Part A Simulation and Statistical Programming HT19 Problem Sheet 2 – due Week 4 Thursday 10am

- 1. Suppose X is a discrete random variable taking values $X \in \{1, 2, ..., m\}$ with probability mass function (pmf) $p(i) = \Pr(X = i)$. Let q(i) = 1/m be the pmf of the uniform distribution on $\{1, 2, ..., m\}$. Give a rejection algorithm simulating $X \sim p$ using proposals Y distributed according to q. Calculate the expected number of simulations $Y \sim q$ per returned value of X if p = (0.5, 0.25, 0.125, 0.125).
- 2. Let $Y \sim q$ with probability density function (pdf) $q(x) \propto \exp(-|x|)$ for $x \in \mathbb{R}$. Let $X \sim N(0, 1)$ be a standard normal random variable, with pdf $p(x) \propto \exp(-x^2/2)$.
 - (a) Find M to bound p(x)/q(x) for all real x.
 - (b) Give a rejection algorithm simulating X using q as the proposal pdf.
 - (c) Can we simulate $Y \sim q$ by rejection using p as the proposal pdf?
- 3. Consider a discrete random variable $X \in \{1, 2, ...\}$ with probability mass function

$$p(x;s) = \frac{1}{\zeta(s)} \frac{1}{x^s},$$
 for $x = 1, 2, 3,$

where s > 1.

- (a) The normalising constant $\zeta(s)$ is hard to calculate. However, when s = 2 we do have $\zeta(2) = \pi^2/6$. Give an algorithm to simulate $Y \sim p(y; 2)$ by inversion.
- (b) Implement your inversion algorithm as an R function. Your function should take as input an integer n > 0 and return as output n iid realisations of $Y \sim p(y; 2)$. Say briefly how you checked your code.
- (c) Give a rejection algorithm simulating X with pmf p(x;s) for s > 2, using the rejection algorithm and draws from $Y \sim q$ where the proposal is q(y) = p(y;2). You will need to derive the upper bound $M' \geq \tilde{p}(x;s)/\tilde{q}(x)$ for all x.
- (d) Compute the expected number of simulations of $Y \sim q$ for each simulated X in the previous part question, giving your answer in terms of $\zeta(s)$.
- (e) Implement your algorithm as an R function. Your function should take as input s and return as output $X \sim p(x; s)$ and the number of trials N it took to simulate X.
- 4. Suppose $X \sim N(0, \sigma^2)$ is a Gaussian random variable with mean 0 and variance σ^2 . We want to estimate $\mu_{\phi} = \mathbb{E}(\phi(X))$ for some function ϕ :

 $\mathbb{R} \to \mathbb{R}$ such that $\phi(X)$ has finite mean and variance. Suppose we have iid samples $Y_1, ..., Y_n$ with $Y_i \sim N(0, 1), i = 1, 2, ..., n$. We consider the following two estimators for μ_{ϕ} :

$$\widehat{\theta}_{1,n} = \frac{1}{n} \sum_{i=1}^{n} \phi(\sigma Y_i)$$

and

$$\widehat{\theta}_{2,n} = \frac{1}{n\sigma} \sum_{i=1}^{n} \exp\left[-Y_i^2 \left(\frac{1}{2\sigma^2} - \frac{1}{2}\right)\right] \phi(Y_i).$$

- (a) Show that $\hat{\theta}_{1,n}$ and $\hat{\theta}_{2,n}$ are unbiased and give the expression of their variances.
- (b) What range of values must σ be in for $\hat{\theta}_{2,n}$ to have finite variance? Can you give a weaker condition if it is known that $\int_{-\infty}^{\infty} \phi^2(x) dx < \infty$?
- (c) Why might we prefer $\hat{\theta}_{2,n}$ to $\hat{\theta}_{1,n}$, for some values of σ^2 and functions ϕ ? (Hint: consider estimating $\mathbb{P}(X > 1)$ with $\sigma \ll 1$).