Part A Simulation and Statistical Programming HT19 Problem Sheet 1 – due Week 2 Thursday 10am 24-29 St Giles

1. Consider the integral

$$\theta = \int_0^\pi x \cos x dx.$$

- (a) Evaluate θ .
- (b) Give a Monte Carlo estimator $\hat{\theta}_n$ for numerically approximating θ , using uniform random variables on $[0, \pi]$.
- (c) Calculate the bias and the variance of this estimator.
- (d) Using Chebyshev's inequality, determine how large n needs to be to ensure that the absolute error between $\hat{\theta}_n$ and θ is less than 10^{-3} , with probability exceeding 0.99.
- (e) Same question using the Central Limit Theorem.
- 2. Consider the family of distributions with probability density function (pdf)

$$f_{\mu,\lambda}(x) = \lambda \exp\left(-2\lambda |x-\mu|\right), \quad x \in \mathbb{R},$$

where $\lambda > 0$ and $\mu \in \mathbb{R}$ are parameters.

- (a) Given $U \sim U[0, 1]$, use the inversion method to simulate from $f_{\mu,\lambda}$.
- (b) Let X have pdf $f_{\mu,\lambda}$. Show that a + bX has pdf $f_{\mu',\lambda'}$ for $b \neq 0$. Find the parameters μ', λ' .
- (c) Let $Y, Z \sim \text{Exp}(r)$. Show that Y Z has pdf $f_{\mu',\lambda'}$. Find the parameters μ', λ' . Hence, use the transformation method to simulate from $f_{\mu,\lambda}$ for any $\lambda > 0$ and $\mu \in \mathbb{R}$, given $U_1, U_2 \sim U[0, 1]$ independent.
- 3. (a) Let $Y \sim \text{Exp}(\lambda)$ and fix a > 0. Let $X = Y | Y \ge a$. That is, the random variable X is equal to Y conditioned on $Y \ge a$. Calculate $F_X(x)$ and $F_X^{-1}(u)$. Give an algorithm simulating X from $U \sim U[0, 1]$.
 - (b) Let a and b be given, with a < b. Show that we can simulate $X = Y | a \le Y \le b$ from $U \sim U[0, 1]$ using

$$X = F_Y^{-1}(F_Y(a)(1-U) + F_Y(b)U),$$

i.e., show that if X is given by the formula above, then $\Pr(X \le x) = \Pr(Y \le x | a \le Y \le b)$. Apply the formula to simulate an exponential rv conditioned to be greater than a.

(c) Here is a very simple rejection algorithm simulating X = Y|Y > a for $Y \sim \text{Exp}(\lambda)$:

- 1 Let $Y \sim \text{Exp}(\lambda)$. Simulate Y = y.
- 2 If Y > a then stop and return X = y, and otherwise, start again at 1.

Calculate the expected number of trials to the first acceptance. Why is the inversion method to be preferred over this rejection algorithm for $a \gg 1/\lambda$?