampler takes advantage of
conditional independence properties. We present here a “local”
version of the BPS introduced in Peters and de With (2012,
sec. III), which can similarly exploit these properties and, more
generally, any representation of the target density as a product
of positive factors

π (x) ∝
∏
f∈F
γ f
(
x f
)
, (15)

where x f is a restriction of x to a subset of the components of x,
and F is an index set called the set of factors. Hence, the energy
associated with π is of the form

U (x) =
∑
f∈F

Uf (x) (16)

with ∂Uf (x)/∂xk = 0 for any variable absent from factor f , that
is, for any k ∈ {1, 2, . . . , d}\Nf .

Such a factorization of the target density can be formalized
using factor graphs (Figure 2, top). A factor graph is a bipartite
graph, with one set of vertices N called the variables, each cor-
responding to a component of x (|N| = d), and a set of vertices
F corresponding to the local factors (γ f ) f∈F . There is an edge
between k ∈ N and f ∈ F if and only if k ∈ Nf .This representa-
tion generalizes undirected graphical models (Wainwright and
Jordan 2008, chap. 2, sec. 2.1.3) as, for example, factor graphs can
have distinct factors connected to the same set of components
(i.e., f �= f ′ with Nf = Nf ′) as in the example of Section 4.6.

3.2. Local BPS: AlgorithmDescription

Similarly to the Gibbs sampler, each step of the local BPSmanip-
ulates only a subset of the d components of x. Contrary to
the Gibbs sampler, the local BPS does not require sampling
from any full conditional distribution and each local calcula-
tion results in a change of all state components, not just the
one being updated—how this can be done implicitly without
manipulating the full state at each iteration is described below.
Related processes exhibiting similar characteristics have been
proposed in Kampmann, Boltz, and Kierfeld (2015), Michel,
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Figure . Top: A factor graph with d = 4 variables and  binary factors, F = {fa, fb, fc}. Bottom: Sample paths of (xi(t ))t≥0 for i = 1, . . . , 4 for the local BPS. Rectangles
represent candidate collision times stored in a priority queue. The exclamation mark shows an example where computation of a candidate collision time can be skipped.
The star shows the quantity t t() used at the end of Section ..

Kapfer, and Krauth (2014), Michel, Mayer, and Krauth (2015),
and Nishikawa, Michel, and Krauth (2015).

For each factor f ∈ F , we define a local intensity functionλ f :
R

d × R
d → R

+ and a local bouncing matrix R f : Rd → R
d×d

by

λ f (x, v ) = max
{
0,
〈∇Uf (x) , v

〉}
, (17)

R f (x) v = v − 2
〈∇Uf (x) , v

〉∇Uf (x)∥∥∇Uf (x)
∥∥2 . (18)

We can check that R f (x) satisfies

k ∈ {1, 2, . . . , d} \Nf =⇒ {R f (x)v}k = vk. (19)

When suitable, we will slightly abuse notation and write R f (x f )

for R f (x) as R f (x f , x− f ) = R f (x f , x′− f ) for any x− f , x′− f ∈
R

d−|Nf |, where |S| denotes the cardinality of a set S. Similarly,
we will use λ f (x f , v f ) for λ f (x, v ).

We define a collection of PP intensities based on the previous
event position x(i−1) and velocity v (i−1): χ f (t ) = λ f (x(i−1) +
v (i−1)t, v (i−1)). In the local BPS, the next bounce time τ is the
first arrival of a PPwith intensityχ(t ) =∑ f∈F χ f (t ). However,
instead of modifying all velocity variables at a bounce as in the
basic BPS, we sample a factor f with probability χ f (τ )/χ(τ )

and modify only the variables connected to the sampled factor.
More precisely, the velocity v f is updated using R f (x f ) defined
in (18). A generalization of the proof of Proposition 1 given
in the supplementary material shows that the local BPS algo-
rithm results in a π-invariant kernel. In the next subsection, we
describe various computationally efficient procedures to simu-
late this process.

For all these implementations, it is useful to encode trajecto-
ries in a sparse fashion: each variable k ∈ N only records infor-
mation at the times t (1)k , t (2)k , . . . where an event (a bounce or
refreshment) affected it. By (17), this represents a sublist of the
list of all event times. At each of those times t (i)k , the com-
ponent’s position x(i)k and velocity v (i)k right after the event is

stored. Let Lk denote a list of triplets (x(i)k , v
(i)
k , t

(i)
k )i≥0, where

x(0)k and v (0)k denote the initial position and velocity and t (0)k = 0
(see Figure 2, where the black dots denote the set of recorded
triplets). This list is sufficient to compute xk(t ) for t ≤ t (|Lk|+1)k .
This procedure is detailed in Algorithm 3 and an example is
shown in Figure 2, where the black square on the first vari-
able’s trajectory shows how Algorithm 3 reconstructs x1(t ) at a
fixed time t : it identifies i(t, 1) = 3 as the index associated with
the largest event time t (3)1 before time t affecting x1 and return
x1(t ) = x(3)1 + v (3)1 (t − t (3)1 ).

Algorithm 3 Computation of xk(t ) from a list of events.
1. Find the index i = i(t, k) associated with the largest time

t (i)k verifying t (i)k ≤ t .
2. Set xk(t )← x(i(t,k))k + (t − t (i(t,k))k )v (i(t,k))k .

3.3. Local BPS: Efficient Implementations

... Implementation via Priority Queue
We can sample arrivals from a PP with intensity χ(t ) =∑

f∈F χ f (t ) using the superposition method of Section 2.3.3,
the thinning step therein being omitted. To implement this
technique efficiently, we store potential future bounce times
(called “candidates”) t f , one for each factor, in a priority queue
Q: only a subset of these candidates will join the lists Lk, which
store past, “confirmed” events. We pick the smallest time inQ to
determine the next bounce time and the next factor f tomodify.
The priority queue structure ensures that finding the minimum
element of Q or inserting/updating an element of Q can be
performed with computational complexity O(log |F|). When
a bounce occurs, a key observation behind efficient imple-
mentation of the local BPS is that not all the other candidate
bounce times need to be resimulated. Suppose that the bounce
was associated with factor f . In this case, only the candidate
bounce times t f ′ corresponding to factors f ′ withNf ′ ∩ Nf �= ∅
need to be resimulated. For example, consider the first bounce
in Figure 2 (shown in purple), which is triggered by factor fa
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(rectangles represent candidate bounce times t f ; dashed lines
connect bouncing factors to the variables that undergo an asso-
ciated velocity change). Then only the velocities for the variables
x1 and x2 need to be updated. Therefore, only the candidate
bounce times for factors fa and fb need to be resimulated while
the candidate bounce time for fc stays constant (this is shown
by an exclamation mark in Figure 2).

The method is detailed in Algorithm 4. Several operations
of the BPS such as Step 4, 6.iii, 6.iv, and 7.ii can be easily
parallelized.

Algorithm 4 Local BPS algorithm (priority queue implementa-
tion)

1. Initialize
(
x(0), v (0)

)
arbitrarily on R

d × R
d .

2. Initialize the global clock T ← 0.
3. For k ∈ N do

a. Initialize the list Lk←
(
x(0)k , v (0)k ,T

)
.

4. Set Q← new queue
(
x(0), v (0),T

)
.

5. Sample tref ∼ Exp
(
λref
)
.

6. While more events i = 1, 2, . . . requested do
a.
(
t, f
)← smallest candidate bounce time

and associated factor in Q.
b. Remove (t, f ) from Q.
c. Update the global clock, T ← t .
d. If T < tref then

i.
(
v f
)
k← v (|Lk|−1)k for all k ∈ Nf .

ii. x f ← x f (T ) (computed using Algorithm 3).
iii. For k ∈ Nf do

A. x(|Lk|)k ← x(|Lk|−1)k + (T − t (|Lk|−1)k )v (|Lk|−1)k ,
where t (|Lk|−1)k and v (|Lk|−1)k are retrieved from Lk.

B. v (|Lk|)k ← {
R f
(
x f
)
v f
}
k.

C. Lk←
{
Lk,
(
x(|Lk|)k , v (|Lk|)k ,T

)}
(add the new

sample to the list).
iv. For f ′ ∈ F : Nf ′ ∩ Nf �= ∅ (note: this includes the

update of f ) do
A. for all k ∈ Nf ′ .
B. x f ′ ← x f ′ (T ) (computed using Algorithm 3).
C. Simulate the first arrival time τ f ′ of a PP of

intensity λ f ′
(
x f ′ + tv f ′ , v f ′

)
on [0,+∞).

D. Set in Q the candidate bounce time associated
with f ′ to the valuet f ′ = T + τ f ′ .

e. Else
i. Sample v ′ ∼ N (0d, Id ).
ii. Q← new queue

(
x (tref ) , v ′, tref

)
where x (tref ) is

computed using Algorithm3.
iii. Set tref ← tref + τref where τref ∼ Exp

(
λref
)
.

7. Return the samples encoded as the lists Lk, k ∈ N.

Algorithm 5 New Queue (x, v,T )
1. For f ∈ F do

a.
(
v f
)
k← v (|Lk|−1)k for all k ∈ Nf .

b. x f ← x f (T ) (computed using Algorithm 3).
c. Simulate the first arrival time τ f of a PP of intensity
λ f
(
x f + tv f , v f

)
on [0,+∞).

d. Set in Q the time associated to f to the value T + τ f .
2. Return Q.

... Implementation via Thinning
When the number of factors involved in Step 6(d)iv is large, the
previous queue-based implementation can be computationally
expensive. Implementing the local BPS in this setup is closely
related to the problem of simulating stochastic chemical kinet-
ics and innovative solutions have been proposed in this area.We
adapt here the algorithm proposed in Thanh and Priami (2015)
to the local BPS context. For ease of presentation, we present
the algorithm without refreshment and only detail the simula-
tion of the bounce times. This algorithm relies on the ability to
compute local-in-time upper bounds on λ f for all f ∈ F . More
precisely, we assume that given a current position x and veloc-
ity v , and 
 ∈ (0,∞], we can find a positive number χ̄ f , such
that for any t ∈ [0,
), we have χ̄ f ≥ λ f (x+ vt, v ).We can also
use this method on a subset G of F and combine it with the pre-
viously discussed techniques to sample candidate bounce times
for factors in F \G but we restrict ourselves to G = F to simplify
the presentation.

Algorithm 6 Local BPS algorithm (thinning implementation)
1. Initialize

(
x(0), v (0)

)
arbitrarily on R

d × R
d .

2. Initialize the global clock T ← 0.
3. Initialize T̄ ←� (time until which local upperbounds are

valid).
4. Compute local-in-time upper bounds χ̄ f for f ∈ F such

that χ̄ f ≥ λ f (x(0) + v (0)t, v (0)) for all t ∈ [0,
).
5. While more events i = 1, 2, . . . requested do

a. Sample τ ∼ Exp (χ̄ ) where χ̄ =∑ f∈F χ̄ f .
b. If

(
T + τ > T̄

)
then

i. x(i)← x(i−1) + v (i−1)(T̄ − T ).
ii. v (i)← v (i−1).
iii. For all f ∈ F , update χ̄ f to ensure that χ̄ f ≥

λ f (x(i) + v (i)t, v (i)) for t ∈ [0,
).
iv. Set T ← T̄ , T̄← T̄ +�.

c. Else
i. x(i)← x(i−1) + v (i−1)τ .
ii. Sample F ∈ F where P

(F = f
) = χ̄ f /χ̄ .

iii. If V < λF
(
x(i), v (i−1)

)
/χ̄F where V ∼ U (0, 1)

then a bounce for factorF occurs at time T .
A. v (i)← RF

(
x(i)
)
v (i−1).

B. For all f ′ ∈ F : Nf ′ ∩ NF �= ∅, update χ̄ f ′ to
ensure that χ̄ f ′ ≥ λ f ′ (x(i) + v (i)t, v (i)) for t ∈
[0, T̄ − T − τ ).

iv. Else
A. v (i)← v (i−1).

v. Set T ← T + τ .

Algorithm 6 will be particularly useful in scenarios where
summing over the bounds (Step 5a) and sampling a factor
(Step 5(c)ii) can be performed efficiently. A scenario where it
is possible to implement these two operations in constant time
is detailed in Section 4.6. Another scenario where sampling
quickly from F is feasible is if the number of distinct upper
bounds is much smaller than the number of factors. For exam-
ple, we only need to sample a factor F uniformly at random if
� = χ̄ f = χ̄ f ′ for all f , f ′ in F and χ̄ = |F| ·� (i.e., no factor
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needs to be inspected to execute Algorithm 5(c)ii) and the thin-
ning procedure in Step 5(c)iii boils down to

V ≤ |F|max
(
0,
〈∇Uf (x(i)), v (i−1)

〉)
χ̄

. (20)

A related approach has been adopted in Bierkens, Fearnhead,
and Roberts (2016) for the analysis of big data. In this partic-
ular scenario, an alternative local BPS can also be implemented
where s > 1 factorsF = (F1, . . . ,Fs) are sampled uniformly at
random without replacement from F , the thinning occurs with
probability

|F |
sχ̄

max

⎛
⎝0, s∑

j=1

〈∇UF j (x
(i)), v (i−1)

〉⎞⎠ (21)

and the components of x belonging to NF bounce based on∑s
j=1 ∇UF j (x). One can check that the resulting dynamics pre-

serves π as an invariant distribution. In contrast to s = 1, this is
not an implementation of local BPS described in Algorithm 6,
but instead this corresponds to a local BPS update for a random
partition of the factors.

4. Numerical Results

4.1. Gaussian Distributions and the Need for Refreshment

We consider an isotropic multivariate Gaussian target distribu-
tion,U (x) = ‖x‖2, to illustrate the need for refreshment. With-
out refreshment, we obtain from Equation (7)

〈
x(i), v (i)

〉 =
{−√− logVi if

〈
x(i−1), v (i−1)

〉 ≤ 0,

−
√〈

x(i−1), v (i−1)
〉2 − logVi otherwise,

and∥∥x(i)∥∥2
=
{∥∥x(i−1)∥∥2 − 〈x(i−1), v (i−1)〉2 − logVi if

〈
x(i−1), v (i−1)

〉 ≤ 0,∥∥x(i−1)∥∥2 − logVi otherwise,

see the supplementary material for details. In particular, these
calculations show that if

〈
x(i), v (i)

〉 ≤ 0 then
〈
x( j), v ( j)

〉 ≤ 0 for
j > i so that ‖x(i)‖2 = ∥∥x(1)∥∥2 − 〈x(1), v (1)〉2 − logVi for i ≥ 2.
In particular for x(0) = e1 and v (0) = e2 with ei being elements

of standard basis of Rd , the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in
Figure 3.

In this scenario, we show that BPS without refreshment
admits a countably infinite collection of invariant distributions.
Let us define r(t ) = ‖x(t )‖ and m(t ) = 〈x(t ), v(t )〉 / ‖x(t )‖
and denote by χk the probability density of the chi distribution
with k degrees of freedom.

Proposition 2. For any dimension d ≥ 2, the process
(r(t ),m(t ))t≥0 is Markov and its transition kernel is invari-
ant with respect to the probability densities { fk(r,m) ∝
χk(
√
2r) · (1−m2)(k−3)/2; k ∈ {2, 3, . . .}}.

By Theorem 1, we have a unique invariant measure as soon
as λref > 0.

Next, we look at the scaling of the effective sample size
(ESS) per CPU second of the basic BPS algorithm for ϕ(x) = x1
when λref = 1 as the dimension d of the isotropic normal tar-
get increases. The ESS is estimated using the R package mcm-
cse (Flegal, Hughes, and Vats 2015) by evaluating the trajectory
on a fine discretization of the sampled trajectory. The results
in log-log scale are displayed in Figure 3. The curve suggests
a decay of roughly d−1.47, slightly inferior to the d−1.25 scaling
for an optimally tuned Hamiltonian Monte Carlo (HMC) algo-
rithm (Creutz 1988, sec. III; Neal 2011, sec. 5.4.4). It should be
noted that BPS achieves this scaling without varying any tuning
parameter, whereas HMC’s performance critically depends on
tuning two parameters (leap-frog stepsize and number of leap-
frog steps). Both BPS and HMC compare favorably to the d−2
scaling of the optimally tuned random walk MH (Roberts and
Rosenthal 2001).

4.2. Comparison of the Global and Local Schemes

We compare the basic “global” BPS of Section 2 to the local
BPS of Section 3 on a sparse Gaussian field. We use a chain-
shaped undirected graphical model of length d = 1000 and
perform separate experiments for various pairwise precision
parameters for the interaction between neighbors in the chain.
Both methods are run for 60 sec. We compare the Monte Carlo
estimate of the variance of x500 to its true value. The results are
shown in Figure 4. The smaller computational complexity per

Figure . Left: The  first segments/bounces of a BPS path for λref = 0 (for clarity the first  segments are in black, the following ones in light gray): the center of the
space is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), alongwith % confidence intervals based on  runs (the intervals are small
and difficult to see). Dashed line: Linear regression curve. See Section . for details.
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Figure . Boxplots of relative errors over  local BPS runs for Gaussian chain-
shaped fields of pairwise precisions .–..

local bounce of the local BPS offsets significantly the associated
decrease in expected trajectory segment length. Moreover, both
versions appear insensitive to the pairwise precision used in
this sparse Gaussian field.

4.3. Comparisons of Alternative Refreshment Schemes

In Section 2, the velocity was refreshed using a Gaussian dis-
tribution. We compare here this global refreshment scheme to
three alternatives:

Local refreshment: If the local BPS is used, the factor graph
structure can be exploited to design computationally cheaper
refreshment operators. We pick one factor f ∈ F uniformly
at random and resample only the components of v with
indices in Nf . By the same argument used in Section 3, each
refreshment requires bounce time recomputation only for the
factors f ′ with Nf ∩ Nf ′ �= ∅.

Restricted refreshment: The velocities are refreshed according to
φ(v ), the uniform distribution on Sd−1, and the BPS admits
now ρ(z) = π(x)φ(v ) as invariant distribution.

Restricted partial refreshment: A variant of restricted refresh-
ment where we sample an angle θ by multiplying a
Beta(α, β)-distributed random variable by 2π. We then
select a vector uniformly at random from the unit length vec-
tors that have an angle θ from v . We used α = 1, β = 4 to
favor small angles.

We compare these methods for different values of λref , the
trade-off being that too small a value can lead to a failure to visit
certain regions of the space, while too large a value leads to a
random walk behavior.

The rationale behind the partial refreshment procedure is to
suppress the random walk behavior of the particle path arising
from a refreshment step independent from the current veloc-
ity. Refreshment is needed to ensure ergodicity but a “good”
direction should only be altered slightly. This strategy is akin
to the partial momentum refreshment strategy for HMC meth-
ods (Horowitz 1991; Neal 2011, sec. 4.3) and could be similarly
implemented for global refreshment. It is easy to check that all
of the above schemes preserve π as invariant distribution. We
tested these schemes on the chain-shaped factor graph described
in the previous section (with the pairwise precision parame-
ter set to 0.5). All methods are provided with a computational
budget of 30 sec. The results are shown in Figure 5. The results
show that local refreshment is less sensitive to λref , performing
as well or better than global refreshment. The performance of
the restricted and partial methods appears more sensitive to λref
and generally inferior to the other two schemes.

Figure . Comparison of refreshment schemes for d = 100 (top) and d = 1000
(bottom). Each boxplot summarizes the relative error for the variance estimates (in
log scale) of x50 over  runs of BPS.

One limitation of the results in this section is that the opti-
mal refreshment scheme and refreshment rate will in general
be problem dependent. Adaptation methods used in the HMC
literature could potentially be adapted to this scenario (Wang,
Mohamed, and de Freitas 2013;Hoffman andGelman 2014), but
we leave these extensions to future work.

4.4. Comparisons with HMCMethods on
High-Dimensional Gaussian Distributions

We compare the local BPS with no partial refreshment and
λref = 1 to advanced adaptive versions of HMC implemented
using Stan Hoffman and Gelman (2014) on a 100-dimensional
Gaussian example from Neal (2011, sec. 5.3.3.4). For each
method, we compute the relative error on the estimated
marginal variances after a wall clock time of 30 sec, excluding
from this time the time taken to compile the Stan program. The
adaptiveHMCmethods use 1000 iterations of adaptation.When
only the leap-frog stepsize is adapted (“adapt=true”), HMC
provides several poor estimates of marginal variances. These
deviations disappear when adapting a diagonal metric (denoted
“fit-metric”) and/or using advanced auxiliary variable methods
to select the number of leap-frog steps (denoted “nuts”). Given
that adaptation is critical to HMC in this scenario, it is encour-
aging that BPS without adaptation is competitive (Figure 6).

Next, we compare the local BPS to NUTS
(“adapt=true,fit_metric=true,nuts=true”) as the dimension
d increases. Experiments are performed on the chain-shaped
Gaussian random field of Section 4.2 with the pairwise pre-
cision parameter set to 0.5. We vary the length of the chain
(10, 100, 1000), and run Stan’s implementation of NUTS for
1000 iterations + 1000 iterations of adaptation. We measure the
wall-clock time (excluding the time taken to compile the Stan
program) and then run our method for the same wall-clock
time 40 times for each chain size. The absolute value of the
relative error averaged on 10 equally spaced marginal vari-
ances is measured as a function of the percentage of the total
computational budget used; see Figure 7. The gap between the
two methods widens as d increases. To visualize the different
behavior of the two algorithms, three marginals of the Stan
and BPS paths for d = 100 are shown in Figure 8. Contrary to
Section 4.1, BPS outperforms here HMC as its local version is
able to exploit the sparsity of the random field.
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Figure . Boxplots showing the relative absolute error of variance estimates for a fixed computational budget.

Figure . Relative error for d = 10 (left), d = 100 (middle), and d = 1000 (right), averaged over  of the dimensions and  runs. Each d uses a fixed computational
budget.

4.5. Poisson–GaussianMarkov Random Field

Let x = (xi, j : i, j ∈ {1, 2, . . . , 10}) denote a grid-shaped
Gaussian Markov random field with pairwise interactions of
the same form as those used in the previous chain examples
(pairwise precision set to 0.5) and let yi, j be Poisson dis-
tributed, independent over i, j given x, with rate exp(xi, j). We
generate a synthetic dataset y = (yi, j : i, j ∈ {1, 2, . . . , 10})
from this model and approximate the resulting poste-
rior distribution of x. We first run Stan with default set-
tings (“adapt=true,fit_metric=true,nuts=true”) for 16, 32,
64, . . . , 4096 iterations. For each number of Stan iterations, we
run local BPS for the same wall-clock time as Stan, using a local
refreshment (λref = 1) and the method from Example 2 for the

bouncing time computations. We repeat these experiments 10
times with different random seeds. Figure 9 displays the box-
plots of the estimates of the posterior variances of the variables
x0,0 and x5,5 summarizing the 10 replications. As expected, both
methods converge to the same value, but BPS requires markedly
less computing time to achieve any given level of accuracy.

4.6. Bayesian Logistic Regression for Large Datasets

Consider the logistic regression model introduced in Example
3 when the number of data R is large. In this context, standard
MCMC schemes such as theMH algorithm are computationally
expensive as they require evaluating the likelihood associated
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Figure . Simulated paths for x0 and x50 ford = 100. Each state of theHMC trajectory is obtained by leap-frog steps (not displayed), these latter cannot be used to estimate
Monte Carlo averages as HMC relies on an MH step. In contrast, BPS exploits the full path.
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Figure . Boxplots of estimates of the posterior variance of x0,0 (left) and x5,5 (right) using Stan implementation of HMC and local BPS.

with the R observations at each iteration. This has motivated
the development of techniques that only evaluate the likelihood
of a subset of the data at each iteration. However, most of
the methods currently available introduce either some non-
vanishing asymptotic bias, for example, the subsampling MH
scheme proposed in Bardenet, Doucet, and Holmes (2014), or
provide consistent estimates converging at a slower rate than
regular MCMC algorithms, for example, the stochastic gradient
Langevin dynamics introduced in Welling and Teh (2011) and
Teh, Thiéry, and Vollmer (2016). The only available algorithm
that only requires evaluating the likelihood of a subset of data
at each iteration yet provides consistent estimates converg-
ing at the standard Monte Carlo rate is the Firefly algorithm
(Maclaurin and Adams 2014).

In this context, we associateR+ 1 factors with the target pos-
terior distribution: one for the prior and one for each data point
with x f = x for all f ∈ F . As a uniform upper bound on the
intensities of these local factors is available for restricted refresh-
ment, see Section 3.1 of the supplementary material, we could
use (21) in conjunction with Algorithm 6 to provide an alter-
native to the Firefly algorithm, which selects at each bounce a
subset of s data points uniformly at random without replace-
ment. For s = 1, a related algorithm has been recently explored
in Bierkens, Fearnhead, and Roberts (2016). In presence of out-
liers, this strategy can be inefficient as the uniform upper bound
becomes very large, resulting in a computationally expensive
implementation. After a precomputation step of complexity
O(R logR) only executed once, we show here that Algorithm 6
can be implemented using data-dependent bounds mitigating
the sensitivity to outliers while maintaining the computational
cost of each bounce independent of R. We first precompute the
sum of covariates over the data points, ιck =

∑R
r=1 ιr,k1[yr = c],

Figure . ESS per-datum likelihood evaluation for local BPS and firefly.

for k ∈ {1, . . . , d} and class label c ∈ {0, 1}. Using these quanti-
ties, it is possible to compute

χ̄ =
R∑

r=1
χ̄ [r] =

d∑
k=1
|vk| ι1[vk<0]k ,

with χ̄ [r] given in (12). If d is large, we can keep the sum
χ̄ in memory and add-and-subtract any local updates to it.
The implementation of Step 5(c)ii relies on the alias method
(Devroye 1986, sec. 3.4). A detailed description of these deriva-
tions and of the algorithm is presented in Section 3 of the sup-
plementary material.

We compare the local BPS with thinning to the MAP-tuned
Firefly algorithm implementation provided by the authors. This
version of Firefly outperforms experimentally significantly the
standard MH in terms of ESS per-datum likelihood (Maclaurin
and Adams 2014). The two algorithms are here compared in
terms of this criterion, where the ESS is averaged over the d = 5
components of x. We generate covariates ιrk

iid∼ U (0.1, 1.1)
and data yr ∈ {0, 1} for r = 1, . . . ,R according to (9) and set
a zero-mean normal prior of covariance σ 2Id for x. For the
algorithm, we set λref = 0.5, σ 2 = 1, and
 = 0.5, which is the
length of the time interval for which a constant upper bound
for the rate associated with the prior is used, see Algorithm
C.1. As illustrated in Figure 10, local BPS always outperforms
experimentally Firefly, by about an order of magnitude for large
datasets. However, we also observe that both Firefly and local
BPS have an ESS per datum likelihood evaluation decreasing
in approximately 1/R so that the gains brought by these algo-
rithms over a correctly scaled random walk MH algorithm do
not appear to increase with R. The rate for local BPS is slightly
superior in the regime of up to 104 data points, but then returns
to the approximate 1/R rate. To improve this rate, one can adapt
the control variate ideas introduced in Bardenet, Doucet, and
Holmes (2017) for theMH algorithm to these schemes. This has
been proposed in Bierkens, Fearnhead, and Roberts (2016) for
a related algorithm and in Galbraith (2016) for the local BPS.

4.7. Bayesian Inference of Evolutionary Parameters

We analyze a dataset of primate mitochondrial DNA (Hayasaka,
Takashi, and Satoshi 1988) at the leaves of a fixed reference
tree (Huelsenbeck and Ronquist 2001) containing 898 sites
and 12 species. We want to approximate the posterior evolu-
tionary parameters x encoded into a rate matrix Q. A detailed
description of this phylogenetic model can be found in the
supplementary materials. The global BPS is used with restricted
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Figure . Boxplots of maximum, median, and minimum ESS per second for BPS (left) and HMC (right).

refreshment and λref = 1 in conjunction with an auxiliary
variable-based method similar to the one described in Zhao
et al. (2016), alternating between two moves: (1) sampling
continuous-time Markov chain paths along the tree given x
using uniformization, (2) sampling x given the path (in which
case the derivation of the gradient is simple and efficient).
The only difference compared to Zhao et al. (2016) is that we
substitute the HMC kernel by the kernel induced by running
BPS for a fixed trajectory length. This auxiliary variable method
is convenient because, conditioned on the paths, the energy
function is convex and hence we can simulate the bouncing
times using the method described in Example 1.

We compare against a state-of-the-art HMC sampler (Wang,
Mohamed, and de Freitas 2013) that uses Bayesian optimization
to adapt the key parameters of HMC, the leap-frog stepsize, and
the number of leap-frog steps, while preserving convergence to
the target distribution. Both our method and this HMCmethod
are implemented in Java and share the same gradient computa-
tion code. Refer to the supplementary materials for additional
background and motivation behind this adaptation method.

We first perform various checks to ensure that both BPS
and HMC chains are in close agreement given a sufficiently
large number of iterations. After 20 million HMC iterations, the
credible intervals estimates from the HMC method are in close
agreement with those obtained fromBPS (result not shown) and
both methods pass the Geweke diagnostic (Geweke 1992).

To compare the effectiveness of the two samplers, we look
at the ESS per second of the model parameters. We show the
maximum, median, and maximum over the 10 parameter com-
ponents for 10 runs, for both BPS and HMC in Figure 11. We
observe a speed-up by a factor two for all statistics considered
(maximum, median, minimum). In the supplement, we show
that the HMC chain displays much larger autocorrelations than
the BPS chain.

5. Discussion

Most MCMC methods currently available, such as the MH and
HMC algorithms, are discrete-time reversible processes. There
is a wealth of theoretical results showing that nonreversible
Markov processes mix faster and provide lower variance esti-
mates of ergodic averages (Ottobre 2016). However, most of
the nonreversible processes studied in the literature are diffu-
sions and cannot be simulated exactly. The BPS is an alternative
continuous-time Markov process that, thanks to its piecewise

deterministic paths, can be simulated exactly formany problems
of interest in statistics.

As any MCMCmethod, the BPS can struggle in multimodal
scenarios and when the target exhibits very strong correla-
tions. However, for a range of applications including sparse
factor graphs, large datasets, and high-dimensional settings,
we have observed empirically that BPS is on par or outper-
forms state-of-the art methods such as HMC and Firefly. The
main practical limitation of the BPS compared to HMC is
that its implementation is model-specific and requires more
than knowing ∇U pointwise. An important open problem is
therefore whether its implementation, and in particular the
simulation of bouncing times, can be fully automated. However,
the techniques described in Section 2.3 are already sufficient
to handle many interesting models. There are also numerous
potential methodological extensions of the method to study.
In particular, it has been shown in Girolami and Calderhead
(2011) how one can exploit the local geometric structure of
the target to improve HMC and it would be interesting to
investigate how this could be achieved for BPS. More generally,
the BPS is a specific continuous-time piecewise deterministic
Markov process (Davis 1993). This class of processes deserves
further exploration as it might provide a whole new class of
efficient MCMCmethods.

Supplementary Materials

The supplementary material includes the proofs of Proposition
1, Proposition 2 and Theorem 1 and a proof of the validity of the
local BPS algorithm. It also includes a detailed description of the
algorithm used in Section 4.6 and additional information on the
experiments performed in Section 4.7 is also provided.
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1 Proofs of Section 2

1.1 Proof of Proposition 1

The BPS process is a specific piecewise-deterministic Markov process so the expression of its

generator follows from [2, Theorem 26.14]. Its adjoint is given in [6] and a derivation of this

expression from first principles can be found in Section 4. To establish the invariance with respect

to ρ, we first show that
´
Lh(z)ρ (z) dz = 0. We have

ˆ ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz (22)

+

ˆ ˆ
λ(x, v)[h (x,R (x) v)− h (x, v)]ρ (z) dz (23)

+λref

ˆ ˆ ˆ
(h(x, v′)− h(x, v))ψ (dv′) ρ (z) dz (24)

1



As ρ (z) = π (x)ψ (v), the term (24) is trivially equal to zero, while a change-of-variables shows

that ˆ ˆ
λ (x, v)h(x,R (x) v)ρ (z) dz =

ˆ ˆ
λ (x,R (x) v)h(x, v)ρ (z) dz (25)

as R−1 (x) v = R (x) v and‖R (x) v‖ = ‖v‖ implies ψ (R (x) v) = ψ (v). Additionally, by integration

by parts, we obtain as h is bounded

ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz =

ˆ ˆ
〈∇U (x) , v〉h (x, v) ρ (z) dz. (26)

Substituting (25) and (26) into (22)-(23)-(24), we obtain

ˆ ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
[〈∇U (x) , v〉+ λ (x,R (x) v)− λ (x, v)]h(x, v)ρ (z) dz.

Now we have

ˆ ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
[〈∇U (x) , v〉+ λ (x,R (x) v)− λ (x, v)]h(x, v)ρ (z) dz.

=

ˆ ˆ
[〈∇U (x) , v〉+ max{0, 〈∇U(x), R (x) v〉} −max{0, 〈∇U(x), v〉}]h(x, v)ρ (z) dz

=

ˆ ˆ
[〈∇U (x) , v〉+ max{0,−〈∇U(x), v〉} −max{0, 〈∇U(x), v〉}]h(x, v)ρ (z) dz

= 0,

where we have used 〈∇U(x), R (x) v〉 = −〈∇U(x), v〉 and max{0,−f} −max{0, f} = −f for any

f . The result now follows by [2, Proposition 34.7].

1.2 Proof of Theorem 1

Informally, our proof of ergodicity relies on showing that refreshments allow the process to explore

the entire space of velocities and positions, Rd × Rd. To do so, it will be useful to condition

on an event E on which paths are “tractable.” Since two refreshment events are sufficient to

reach any given destination point, we would like to focus on such paths (only one refreshment

is not sufficient since a destination point specifies both a final position and a final velocity). In

particular, refreshments are simpler to analyze than bouncing events, so we would like to condition

on an event on which no bouncing occurs in a time interval of interest.

2



To formalize this idea, we make use of the time-scale implementation of the BPS algorithm (Section

2.3.1). This allows us to express E in terms of simple independent events. We start by introducing

some notation for the time-scale implementation of the BPS algorithm. Let i ≥ 1 denote the index

of the current event being simulated, and assume without loss of generality that λref =1. Let

x0, v0 denote the initial position and velocity, while the positions and velocities at the event times,

zi = (xi, vi), i ∈ {1, 2, . . . } are defined as in Algorithm 1, we use the notation (xi, vi) instead of

(x(i), v(i)) to slightly simplify notation. At event time i, we simulate three independent random

variables: two exponentially distributed, e(bounce)
i , τ

(ref)
i ∼ Exp(1), and one d-dimensional normal,

ni ∼ N (0, I). The candidate time to a refreshment is given by τ (ref)
i and the candidate time to a

bounce event is defined as τ (bounce)
i = Ξ−1

zi−1
(e

(bounce)
i ), where Ξ−1

z is the quantile function of Ξz(t) =

´ t
0
χz(s) ds, and χx,v(s) = λ(x+ vs, v). The time to the next event is τi = min

{
τ

(bounce)
i , τ

(ref)
i

}
.

The random variable ni is only used if τi = τ
(ref)
i , otherwise the bouncing operator is used to

update the velocity in a deterministic fashion.

We can now define our tractable set and establish its key properties.

Lemma 1. Let t > 0, and assume the initial point of the BPS, satisfies ‖x0‖ ≤ t, ‖v0‖ ≤ 1. If

‖∇U‖∗ = sup {‖∇U(x)‖ : ‖x‖ ≤ 3t} then the event

E =
(
τ
(ref)
1 + τ

(ref)
2 ≤ t < τ

(ref)
1 + τ

(ref)
2 + τ

(ref)
3

)
︸ ︷︷ ︸

E1

∩
⋂

i∈{1,2}

(‖ni‖ ≤ 1)

︸ ︷︷ ︸
E2

∩
⋂

i∈1,2,3

(
e
(bounce)
i ≥ t‖∇U‖∗

)
︸ ︷︷ ︸

E3

has the following properties:

1. On the event E , we have ‖v(t′)‖ ≤ 1 and ‖x(t′)‖ ≤ 2t for all t′ ∈ [0, t],

2. On the event E , there are exactly two refreshments and no bouncing in the interval (0, t), i.e.

τ1 = τ
(ref)
1 , τ2 = τ

(ref)
2 , and τ1 + τ2 ≤ t ≤ τ1 + τ2 + τ3,

3. P(E ) is a strictly positive constant that does not depend on z(0) = (x0, v0),

4. vi|E
i.i.d.∼ ψ≤1(0, I) for i ∈ {1, 2}, where ψ≤1 denotes the truncated Gaussian distribution,

with ‖vi‖ ≤ 1,

5.
(
τ
(ref)
1 , τ

(ref)
2

)
|E ∼ U

({
(τ1, τ2) ∈ (0, t)2 : τ1 + τ2 ≤ t

})
.

3



Proof. To prove Part 1 and 2, we will make use of this preliminary result: on E3, ‖vi−1‖ ≤

1, ‖xi−1‖ ≤ 2t implies τ (bounce)
i ≥ t for i ∈ {1, 2, 3}. Indeed, ‖vi−1‖ ≤ 1 and ‖xi−1‖ ≤ 2t imply that

χzi−1
(t′) ≤ ‖∇U‖∗ for all t′ ∈ [0, t]. It follows that Ξzi−1

(t) ≤ ‖∇U‖∗t. Hence, by the continuity

of Ξzi−1
and standard properties of the quantile function, τ (bounce)

i = Ξ−1
zi−1

(e
(bounce)
i ) ≥ t.

Part 1 and 2: by the assumption on x0 and v0 and our preliminary result, τ (bounce)
1 ≥ t, and

hence, combining with E1 and E2 we have τ1 = τ
(ref)
1 ≤ t and ‖v1‖ = ‖n1‖ ≤ 1. Also, by the

triangle inequality, ‖x1‖ ≤ ‖x0‖ + ‖x1 − x0‖ ≤ t + τ
(ref)
1 ≤ 2t. We can therefore apply our

preliminary result again and obtain τ (bounce)
2 ≥ t, and hence, combining again with E1 and E2, we

have τ2 = τ
(ref)
2 , τ1 + τ2 ≤ t, ‖v2‖ = ‖n2‖ ≤ 1. Applying the triangle inequality a second time

yields ‖x2‖ ≤ t + τ
(ref)
1 + τ

(ref)
2 ≤ 2t. We apply our preliminary result one last time to obtain

τ
(bounce)
3 ≥ t. Hence, if τ (ref)

3 > τ
(bounce)
3 , τ1 + τ2 + τ3 = τ

(ref)
1 + τ

(ref)
2 + τ

(bounce)
3 ≥ t, while if

τ
(ref)
3 ≤ τ (bounce)

3 , we can use E1 to conclude that τ1 + τ2 + τ3 = τ
(ref)
1 + τ

(ref)
2 + τ

(ref)
3 ≥ t. It follows

from the triangle inequality that ‖x(t′)‖ ≤ 2t for all t′ ∈ [0, t].

Part 3, 4 and 5: these follow straightforwardly from the construction of E .

Note that the statement and proof of Part 4 is simple because E3 ∈ σ(e
(bounce)
i : i ∈ {1, 2, 3}). In

contrast, conditioning on conceptually simpler events of the form (τ
(bounce)
i > t) ∈ σ

(
e
(bounce)
i , zi−1

)
leads to conditional distributions on vk which are harder to characterize.

In the following, BR (x) denotes the d-dimensional Euclidean ball of radius R centered at x.

Lemma 2. For all ε, t > 0 such that ε ≤ t/6, and v, v2 ∈ B1(0), x, x′ ∈ Bε(0), 0 ≤ τ1 ≤ t
6 , and

2t
3 ≤ τ2 ≤

5t
6 , we have ‖v1‖ ≤ 1, where v1 is defined by:

v1 =
(x′ − (t− τ1 − τ2)v2)− (x+ τ1v)

τ2
. (27)

Proof. By the triangle inequality:

‖v1‖ ≤
‖x′‖+ (t− τ1 − τ2)‖v2‖+ ‖x‖+ τ1‖v‖

τ2

≤ ε+ (t− τ1 − τ2) + ε+ τ1
τ2

≤ 1.
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The next lemma formalizes the idea that refreshments allow the BPS to explore the whole space.

We use vol(A) to denote the Lebesgue volume of a measurable set A ∈ Rd × Rd and Pt (z,A) is

the probability z (t) ∈ A given z (0) = z under the BPS dynamics.

Lemma 3. 1. For all ε, t > 0 such that ε ≤ t/6, there exist δ > 0 such that for all z = (x, v) ∈

B = Bε(0)×B1(0) and measurable set A ⊂ Rd × Rd,

Pt (z,A) ≥ δ vol(A ∩B). (28)

2. For all t0 > 0, z = (x, v) ∈ Rd×Rd and open set W ⊂ Rd×Rd there exists an integer n ≥ 1

such that Pnt0(z,W ) > 0.

Proof. Part 1: We have

Pt(z,A) = Ez[1A(z(t))]

≥ P(E )Ez[1A(z(t))|E ]

= P(E )Ez[1A(x+ τ
(ref)
1 v + τ

(ref)
2 v1 + (t− τ (ref)

1 − τ (ref)
2 )v2|E ],

where we used Part 2 of Lemma 1, which holds since ‖x‖ ≤ t/6 ≤ t. By Lemma 1, Part 3, it is

enough to show Ez[1A(z(t))|E ] ≥ δ′ vol(A ∩B) for some δ′ > 0.

Using Lemma 1, Parts 4 and 5, we can rewrite the above conditional expectation as:

Ez[1A(z(t))|E ] =

˘
1A∩B (x+ τ1v + τ2v1 + (t− τ1 − τ2) v2)ψ≤1(v1)ψ≤1(v2)p(τ1, τ2) dv2 dv1 dτ2 dτ1.

We will use the coarea formula to reorganize the order of integration, see e.g. Section 3.2 of [1].

We start by introducing some notation.

For C1 Riemannian manifolds M and N of dimension m and n, a differentiable map F : M → N

and h a measurable test function, the coarea formula can be written as:

ˆ
M

h(F (y))dHm(y) =

ˆ
N

dHn(u)h(u)

ˆ
F−1(u)

dHm−n(x)
1

JF (x)
.

5



Here Hm, Hn and Hm−n denote the volume measures associated with the Riemannian metric on

M , N and F−1(u) (with the induced metric ofM). In the above equations, JF is a generalization of

the determinant of the Jacobian JF :=
√

det g(∇fi,∇fj) where g is the corresponding Riemannian

metric and f is the representation of F in local coordinates, see [1]. Here JF=
√

detDF DF> where

DF is defined in equation (30) below.

We apply the coarea formula toM =
{

(τ1, τ2) ∈ (0, t)2 : τ1 + τ2 ≤ t
}
×B1(0)×B1(0), N = Bt(x)×

B1(0), Fz(τ1, v1, τ2, v2) = (x+ τ1v + τ2v1 + (t− τ1 − τ2)v2, v2) , m = 2d+ 2, n = 2d and obtain:

Ez[1A(z(t))|E ] =

ˆ
N

dz′1A∩B(z′)

ˆ
F−1

z (z′)

dH2(τ1, τ2, v1, v2)ψ≤1(v1)ψ≤1(v2)p(τ1, τ2)

JFz(τ1, τ2, v1, v2)︸ ︷︷ ︸
Iz(z′)

, (29)

where p(τ1, τ2) denotes the joint conditional density of τ1, τ2|E described in Part 5 of Lemma 1,

and:

DFz =

 v − v2 τ2I v1 − v2 (t− τ1 − τ2) I

0 0 0 I

 , (30)

DFz DF
>
z =

 (v − v2)(v − v2)> + (v1 − v2) (v1 − v2)
>

+
(
τ2
2 + (t− τ1 − τ2)

2
)
I (t− τ1 − τ2) I

(t− τ1 − τ2) I I

 ,

JFz =
√

detDFz DF>z .

We define δ′ = inf {Iz(z′) : z, z′ ∈ B}, and obtain the following inequality

ˆ
N

dz′1A∩B(z′)Iz(z
′) ≥ δ′

ˆ
N

dz′1A∩B(z′)

= δ′ vol(A ∩B).

It is therefore enough to show that δ′ > 0. To do so, we will derive the following bounds related

to the integral in Iz(z′):

6



1. Its domain of integration F−1
z (z′) is guaranteed to contain a set of positive H2 measure.

2. Its integrand is bounded below by a strictly positive constant.

To establish 1, we let z′ = (x′, v′) = (x′, v2), and notice that rearranging

x′ = x+ τ1v + τ2v1 + (t− τ1 − τ2)v2

yields an expression for v1 given in (27). From Lemma 2, it follows that

Cz(z
′) :=

{(
τ1,

(x′ − (t− τ1 − τ2)v′)− (x+ τ1v)

τ2
, τ2, v

′
)

: 0 ≤ τ1 ≤
t

6
,

2t

3
≤ τ2 ≤

5t

6

}
⊆ F−1

z (z′),

and H2(Cz(z
′)) ≥ (t/6)2 since the surface of the graph of a function is larger than the surface of

the domain.

To establish 2, we start by analyzing JFz. Exploiting its block structure, we obtain:

JF 2
z = detDFz DF

>
z

= det((v − v2)(v − v2)> + (v1 − v2) (v1 − v2)
>

+ τ2
2 I)

≤

(
‖v − v2‖2 + ‖v1 − v2‖2

d
+ τ2

2

)d
≤
(
8 + t2

)d

Moreover, it follows from basic properties of the truncated Gaussian distribution ψ≤1 and of

p(τ1, τ2) that

inf {ψ≤1(v1)ψ≤1(v2)p(τ1, τ2) : (τ1, v1, τ2, v2) ∈M} = K > 0.

Combining (29) to 1 and 2, we obtain,
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Iz(z
′) ≥ K

(8 + t2)d

ˆ
F−1

z (z′)

dH2(τ1, τ2, v1, v2)

≥ K

(8 + t2)d
H2(Cz(z

′))

≥ K

(8 + t2)d

(
t

6

)2

,

and hence, δ′ > 0.

To prove Part 2 of the lemma, we divide the trajectory of length nt0 into three “phases” namely a

deceleration, travel, and acceleration phases, or respective lengths td + tt + ta = nt0 defined below

(see also Supplement for a figure illustrating the notation used in this part of the lemma). This

allows us to use Part 1 of the present lemma which requires velocities bounded in norm by one.

We require an acceleration phase since W may not necessarily include velocities of norms bounded

by one.

First, we show that we decelerate with positive probability by time td = t0. Let R denote the

event that there is exactly one refreshment in the interval (0, t0), and that the refreshed velocity

has norm bounded by one. Define also r0 = t0 max {1, ‖v‖}, which bounds the distance travelled

in (0, t0) for outcomes in R, since bouncing does not change the norm of the velocity. We have:

Pt0(z,Br0(x)×B1(0)) ≥ Pz(R) = (t0λ
ref) exp(−t0λref)ψ(B1(0)) =: K ′ > 0.

Next, to prepare applying the first part of the lemma, set

ε = 1 + max {‖x‖+ r0, r
′} ,

r′ = inf
{
‖x′‖ : ∃ v′ ∈ Rd with (x′, v′) ∈W

}
.

Informally, ε is selected so that the ball of radius ε around the origin contains both any position

attained after deceleration, as well as ball around a point x? in W . Indeed, since W is open

and that ε > r′, there exists some r > 0, (x?, v?) ∈ W such that Br(x?) × Br(v
?) ⊆ W and

Bε(0) ⊇ Br0(x) ∪Br(x?). Let also n = 2 +
⌈

6ε
t0

⌉
.

Of the total time nt0, we reserve time ta = min
{
t0, (2(‖v?‖/r + 1))−1, r/2

}
to accelerate. This

time is selected so that (a) t0− ta ≥ 0, and (b), if we start with a position in Br/2(x?), move with a

8



velocity bounded in norm by v̄ = max {1, ‖v?‖+ r} for a time ∆t ≤ min
{

(2(‖v?‖/r + 1))−1, r/2
}
,

we have that the final position is in Br(x
?). This holds since the distance travelled is bounded

by v̄∆t ≤ r/2. Hence, by a similar argument as used for deceleration, we have, for all z′′ ∈

Br/2(x?)×B1(0),

Pta(z′′, Br(x
?)×Br(v?)) ≥ (taλ

ref) exp(−taλref)ψ(Br(v
?)) =: K ′′ > 0.

With these definitions, we can apply the first part of the present lemma with tt = (n − 2)t0 +

(t0 − ta) ≥ 6ε and obtain a constant δ > 0 such that Ptt(z′, A) ≥ δ vol(A∩ (Bε(0)×B1(0))) for all

z′ ∈ Bε(0)×B1(0) and measurable set A ⊆ R2d. We thus obtain:

Pnt0(z,W ) ≥ Pnt0(z,Br(x
?)×Br(v?))

=

ˆ ˆ
Ptd(z, dz′)Ptt(z

′, dz′′)Pta(z′′, Br(x
?)×Br(v?))

≥
ˆ
z′∈Br0 (x)×B1(0)

ˆ
z′′∈Br/2(x?)×B1(0)

Ptd(z, dz′)Ptt(z
′, dz′′)Pta(z′′, Br(x

?)×Br(v?))

≥ K ′K ′′δ vol(Br/2(x?)×B1(0)) > 0.

We can now exploit this Lemma to prove Theorem 1.

Proof of Theorem 1. Suppose BPS is not ergodic, then it follows from standard results in ergodic

theory that there are two measures µ1 and µ2 such that µ1 ⊥ µ2 and µiPt0 = µi; see e.g. [5,

Theorem 1.7]. Thus there is a measurable set A ⊂ Rd × Rd such that

µ1(A) = µ2(Ac) = 0. (31)

Let A1 = A, A2 = Ac, and B = B1(0) × B1(0). Because of Lemma 3 Part 2 and Lemma 2.2 of

[5] the support of the µi is Rd × Rd. Thus, µi(B) > 0 for i ∈ {1, 2}. At least one of A1 ∩ B or

A2 ∩ B has a positive Lebesgue volume, hence, we can denote by i? ∈ {1, 2} an index satisfying

vol(Ai? ∩ B) > 0. Now, we pick t = 6 and obtain from Lemma 3 Part 1 that there is some δ > 0

9



such that Pt(z,Ai?) ≥ δ vol(Ai? ∩B) for all z ∈ B. By invariance we have

µi?(Ai?) =

ˆ
µi? ( dz)Pt(z,Ai?)

≥
ˆ
B

µi? ( dz)Pt(z,Ai?)

≥
ˆ
B

µi? ( dz) δ vol(Ai? ∩B)

= µi?(B)δ vol(Ai? ∩B) > 0.

This contradicts that µi(Ai) = 0 for i ∈ {1, 2}.

The law of large numbers then follows by Birkhoff’s pointwise ergodic theorem; see e.g. [4, Theorem

2.30, Section 2.6.4].

2 Proof of Proposition 2

The dynamics of the BPS can be lumped into a two-dimensional Markov process involving only the

radius r (t) = ‖x (t)‖ and m (t) = 〈x (t) , v (t)〉 / ‖x (t)‖ for any dimensionality d ≥ 2. The variable

m (t) can be interpreted (via arccos(m (t))) as the angle between the particle position x (t) and

velocity v (t). Because of the strong Markov property we can take τ1 = 0 without loss of generality

and let t be some time between the current event and the next, yielding:

r (t) =
√
〈x (0) + v (0) · t, x (0) + v (0) · t〉 =

√
r2
0 + 2m (0) r (0) t+ t2 (32)

m (t) =
〈x (0) + v (0) · t, v (0)〉
‖x (0) + v (0) · t‖

=
m (0) r (0) + t

r (t)

If there is a bounce at time t, then r (t) is not modified butm (t) = −m (t).The bounce happens with

intensity λ(x + tv, v) = max (0, 〈x+ vt, v〉). These processes can also be written as an Stochastic

Differential Equation (SDE) driven by a jump process whose intensity is coupled to its position.

This is achieved by writing the deterministic dynamics given in (32) between events as the following

Ordinary Differential Equation (ODE):

d

dt
r (t) =

2m (t) r (t)

2r (t)
= m (t)

d

dt
m (t) =

r (t)− (r (t)m (t))m (t)

(r (t))
2 =

1− (m (t))
2

r (t)
.

10



Taking the bounces into account turns this ODE into an SDE with

dr (t) = m (t) dt

dm (t) =
1− (m (t))

2

r (t)
dt− 2m (t) dNt. (33)

where Nt is the counting process associated with a PP with intensity max (0, r (t)m (t)).

Now consider the push forward measure ofN
(
0, 1

2Ik
)
⊗U(Sk−1) under the map (x, v) 7→ (‖x‖ , 〈x, v〉 / ‖x‖)

where U(Sk−1) is the uniform distribution on Sk−1. This yields the collection of measures with

densities fk(r,m). One can check that fk(r,m) is invariant for (33) for all k ≥ 2.

3 Bayesian logistic regression for large datasets

3.1 Bounds on the intensity

We derive here a datapoint-specific upper bound χ̄[r] to χ[r](t). First, we need to compute the

gradient for one datapoint:

∇U [r](x) = ιr(logistic 〈ιr, x〉 − yr),

where:

logistic(a) =
ea

1 + ea
.

We then consider two sub-cases depending on yr = 0 or yr = 1. Suppose first yr = 0, and let

x(t) = x+ tv

χ[r](t) = max{0, 〈∇Ur(x(t)), v〉}

= max

{
0,

d∑
k=1

ιr,kvklogistic 〈ιr, x(t)〉

}

≤
d∑
k=1

1[vk > 0]ιr,kvklogistic 〈ιr, x(t)〉

≤
d∑
k=1

1[vk > 0]ιr,kvk︸ ︷︷ ︸
χ̄[r]

11



Similarly, we have for yr = 1

χ[r](t) = max

{
0,

d∑
k=1

ιr,kvk(logistic 〈ιr, x(t)〉 − 1)

}

= max

{
0,

d∑
k=1

ιr,k(−vk)(1− logistic 〈ιr, x(t)〉)

}

≤
d∑
k=1

1[vk < 0]ιr,k(−vk)(1− logistic 〈ιr, x(t)〉)

=

d∑
k=1

1[vk < 0]ιr,k|vk|(1− logistic 〈ιr, x(t)〉)

≤
d∑
k=1

1[vk < 0]ιr,k|vk|︸ ︷︷ ︸
χ̄[r]

.

Combining these terms we obtain

χ̄[r] =

d∑
k=1

1[vk(−1)yr ≥ 0]ιr,k|vk|.

When implementing Algorithm 6, we need to bound
∑R
r=1 χ

[r](t). We have

χ̄ =

R∑
r=1

χ̄[r] ≥
R∑
r=1

χ[r](t)

=

R∑
r=1

d∑
k=1

1[vk(−1)yr ≥ 0]ιr,k |vk|

=

d∑
k=1

|vk|
R∑
r=1

1[vk(−1)yr ≥ 0]ιr,k

=

d∑
k=1

|vk| ι(1[vk<0])
k ,

where

ι
(c)
k :=

R∑
r=1

1[(−1)c+yr ≥ 0]ιr,k.

The bound χ̄ is constant between bounce events and only depends on the magnitude of v. If we

further assume that we use restricted refreshment then this bound is valid for any t > 0 allowing

us to implement Algorithm 6 using (20) or (21).
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3.2 Sampling the thinned factor

We show here how to implement Step 5(c)ii of Algorithm 6 without enumerating over the R

datapoints. We begin by introducing some required pre-computed data structures. The pre-

computation is executed only once at the beginning of the algorithm, so its running time, O(R logR)

is considered negligible (the number of bouncing events is assumed to be greater than R). For

each dimensionality k and class label c, consider the categorical distribution with the following

probability mass function over the datapoints:

µ
(c)
k (r) =

ιr,k1[yr = c]

ι
(c)
k

.

This is just the distribution over the datapoints that have the given label, weighted by the covariate

k. An alias sampling data-structure [3, Section 3.4] is computed for each k and c. This pre-

computation takes total time O(R logR). This allows subsequently to sample in time O(1) from

the distributions µ(c)
k .

We now show how this pre-computation is used to to implement Step 5(c)ii of Algorithm 6. We

denote the probability mass function we want to sample from by

q(r) =
χ̄[r]

χ̄
.

To sample this distribution efficiently, we construct an artificial joint distribution over both data-

points and covariate dimension indices

q(r, k) =
1[vk(−1)yr ≥ 0]ιr,k |vk|

χ̄
.

We denote by qk(k), respectively qr|k(r|k), the associated marginal, respectively conditional

distribution. By construction, we have

d∑
k=1

q(r, k) = q(r).

It is therefore enough to sample (r, k) and to return r. To do so, we first sample (a) k ∼ qk(·) and

then (b) sample r|k ∼ qr|k(·|k).
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For (a), we have

qk(k) =
|vk| ι(1[vk<0])

k

χ̄
,

so this sampling step again does not require looping over the datapoints thanks the pre-computations

described earlier.

For (b), we have

qr|k(r|k) = µ
(1[vk<0])
k (r),

and therefore this sampling step can be computed in O(1) thanks to the pre-computed alias sam-

pling data structure.

3.3 Algorithm description

Algorithm 1 contains a detailed implementation of the local BPS with thinning for the logistic

regression example (Example 4.6).

Algorithm 1 Local BPS algorithm for Logistic Regression with Large Datasets

1. Precompute the alias tables µ(c)
k (r) for k = 1, . . . , d, c ∈ {0, 1} in order to sample from

qr|k(·|k).

2. Initialize
(
x(0), v(0)

)
arbitrarily on Rd × Rd.

3. Initialize the global clock T ← 0.

4. Initialize T̄ ←4. (time until which local upper bounds are valid)

5. Compute local-in-time upper bound on the prior factor as χ̄prior =

σ−2 max
(
0,
〈
x(0) + v(0)∆, v(0)

〉)
(notice the rate associated with the prior is monoton-

ically increasing).

6. While more events i = 1, 2, . . . requested do

(a) Compute the local-in-time upper bound on the data factors in O(d)

χ̄ =

d∑
k=1

|v(i−1)
k | ι(1[v

(i−1)
k <0])

k .

(b) Sample τ ∼ Exp
(
χ̄prior + χ̄+ λref

)
.
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(c) If
(
T + τ > T̄

)
then

i. x(i) ← x(i−1) + v(i−1)(T̄ − T ).

ii. v(i) ← v(i−1).

iii. Compute the local-in-time upper bound χ̄prior = σ−2 max
(
0,
〈
x(i) + v(i)∆, v(i)

〉)
.

iv. Set T ← T̄ , T̄← T̄ +4.

(d) Else

i. x(i) ← x(i−1) + v(i−1)τ .

ii. Sample j from Discrete( χ̄
χ̄prior +χ̄+λref ,

λref

χ̄prior +χ̄+λref ,
χ̄prior

χ̄prior +χ̄+λref ) .

iii. If j = 1

A. Sample k according to qk(k) = |v(i−1)
k | ι(1[v

(i−1)
k <0])

k /χ̄.

B. Sample r ∼ qr|k(·|k) using the precomputed alias table.

C. If V <
max(0,〈∇U [r](x(i)),v(i−1)〉)

χ̄[r] where V ∼ U (0, 1) .

v(i) ← Rr(x
(i))v(i−1) where Rr is the bouncing operator associated with the

r-th data item .

D. Else v(i) ← v(i−1).

iv. If j = 2

A. v(i) ∼ N (0d, Id).

v. If j = 3

A. If V <
σ−2 max(0,〈x(i),v(i−1)〉)

χprior
where V ∼ U (0, 1).

v(i) ← Rprior(x
(i))v(i−1) where Rprior is the bouncing operator associated with

the prior.

B. Else v(i) ← v(i−1).

vi. Compute the local-in-time upper bound

χ̄prior = σ−2 max
(

0,
〈
x(i) + v(i)

(
T̄ − T − τ

)
, v(i)

〉)
.

vii. Set T ← T + τ .
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4 Direct proof of invariance

Let µt be the law of z (t). In the following, we prove invariance by explicitly verifying that the time

evolution of the density dµt

dt = 0 is zero if the initial distribution µ0 is given by ρ(z) = π (x)ψ (v)

in Proposition 1. This is achieved by deriving the forward Kolmogorov equation describing the

evolution of the marginal density of the stochastic process. For simplicity, we start by presenting

the invariance argument when λref = 0.

Notation and description of the algorithm. We denote a pair of position and velocity by

z = (x, v) ∈ Rd × Rd and we denote translations by Φt(z) = (Φpos
t (z),Φdir

t (z)) = (x+ vt, v). The

time of the first bounce coincides with the first arrival T1 of a PP with intensity χ(t) = λ(Φt(z))

where:

λ(z) = max {0, 〈∇U (x) , v〉} . (34)

It follows that the probability of having no bounce in the interval [0, t] is given by:

Not(z) = exp

(
−
ˆ t

0

λ(Φs(z))ds

)
, (35)

and the density of the random variable T1 is given by:

q(t1; z) = 1[t1 > 0] d
dt1

(1−Not1(z)) (36)

= 1[t1 > 0]Not1(z)λ(Φt1(z)). (37)

If a bounce occurs, then the algorithm follows a translation path for time T1, at which point the

velocity is updated using a bounce operation C(z), defined as:

C (z) = (x,R (x) v) (38)

where

R (x) v = v − 2
〈∇U (x) , v〉∇U (x)

‖∇U (x)‖2
. (39)

The algorithm then continues recursively for time t− T1, in the following sense: a second bounce

time T2 is simulated by adding to T1 a random increment with density q(·;C ◦ Φt1(z)). If T2 > t,

then the output of the algorithm is Φt−t1 ◦C ◦Φt1(z), otherwise an additional bounce is simulated,
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etc. More generally, given an initial point z and a sequence t = (t1, t2, . . . ) of bounce times, the

output of the algorithm at time t is given by:

Ψt,t (z) =


Φt(z) if t1 > 0 or t = ( ),

Ψt′,t−t1 (z) ◦ C ◦ Φt1(z) otherwise,

(40)

where ( ) denotes the empty list and t′ the suffix of t: t′ = (t2, t3, . . . ). As for the bounce times,

they are distributed as follows:

T1 ∼ q( · ; z) (41)

Ti − Ti−1|T1:i−1 ∼ q
(
· ; ΨT1:i−1,Ti−1

(z)︸ ︷︷ ︸
Pos. after collision i− 1

)
, i ∈ {2, 3, 4, . . . } (42)

where T1:i−1 = (T1, T2, . . . , Ti−1) .

Decomposition by the number of bounces. Let h denote an arbitrary non-negative mea-

surable test function. We show how to decompose expectations of the form E[h(ΨT,t(z))] by the

number of bounces in the interval (0, t). To do so, we introduce a function #Colt(t), which returns

the number of bounces in the interval (0, t):

#Colt(t) = min {n ≥ 1 : tn > t} − 1. (43)

From this, we get the following decomposition:

E[h(ΨT,t(z))] = E[h(ΨT,t(z))

∞∑
n=0

1[#Colt(T) = n]] (44)

=

∞∑
n=0

E[h(ΨT,t(z))1[#Colt(T) = n]]. (45)

On the event that no bounce occurs in the interval [0, t), i.e. #Colt(T) = 0, the function ΨT,t(z)

is equal to Φt(z), therefore:

E[h(ΨT,t(z))1[#Colt(T) = 0]] = h(Φt(z))P(#Colt(T) = 0) (46)

= h(Φt(z))Not(z). (47)

Indeed, on the event that n ≥ 1 bounces occur, the random variable h(Φt(z)) only depends on a
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finite dimensional random vector, (T1, T2, . . . , Tn), so we can write the expectation as an integral

with respect to the density q̃(t1:n; t, z) of these variables:

E[h(ΨT,t(z))1[#Colt(T) = n]] (48)

= E
[
h(ΨT,t(z))1[0 < T1 < · · · < Tn < t < Tn+1]

]
=

ˆ
· · ·
ˆ

0<t1<···<tn<t<tn+1h(Ψt1:n,t(z))q(t1; z)

n+1∏
i=2

q(t− ti−1; Ψt1:i−1,ti−1 (z))dt1:n+1

=

ˆ
· · ·
ˆ

0<t1<···<tn<th(Ψt1:n,t(z))q̃(t1:n; t, z)dt1:n, (49)

where:

q̃(t1:n; t, z) = q(t1; z)×


Not−t1(Φt1(z)) if n = 1

Not−tn(Φt1:n,tn(z))
∏n
i=2 q

(
ti − ti−1; Ψt1:i−1,ti−1

(z)
)

if n ≥ 2.

To include Equations (47) and (49) under the same notation, we define t1:0 to the empty list, ( ),

q̃(( ); t, z) = Not(z), and abuse the integral notation so that for all n ∈ {0, 1, 2, . . . }:

E[h(ΨT,t(z))1[#Colt(T) = n]] =

ˆ
· · ·
ˆ

0<t1<···<tn<t h(Ψt1:n,t(z))q̃(t1:n; t, z)dt1:n. (50)

Marginal density. Let us fix some arbitrary time t > 0. We seek a convenient expression for

the marginal density at time t, µt(z), given an initial vector Z ∼ ρ, where ρ is the hypothesized

stationary density ρ(z) = π (x)ψ (v) on Z. To do so, we look at the expectation of an arbitrary

non-negative measurable test function h:

E[h(ΨT,t(Z))] = E
[
E[h(ΨT,t(Z))|Z]

]
(51)

=
∞∑
n=0

E
[
E[h(ΨT,t(Z))1[#Colt(T) = n]|Z]

]
(52)

=
∞∑
n=0

ˆ
Z
ρ(z)

ˆ
· · ·
ˆ

0<t1<···<tn<th(Ψt1:n,t(z))q̃(t1:n; t, z)dt1:ndz (53)

=
∞∑
n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t

ˆ
Z
ρ(z)h(Ψt1:n,t(z))q̃(t1:n; t, z)dzdt1:n (54)

=
∞∑
n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t

ˆ
Z
ρ(Ψ−1

t1:n,t
(z′))h(z′)q̃(t1:n; t,Ψ−1

t1:n,t
(z′))

∣∣∣detDΨ−1
t1:n,t

∣∣∣dz′dt1:n
=

ˆ
Z
h(z′)

∞∑
n=0

ˆ
· · ·
ˆ

0<t1<···<tn<tρ(Ψ−1
t1:n,t

(z′))q̃(t1:n; t,Ψ−1
t1:n,t

(z′))dt1:n︸ ︷︷ ︸
µt(z′)

dz′. (55)

We used the following in the above derivation successively the law of total expectation, equa-

tion (45), equation (51), Tonelli’s theorem and the change of variables, z′ = Ψt1:n,t(z), justified

since for any fixed 0 < t1 < t2 < · · · < tn < t < tn+1, Ψt1:n,t(·) is a bijection (being a composition
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of bijections). Now the absolute value of the determinant is one since Ψt,t (z) is a composition

of unit-Jacobian mappings and, by using Tonelli’s theorem again, we obtain that the expression

above the brace is necessarily equal to µt(z′) since h is arbitrary.

Derivative. Our goal is to show that for all z′ ∈ Z

dµt(z
′)

dt
= 0.

Since the process is time homogeneous, once we have computed the derivative, it is enough to show

that it is equal to zero at t = 0. To do so, we decompose the computation according to the terms

In in Equation (55):

µt(z
′) =

∞∑
n=0

In(z′, t) (56)

In(z′, t) =

ˆ
· · ·
ˆ

0<t1<···<tn<tρ(Ψ−1
t1:n,t(z

′))q̃(t1:n; t,Ψ−1
t1:n,t(z

′))dt1:n. (57)

The categories of terms in Equation (56) to consider are:

No bounce: n = 0, Ψt1:n,t(z) = Φt(z), or,

Exactly one bounce: n = 1, Ψt1:n,t(z) = Ft,t1 := Φt−t1 ◦ C ◦ Φt1(z) for some t1 ∈ (0, t), or,

Two or more bounces: n ≥ 2, Ψt1:n,t(z) = Ψt−t2 ◦ C ◦ Ft2,t1(z) for some 0 < t1 < t2 < t

In the following, we show that the derivative of the terms in the third category, n ≥ 2, are all equal

to zero, while the derivative of the first two categories cancel each other.

No bounce in the interval. From Equation (47):

I0(z′, t) = ρ(Φ−t(z
′))Not(Φ−t(z

′)). (58)

We now compute the derivative at zero of the above expression:

d

dt
I0(z′, t)

∣∣∣∣
t=0

= No0 (Φ0(z′))
dρ(Φ−t(z

′))

dt

∣∣∣∣
t=0

+

ρ(Φ0(z′))
dNot(Φ−t(z

′))

dt

∣∣∣∣
t=0

(59)
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The first term in the above equation can be simplified as follows:

No0(Φ0(z′))
dρ(Φ−t(z

′))

dt
=

dρ(Φ−t(z
′))

dt
(60)

=

〈
∂ρ(Φ−t(z

′))

∂Φpos
−t (z′)

,
dΦpos
−t (z′)

dt

〉
+〈

∂ρ(Φ−t(z
′))

∂Φdir
−t(z

′)
,

dΦdir
−t(z

′)

dt︸ ︷︷ ︸
=0

〉
(61)

=

〈
∂ρ(z)

∂x
,−v′

〉
(62)

=

〈
∂

∂x

1

Z
exp (−U(x))ψ (v) ,−v′

〉
= ρ(Φ−t(z

′)) 〈∇U(x), v′〉 , (63)

where x = Φpos
−t (z′). The second term in Equation (59) is equal to:

ρ(Φ0(z′))
dNot(Φ−t(z

′))

dt

∣∣∣∣
t=0

= −ρ(Φ0(z′))No0(z′)λ(Φ0(z′)) (64)

= −ρ(z′)λ(z′), (65)

using Equation (37). In summary, we have:

d

dt
I0(z′, t)

∣∣∣∣
t=0

= ρ(z′) 〈∇U(x′), v′〉 − ρ(z′)λ(z′).

Exactly one bounce in the interval. From Equation (49), the trajectory consists in a bounce

at a time T1, occurring with density (expressed as before as a function of the final point z′)

q(t1;F−1
t,t1(z′)), followed by no bounce in the interval (T1, t], an event of probability:

Not−t1(C ◦ Φt1(z)) = Not−t1(C ◦ Φt1 ◦ F−1
t,t1(z′)) (66)

= Not−t1(Φt1−t(z
′)), (67)

where we used that C−1 = C. This yields:

I1(z′, t) =

ˆ t

0

q(t1;F−1
t,t1(z′))ρ(Ψ−1

t1:1,t(z
′))Not−t1(Φt1−t(z

′))dt1. (68)
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To compute the derivative of the above equation at zero, we use again Leibniz’s rule:

d

dt
I1(z′, t)

∣∣∣∣
t=0

= ρ(C(z′))λ(C(z′)).

Two or more bounces in the interval. For a number of bounce, we get:

In(z′, t) =

ˆ t
0

[ ˆ
· · ·
ˆ
t2:n:t1<t2···<tn<tρ(Ψ−1

t1:n,t
(z′))q̃(t1:n; t,Ψ−1

t1:n,t
(z′))dt2:n︸ ︷︷ ︸

Ĩ(t1,t,z′)

]
dt1, (69)

and hence, using Leibniz’s rule on the integral over t1:

d

dt
In(z′, t)

∣∣∣∣
t=0

= Ĩ(0, 0, z′) = 0. (70)

Putting all terms together. Putting everything together, we obtain:

dµt(z
′)

dt

∣∣∣∣
t=0

= ρ(z′) 〈∇U(x′), v′〉−ρ(z′)λ(z′) + ρ(C(z′))λ(C(z′)).︸ ︷︷ ︸ (71)

From the expression of λ(·), we can rewrite the two terms above the brace as follows:

− ρ(z′)λ(z′) + ρ(C(z′))λ(C(z′))

=− ρ(z′)λ(z′) + ρ(z′)λ(C(z′))

=− ρ(z′) max{0, 〈∇U(x′), v′〉}+ ρ(z′) max{0, 〈∇U(x′), R (x′) v′〉}

=− ρ(z′) max{0, 〈∇U(x′), v′〉}+ ρ(z′) max{0, 〈∇U(x′), R (x′) v′〉}

=− ρ(z′) max{0, 〈∇U(x′), v′〉}+ ρ(z′) max{0,−〈∇U(x′), v′〉}

=− ρ(z′) 〈∇U(x′), v′〉 ,

where we used that ρ(z′) = ρ(C(z′)), 〈∇U(x′), R (x′) v′〉 = −〈∇U(x′), v′〉 and −max{0, f} +

max{0,−f} = −f for any function f . Hence we have dµt(z
′)

dt

∣∣∣
t=0

= 0, establishing that that the

bouncy particle sampler λref = 0 admits ρ as invariant distribution. The invariance for λref > 0

then follows from Lemma 4 given below.

Lemma 4. Suppose Pt is a continuous time Markov kernel and Q is a discrete time Markov kernel

which are both invariant with respect to µ. Suppose we construct for λref > 0 a Markov process P̂t

as follows: at the jump times of an independent PP with intensity λref we make a transition with
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Q and then continue according to Pt, then P̂t is also µ-invariant.

Proof. The transition kernel is given by

P̂t = e−λtPt +

ˆ t

0

dt1λe
λt1e−λ(t−t1)Pt−t1QPt1

+

ˆ t

0

dt1

ˆ t2

t1

dt2λ
2eλt1eλ(t2−t1)e−λ(t−t2)Pt−t2QPt2−t1QPt1 + . . .

Therefore

µP̂t = µ

(
e−λt + λte−λt +

(λt)
2

2
e−λt . . .

)
= µ.

Hence P̂t is µ-invariant.

5 Invariance of the local sampler

The generator of the local BPS is given by

Lh(z) = 〈∇xh (x, v) , v〉 (72)

+
∑
f∈F

λf (x, v) {h(x,Rf (x) v)− h(x, v)}

+λref

ˆ
(h(x, v′)− h(x, v))ψ ( dv′) .

The proof of invariance of the local BPS is very similar to the proof of Propostion 1. We have

ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz (73)

+

ˆ ˆ ∑
f∈F

λf (x, v) {h(x,Rf (x) v)− h(x, v)}]ρ (z) dz (74)

+λref

ˆ ˆ ˆ
(h(x, v′)− h(x, v))ψ ( dv′) ρ (z) dz (75)

where the term (75) is straightforwardly equal to 0 while, by integration by parts, the term (73)

satisfies ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz =

ˆ ˆ
〈∇U (x) , v〉h (x, v) ρ (z) dz. (76)
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as h is bounded. Now a change-of-variables shows that for any f ∈ F

ˆ ˆ
λf (x, v)h(x,Rf (x) v)ρ (z) dz =

ˆ ˆ
λ (x,Rf (x) v)h(x, v)ρ (z) dz (77)

as R−1
f (x) v) = R (x) v and ‖Rf (x) v‖ = ‖v‖ implies ψ (Rf (x) v) = ψ (v). So the term (74)

satisfies

ˆ ˆ ∑
f∈F

λf (x, v) {h(x,Rf (x) v)− h(z)}]ρ (z) dz

=

ˆ ˆ ∑
f∈F

[λ (x,Rf (x) v)− λ (x, v)]h(x, v)ρ (z) dz

=

ˆ ˆ ∑
f∈F

[max{0, 〈∇Uf (x), R (x) v〉} −max{0, 〈∇Uf (x), v〉}]h(x, v)ρ (z) dz

=

ˆ ˆ ∑
f∈F

[max{0,−〈∇Uf (x), v〉} −max{0, 〈∇Uf (x), v〉}]h(x, v)ρ (z) dz

= −
ˆ ˆ ∑

f∈F

[〈∇Uf (x) , v〉]h(x, v)ρ (z) dz

= −
ˆ ˆ

〈∇U (x) , v〉]h(x, v)ρ (z) dz, (78)

where we have used 〈∇Uf (x), Rf (x) v〉 = −〈∇Uf (x), v〉 and max{0,−f} − max{0, f} = −f for

any f . Hence, summing (76)-(78)-(75), we obtain
´
Lh(z)ρ (z) dz = 0 and the result follows by [2,

Proposition 34.7].

6 Calculations in the isotropic normal case

As we do not use refreshment, it follows from the definition of the collision operator that

〈
x(i), v(i)

〉
=

〈
x(i), v(i−1) −

2
〈
x(i), v(i−1)

〉∥∥x(i)
∥∥2 x(i)

〉
= −

〈
x(i), v(i−1)

〉
= −

〈
x(i−1), v(i−1)

〉
− τi

=


−
√
− log Vi if

〈
x(i−1), v(i−1)

〉
≤ 0

−
√〈

x(i−1), v(i−1)
〉2 − log Vi otherwise

,

and therefore
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∥∥∥x(i)
∥∥∥2

=


∥∥x(i−1)

∥∥2 −
〈
x(i−1), v(i−1)

〉2 − log Vi if
〈
x(i−1), v(i−1)

〉
≤ 0∥∥x(i−1)

∥∥2 − log Vi otherwise.
.

It follows that
〈
x(j), v(j)

〉
≤ 0 for j > 0 if

〈
x(0), v(0)

〉
≤ 0 so, in this case, we have

∥∥∥x(i)
∥∥∥2

=
∥∥∥x(i−1)

∥∥∥2

−
〈
x(i−1), v(i−1)

〉2

− log Vi

=
∥∥∥x(i−1)

∥∥∥2

+ log Vi−1 − log Vi

=
∥∥∥x(i−2)

∥∥∥2

−
〈
x(i−1), v(i−1)

〉2

− log Vi−1 + log Vi−1 − log Vi

...
...

=
∥∥∥x(1)

∥∥∥2

−
〈
x(1), v(1)

〉2

− log Vi

In particular for x(0) = e1 and v(0) = e2 with ei being elements of standard basis of Rd, the norm

of the position at all points along the trajectory can never be smaller than 1.

7 Supplementary information on the evolutionary parame-

ters inference experiments

7.1 Model

We consider an over-parameterized generalized time reversible rate matrix [7] with d = 10 cor-

responding to 4 unnormalized stationary parameters x1, . . . , x4, and 6 unconstrained substitution

parameters x{i,j}, which are indexed by sets of size 2, i.e. where i, j ∈ {1, 2, 3, 4} , i 6= j. Off-

diagonal entries of Q are obtained via qi,j = πj exp
(
x{i,j}

)
, where

πj =
exp (xj)∑4
k=1 exp (xk)

.

We assign independent standard Gaussian priors on the parameters xi.We assume that a matrix of

aligned nucleotides is provided, where rows are species and columns contains nucleotides believed to

come from a shared ancestral nucleotide. Given x =
(
x1, . . . , x4, x{1,2}, . . . , x{3,4}

)
, and hence Q,
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Figure 1: Estimate of the ACF of the log-likelihood statistic for BPS (left) and HMC (right). A
similar behavior is observed for the ACF of the other statistics.

the likelihood is a product of conditionally independent continuous time Markov chains over {A, C,

G, T}, with “time” replaced by a branching process specified by the phylogenetic tree’s topology and

branch lengths. The parameter x is unidentifiable, and while this can be addressed by bounded or

curved parameterizations, the over-parameterization provides an interesting challenge for sampling

methods, which need to cope with the strong induced correlations.

7.2 Baseline

We compare the BPS against a state-of-the-art HMC sampler [8] that uses Bayesian optimization

to adapt the the leap-frog stepsize ε and trajectory length L of HMC. This sampler was shown

in [9] to be comparable or better to other state-of-the-art HMC methods such as NUTS. It also

has the advantage of having efficient implementations in several languages. We use the author’s

Java implementation to compare to our Java implementation of the BPS. Both methods view the

objective function as a black box (concretely, a Java interface supporting pointwise evaluation

and gradient calculation). In all experiments, we initialize at the mode and use a burn-in of 100

iterations and no thinning. The HMC auto-tuner yielded ε = 0.39 and L = 100. For our method,

we use the global sampler and the global refreshment scheme.

7.3 Additional experimental results

To ensure that BPS outperforming HMC does not come from a faulty auto-tuning of HMC param-

eters, we look at the ESS/s for the log-likelihood statistic when varying the stepsize ε. The results
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Figure 2: Left: sensitivity of BPS’s ESS/s on the log likelihood statistic. Right: sensitivity of
HMC’s ESS/s on the log likelihood statistic. Each setting is replicated 10 times with different
algorithmic random seeds.

in Figure 2 on page 26(right) show that the value selected by the auto-tuner is indeed reasonable,

close to the value 0.02 found by brute force maximization. We repeat the experiments with ε = 0.02

and obtain the same conclusions. This shows that the problem is genuinely challenging for HMC.

The BPS algorithm also exhibits sensitivity to λref . We analyze this dependency in Figure Figure

2 on page 26(left). We observe an asymmetric dependency, where values higher than 1 result in a

significant drop in performance, as they bring the sampler closer to random walk behavior. Values

one or more orders of magnitudes lower than 1 have a lower detrimental effect. However for a

range of values of λref covering six orders of magnitudes, BPS outperforms HMC at its optimal

parameters.
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