
Part A Simulation and Statistical Programming HT19

Problem Sheet 4 – due Monday 5pm Week 1 of TT19

Please hand in the solutions at 24-29 St Giles, and email the R code, in a single well-commented R-script,
to sinan.shi@stats.ox.ac.uk

1. (a) Give a Metropolis-Hastings algorithm with a stationary Gamma probability density function,

π(x) ∝ xα−1 exp(−βx), x > 0

with parameters α, β > 0. Use the proposal distribution Y ∼ Exp(β).

(b) Write an R function implementing your MCMC algorithm. Your function should take as input
values for α and β and a number n of steps and return as output a realization X1, X2, ..., Xn of
a Markov chain targeting π. State briefly how you checked your code.

2. MCMC for Bayesian inference (first two parts were an exam Q in 2009)

(a) Let X ∼ Binomial(n, r) be a binomial random variable with n trials and success probability r.
Let π(x;n, r) be the pmf of X. Give a Metropolis-Hastings Markov chain Monte Carlo algorithm
with stationary pmf π(x;n, r).

(b) Suppose the success probability for X is random, with Pr(R = r) = p(r) given by

p(r) =

{
r for r ∈ {1/2, 1/4, 1/8, ...}, and

0 otherwise.

An observed value X = x of the Binomial variable in part (a) is generated by simulating R∼ p
to get R = r∗ say, and then X ∼ Binomial(n, r∗) as before. Specify a Metropolis-Hastings
Markov chain Monte Carlo algorithm simulating a Markov chain, (Rt)t=0,1,2,... with equilibrium

probability mass function Rt
d→ p(r|x) where

p(r|x) ∝ π(x;n, r)p(r)

is called the posterior distribution for r given data x.

(c) Write an R function implementing your MH MCMC algorithm with target distribution p(r|x).
Suppose n = 10 and we observe x = 0. Run your MCMC algorithm and estimate the mode of
p(r|x) over values of r.

3. Let X be an n× p matrix of fixed covariates with n > p, and suppose that X has full column rank p.

(a) Explain why the p× p matrix XTX is invertible.

Consider the linear model given by

Yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi,

where εi ∼ N(0, σ2).

(b) Write down the distribution of Yi, and use it to write out the log-likelihood for β = (β1, . . . , βp).

(c) Show that the MLE is equivalent to minimising the sum of squares:

R(β) =

n∑
i=1

(Yi − β1xi1 − · · · − βpxip)2.
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(d) By differentiating and writing the problem as a system of linear equations, show that the MLE is

β̂ = (XTX)−1XTY .

4. Consider the linear model Y = Xβ + ε where Y is a vector of n observations, X is an n × p matrix
with each column containing a different explanatory variable and ε is a vector of n independent normal
random errors with mean zero and unknown variance σ2. The maximum likelihood estimator for β is

β̂ = (XTX)−1XTY.

The sample variance is

s2 =
1

n− p
‖Xβ̂ − Y ‖2

where p is the length of β. The standard error for β is

se(β̂i) = s
√

[(XTX)−1]ii

(a) The trees data give Girth, Height and Volume measurements for 31 trees. Fit the model

Yi = β1 + xheighti β2 + xgirthi β3 + εi

using the R commands

> data(trees)

> summary(lm(Volume ~ Girth + Height, data=trees))

and briefly interpret the output.

(b) Write a function of your own (using solve() or your solution to question 3, not lm()) to fit a
linear model. Your function should take the length 31 vector trees$Volume and the 31× 3 matrix
X = cbind(1, trees$Girth, trees$Height) as input and return estimates of β, the residual
standard error s, and the standard errors of each βi. Check your output against the corresponding
results from the summary(lm()) output in (a).

5. Here is an algorithm to compute the QR factorisation of an n × p matrix A with p ≤ n. That is, it
returns an n× p orthogonal matrix Q and a p× p upper triangular matrix R sich that A = QR.

Let |v| denote the Euclidean norm of a vector v. Let A[,a:b] denote the matrix formed from the columns
a, a+ 1, . . . , b of A.

1. Create n× p matrix Q and p× p matrix R.

2. Set Q[,1] = A[,1]/|A[,1]| and R11 = |A[,1]|.
3. If p = 1 then we are done; return Q and R.

4. Otherwise (i.e. if p > 1), set R[1,2:p] = QT[,1]A[,2:p] and R[2:p,1] = 0.

5. Set A′ = A[,2:p] −Q[,1]R[1,2:p].

[Notice that Q[,1]R[1,2:p] is an outer product of an n component column vector and a
(p− 1) component row vector, so A′ is a new n× (p− 1) matrix. Either make use of the
outer() command or, if you use [ be careful to use the drop argument when forming
these sub-matrices.]

6. Compute the QR factorisation of A′ (so A′ = Q′R′ say).

7. Set Q[,2:p] = Q′ and R[2:p,2:p] = R′ and return Q and R.
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(a) Implement this algorithm as a recursive function in R. Your function should take as input an n×p
matrix A and return two matrices Q and R as a list. State briefly how you checked your function
was correct.

(b) Using your QR function, and the R command backsolve(), give a least squares solution to the
over-determined system

Xβ = Y

where X and Y take their values from the trees data in question 4.
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