Part A Simulation and Statistical Programming HT19

Problem Sheet 3 - due Thursday 10am in week 6

Please hand in the solutions at 24-29 St Giles, and email the R code, in a single well-commented R-script, to sinan.shi@stats.ox.ac.uk

1. We are interested in performing inference about the parameters of an internet traffic model.
(a) The arrival rate Λ for packets at an internet switch has a log-normal distribution $\operatorname{LogNormal}(\mu, \sigma)$ with parameters μ and σ. The $\operatorname{LogNormal}(\mu, \sigma)$ probability density is

$$
p_{\Lambda}(\lambda ; \mu, \sigma)=\frac{1}{\lambda \sqrt{2 \pi \sigma^{2}}} \exp \left(-(\log (\lambda)-\mu)^{2} / 2 \sigma^{2}\right)
$$

Show that if $V \sim N\left(\mu, \sigma^{2}\right)$ and we set $W=\exp (V)$ then $W \sim$ $\log \operatorname{Normal}(\mu, \sigma)$.
(b) Given an arrival rate $\Lambda=\lambda$, the number N of packets which actually arrive has a Poisson distribution, $N \sim \operatorname{Poisson}(\lambda)$. Suppose we observe $N=n$. Show that the likelihood $L(\mu, \sigma ; n)$ for μ and σ is

$$
L(\mu, \sigma ; n) \propto \mathbb{E}\left(\Lambda^{n} \exp (-\Lambda) \mid \mu, \sigma\right)
$$

(c) Give an algorithm simulating $\Lambda \sim \log \operatorname{Normal}(\mu, \sigma)$ using $Y \sim N(0,1)$ as a base distribution, and explain how you could use simulated Λ values to estimate $L(\mu, \sigma ; n)$ by simulating values for Λ.
(d) Suppose now we have m iid samples

$$
\Lambda^{(j)} \sim \log \operatorname{Normal}(\mu, \sigma), j=1,2, \ldots, m
$$

for one pair of (μ, σ)-values. Give an importance sampling estimator for $L\left(\mu^{\prime}, \sigma^{\prime} ; n\right)$ at new parameter values $\left(\mu^{\prime}, \sigma^{\prime}\right) \neq(\mu, \sigma)$, in terms of the $\Lambda^{(j)}$'s.
(e) For what range of $\mu^{\prime}, \sigma^{\prime}$ values can the $\Lambda^{(j)}$-realisation be safely 'recycled' in this way?
2. Let $X=\left(X_{0}, X_{1} \ldots\right)$ be a homogeneous Markov chain taking values in a discrete state space Ω, with transition matrix $P=\left(p_{i j}\right)_{i, j \in \Omega}$.
(a) Show that if the Markov chain is irreducible, and $p_{i i}>0$ for some $i \in \Omega$, then the chain is aperiodic.
(b) Consider the homogeneous Markov chain (X_{0}, X_{1}, \ldots) with $X_{n} \in$ $\{1, \ldots, m\}$ and transition matrix

$$
p_{i j}=\frac{1}{m} \min \left(1, \frac{p(j)}{p(i)}\right)
$$

for $i \neq j$ and

$$
p_{i i}=1-\frac{1}{m} \sum_{j \neq i} \min \left(1, \frac{p(j)}{p(i)}\right)
$$

where p is a probability mass function on $\{1, \ldots, m\}$ with $p(i)>0$ for all $i=1,2, \ldots, m$ and $X_{0}=1$.
(i) Show that the Markov chain is irreducible and aperiodic, and admits p as invariant distribution.
(ii) Propose an algorithm to simulate the Markov chain $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ using independent random variables $Y_{k} \sim \mathrm{U}\{1, \ldots, m\}$ and $U_{k} \sim$ $\mathrm{U}[0,1]$ for $k=1,2, \ldots$
3. Here is an algorithm converting a non-negative number $x \in[0,1)$ to its binary expansion.
Let b be the binary representation of x. Compute the first I binary places as follows. Let $i=1$ and $y=2 x$. If y is greater than or equal one set $b_{i}=1$ otherwise set $b_{i}=0$; let $x=y-b_{i}$. If x is now zero or $i=I$ then stop (as either there are no more non-zero places, or we have reached the limit of our number of digits), otherwise increase i by one and repeat.
(a) Write an R function implementing this algorithm. Your function should take as input a single non-negative number x between 0 and 1 and return the corresponding binary representation. Represent the binary number as a vector, so for example decimal 0.125 becomes $c(0,0,1)$ in binary.
(b) At what binary place do R's numerical values for 0.3 and $0.1+0.1+0.1$ differ?
(c) Adapt your function to take two positive integers $0<p<q$ as input, and return the binary expansion of p / q exactly.
4. Consider a sequence of observations x_{1}, \ldots, x_{n}. Let m_{i} and s_{i}^{2} denote the mean and sample variance of the first i observations $i \leq n$. How many operations (additions, subtractions, multiplications or divisions) are needed to calculate the sequence of means m_{1}, \ldots, m_{n}, if each mean is calculated separately?
(a) Derive an expression for m_{i+1} in terms of m_{i} and x_{i+1} and write an R function that calculates m_{1}, \ldots, m_{n} using this sequential formula. How many operations will this function use? [Hint: it is important for speed to initialise your output vector with the correct length at the start using numeric(), rather than appending one answer at a time.]
(b) Now consider the sequence of sample variances $s_{1}^{2}, \ldots, s_{n}^{2}$. Find an expression for s_{i+1}^{2} in terms of $s_{i}^{2}, m_{i}, m_{i+1}$ and x_{i+1}. Write an R function to evaluate the sample variances using a sequential method.
(c) (Optional.) Write a function to calculate the sample means nonsequentially (using a loop or, for example, sapply()). How long does it take to run when $n=10^{3}, 10^{4}, 10^{5}$?

