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Markov chain Monte Carlo Methods

I Our aim is to estimate θ = Ep(φ(X)) where X is a random variable
on Ω with pmf (or pdf) p.

I Up to this point we have based our estimates on independent and
identically distributed draws from either p itself, or some proposal
distribution with pmf/pdf q.

I In MCMC we simulate a correlated sequence X0, X1, X2, .... such
that Xt is approximately distributed from p for t large, and rely on
the usual estimate

θ̂n =
1

n

n−1∑
t=0

φ(Xt).

I We will suppose the space of states of X is discrete (finite or
countable).

I But it should be kept in mind that MCMC methods are applicable to
continuous state spaces, and in fact one of the most versatile and
widespread classes of Monte Carlo algorithms currently.
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Markov chains

I From Part A Probability.

I Let (Xt)t=0,1,... be a homogeneous Markov chain of random variables
on Ω with starting distribution X0 ∼ p(0) and transition matrix
P = (Pij)i,j∈Ω with

Pi,j = P(Xt+1 = j|Xt = i).

for i, j ∈ Ω.

I We write (Xt)t=0,1,... ∼ Markov(p(0), P )

I Denote by P
(n)
i,j the n-step transition probabilities

P
(n)
i,j = P(Xt+n = j|Xt = i)

and by p(n)(i) = P(Xn = i).

I Recall that a Markov chain, or equivalently its transition matrix P , is
irreducible if and only if, for each pair of states i, j ∈ Ω there is n

such that P
(n)
i,j > 0.
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Markov chains

I π is a stationary, or invariant distribution of P , if π verifies

πj =
∑
i∈Ω

πiPij

for all j ∈ Ω.

I If p(0) = π then

p(1)(j) =
∑
i∈Ω

p(0)(i)Pi,j ,

so p(1)(j) = π(j) also. Iterating, p(t) = π for each t = 1, 2, ... in the
chain, so the distribution of Xt doesn’t change with t, it is stationary.

I If P is irreducible, and has a stationary distribution π, then this
stationary distribution π is unique.
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Ergodic Theorem for Markov chains

Theorem (Theorems 6.1, 6.2, 6.3 of Part A Probability)

Let (Xt)t=0,1,... ∼ Markov(λ, P ) be an irreducible Markov chain on a
discrete state space Ω. Assume it admits a stationary distribution π.
Then, for any initial distribution λ

1

n

n−1∑
t=0

I(Xt = i)→ π(i) almost surely, as n→∞.

That is

P

(
1

n

n−1∑
t=0

I(Xt = i)→ π(i)

)
= 1.

Additionally, if the chain is aperiodic, then for all i ∈ Ω

P(Xn = i)→ π(i)
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Ergodic Theorem for Markov chains

Corollary

Let (Xt)t=0,1,... ∼ Markov(λ, P ) be an irreducible Markov chain on a
discrete state space Ω. Assume it admits a stationary distribution π. Let
φ : Ω→ R be a bounded function, X a discrete random variable on Ω
with pmf π and θ = Ep[φ(X)] =

∑
i∈Ω φ(i)π(i). Then, for any initial

distribution λ

1

n

n−1∑
t=0

φ(Xt)→ θ almost surely, as n→∞.

That is

P

(
1

n

n−1∑
t=0

φ(Xt)→ θ

)
= 1.
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Ergodic Theorem for Markov chains
Proof (non-examinable). Assume wlog |φ(i)| < 1 for all i ∈ Ω. Let A ⊂ Ω and
Vi(n) =

∑n−1
t=0 I(Xt = i).∣∣∣∣∣ 1n

n−1∑
t=0

φ(Xt)− θ

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
t=0

∑
i∈Ω

φ(i)I(Xt = i)−
∑
i∈Ω

φ(i)π(i)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈Ω

φ(i)

(
1

n
Vi(n)− π(i)

)∣∣∣∣∣
≤
∑
i∈A

∣∣∣∣Vi(n)

n
− π(i)

∣∣∣∣+
∑
i/∈A

∣∣∣∣Vi(n)

n
− π(i)

∣∣∣∣
≤
∑
i∈A

∣∣∣∣Vi(n)

n
− π(i)

∣∣∣∣+
∑
i/∈A

(
Vi(n)

n
+ π(i)

)

=
∑
i∈A

∣∣∣∣Vi(n)

n
− π(i)

∣∣∣∣+
∑
i∈A

(
π(i)− Vi(n)

n

)
+ 2

∑
i/∈A

π(i)

≤ 2
∑
i∈A

∣∣∣∣Vi(n)

n
− π(i)

∣∣∣∣+ 2
∑
i/∈A

π(i)

where in line 5 we’ve used
∑
i6∈A

Vi(n)
n

= 1−
∑
i∈A

Vi(n)
n

=
∑
i π(i)−

∑
i∈A

Vi(n)
n

.
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Ergodic Theorem for Markov chains

Proof (continued). Let ε > 0, and take A finite such that
∑
i/∈A π(i) < ε/4. For N ∈ N,

Define the event

EN =

{∑
i∈A

∣∣∣∣(Vi(n)

n
− π(i)

)∣∣∣∣ < ε/4 for all n ≥ N

}
.

As P(Vi(n)
n
→ π(i)) = 1 for all i ∈ Ω and A is finite, the event EN must occur for some

N hence P(∪EN ) = 1. It follows that, for any ε > 0

P

(
∃N such that for all n ≥ N,

∣∣∣∣∣ 1n
n−1∑
t=0

φ(Xt)− θ

∣∣∣∣∣ < ε

)
= 1.
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Reversible Markov chains

I In a reversible Markov chain we cannot distinguish the direction of
simulation from inspection of a realization of the chain and its
reversal, even with knowledge of the transition matrix.

I A Markov chain (Xt)t≥0 ∼ Markov(π, P ) is reversible iff

P(X0, X1, . . . , Xn) = P(Xn, Xn−1, . . . , X0)

for any n ≥ 0.

I We also say that P is reversible with respect to π, or π-reversible

I Most MCMC algorithms are based on reversible Markov chains.
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Reversible Markov chains

I It seems clear that a Markov chain will be reversible if and only if
P(Xt−1 = j|Xt = i) = Pi,j , so that any particular transition occurs
with equal probability in forward and reverse directions.

Theorem

Let P be a transition matrix. If there is a probability mass function π on
Ω such that π and P satisfy the detailed balance condition

π(i)Pi,j = π(j)Pj,i for all pairs i, j ∈ Ω,

then

(I) π = πP , so π is stationary for P and
(II) the chain (Xt) ∼ Markov(π, P ) is reversible.
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Reversible Markov chains

I Proof of (I): sum both sides of detailed balance equation over i ∈ Ω.
Now

∑
i Pj,i = 1 so

∑
i π(i)Pi,j = π(j).

I Proof of (II), we have π a stationary distribution of P so
P(Xt = i) = π(i) for all t = 1, 2, ... along the chain. Then

P(Xt−1 = j|Xt = i) = P(Xt = i|Xt−1 = j)
P(Xt−1 = j)

P(Xt = i)
(Bayes rule)

= Pj,iπ(j)/π(i) (stationarity)

= Pi,j (detailed balance).

Part A Simulation. HT 2018. J. Berestycki. 13 / 57



Outline

Markov Chain Monte Carlo
Recap on Markov chains
Markov Chain Monte Carlo
Metropolis-Hastings

Part A Simulation. HT 2018. J. Berestycki. 14 / 57



Markov chain Monte Carlo method (discrete case)
Let X be a discrete random variable with pmf p on Ω, φ a bounded
function on Ω and θ = Ep[φ(X)]. Consider a homogeneous Markov chain
(Xt)t=0,1,... ∼ Markov(λ, P ) with initial distribution λ on Ω and transition
matrix P , such that P is irreducible, and admits p as invariant
distribution. Then, for any initial distribution λ the MCMC estimator

θ̂MCMCn =
1

n

n−1∑
i=1

φ(Xt)

is (weakly and strongly) consistent

θ̂MCMCn → θ almost surely as n→∞

and, if the chain is aperiodic

Xt → p in distribution as t→∞.
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Markov chain Monte Carlo method

I Proof follows directly from the ergodic theorem and corollary

I Note that the estimator is biased, as λ 6= p (otherwise we would use a
standard Monte Carlo estimator)

I For t large, we have Xt
d' X

I In order to implement the MCMC algorithm we need, for a given
target distribution p, to find an irreducible (and aperiodic) transition
matrix P with admits p as invariant distribution

I Most MCMC algorithms use a transition matrix P which is reversible
with respect to p

I The Metropolis-Hastings algorithm provides a generic way to obtain
such P for any target distribution p
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Metropolis-Hastings Algorithm

I The Metropolis-Hastings (MH) algorithm allows to simulate a Markov
Chain with any given stationary distribution.

I We will start with simulation of random variable X on a discrete state
space.

I Let p(x) = p̃(x)/Zp be the pmf on Ω. We will call p the (pmf of the)
target distribution.

I To simplify notations, we assume that p(x) > 0 for all x ∈ Ω

I Choose a ‘proposal’ transition matrix q(y|x). We will use the notation
Y ∼ q(·|x) to mean Pr(Y = y|X = x) = q(y|x).
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Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm

1. Set the initial state X0 = x0.

2. For t = 1, 2, . . . , n− 1:

2.1 Assume Xt−1 = xt−1.
2.2 Simulate Yt ∼ q(·|xt−1) and Ut ∼ U[0, 1].
2.3 If

Ut ≤ α(Yt|xt−1)

where

α(y|x) = min

{
1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}
set Xt = Yt, otherwise set Xt = xt−1.

Part A Simulation. HT 2018. J. Berestycki. 19 / 57



Metropolis-Hastings Algorithm

I The Metropolis-Hastings algorithm defines a Markov chain with
transition matrix P such that, for x, y ∈ Ω

Px,y = P(Xt = y|Xt−1 = x)

= q(y|x)α(y|x) + ρ(x)I(y = x)

where ρ(x) is the probability of rejection

ρ(x) = 1−
∑
y∈Ω

q(y|x)α(y|x).
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Metropolis-Hastings Algorithm

Theorem

The transition matrix P of the Markov chain generated by the
Metropolis-Hastings algorithm is reversible with respect to p and therefore
admits p as stationary distribution.

I Proof: We check detailed balance. For x 6= y

p(x)Px,y = p(x)q(y|x)α(y|x)

= p(x)q(y|x) min

{
1,
p(y)q(x|y)

p(x)q(y|x)

}
= min {p(x)q(y|x), p(y)q(x|y)}

= p(y)q(x|y) min

{
p(x)q(y|x)

p(y)q(x|y)
, 1

}
= p(y)q(x|y)α(x|y)

= p(y)Py,x.
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Metropolis-Hastings Algorithm

I To run the MH algorithm, we need to specify X0 = x0 (or X0 ∼ λ)
and a proposal q(y|x).

I We only need to know the target p up to a normalizing constant as α
depends only on p(y)/p(x) = p̃(y)/p̃(x).

I If the Markov chain simulated by the MH algorithm is irreducible and
aperiodic then the ergodic theorem applies.

I Verifying aperiodicity is usually straightforward, since the MCMC
algorithm may reject the candidate state y, so Px,x > 0 for at least
some states x ∈ Ω.

I In order to check irreducibility we need to check that q can take us
anywhere in Ω (so q itself is an irreducible transition matrix), and
then that the acceptance step doesn’t trap the chain (as might
happen if α(y|x) is zero too often).
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Example: Discrete Distribution on a finite state-space

I Consider a discrete random variable X ∼ p on Ω = {1, 2, ...,m} with

p̃(i) = i so Zp =
∑m

i=1 i = m(m+1)
2 .

I One simple proposal distribution is Y ∼ q on Ω such that q(i) = 1/m.

I Acceptance probability

α(y|x) = min

{
1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}
= min

{
1,
y

x

}

I This proposal scheme is clearly irreducible

P(Xt+1 = y|Xt = x) ≥ q(y|x)α(y|x)

=
1

m
min(1, y/x) > 0
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Example: Discrete Distribution on a finite state-space

I Start from X0 = 1.
I For t = 1, . . . , n− 1

1. Let Yt ∼ U{1, 2, ...,m} and Ut ∼ U[0, 1]
2. If

Ut ≤
Yt
Xt−1

set Xt = Yt, otherwise set Xt = Xt−1.

I For t large, Xt
d' X
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Example: Discrete Distribution on a finite state-space

Figure: Realization of the MH Markov chain for n = 100 with m = 20.
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Example: Discrete Distribution on a finite state-space

Figure: Average number of visits Vi(n)/n (n = 1000) and target pmf p(i)
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Example: Discrete Distribution on a finite state-space

Figure: Average number of visits Vi(n)/n (n = 10, 000) and target pmf p(i)
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Example: Poisson Distribution

I We want to simulate p(x) = e−λλx/x! ∝ λx/x!

I For the proposal we use

q(y|x) =


1
2 for y = x± 1,x ≥ 1
1 for x = 0,y = 1
0 otherwise,

i.e. toss a coin and add or substract 1 to x to obtain y.

I Acceptance probability

α(y|x) =

{
min

(
1, λ

x+1

)
if y = x+ 1, x ≥ 1

min
(
1, xλ

)
if y = x− 1, x ≥ 2

and α(1|0) = min(1, λ/2), α(0|1) = min(1, 2/λ).

I Markov chain is irreducible (check!)
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Example: Poisson Distribution

I Set X0 = 1.

I For t = 1, . . . , n− 1

1. If Xt−1 = 0, set Yt = 1
2. Otherwise, simulate Vt ∼ U[0, 1]

2.1 If Vt ≤ 1
2

, set Yt = Xt−1 + 1.
2.2 Otherwise set Yt = Xt−1 − 1.

3. Simulate Ut ∼ U[0, 1].
4. If Ut ≤ α(Yt|Xt−1), set Xt = Yt, otherwise set Xt = Xt−1.
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Example: Poisson distribution

Figure: Realization of the MH Markov chain for n = 500 with λ = 20.
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Example: Poisson distribution

Figure: Average number of visits Vi(n)/n (n = 1000) and target pmf p(i)
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Example: Poisson distribution

Figure: Average number of visits Vi(n)/n (n = 10, 000) and target pmf p(i)
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Example: Image

I Consider a m1 ×m2 image, where I(i, j) ∈ {0, 1, . . . , 256} is the gray
level of pixel (i, j) ∈ Ω = {0, . . . ,m1 − 1} × {0, . . . ,m2 − 1}

I Consider a discrete random variable taking values in Ω

I Unnormalized pdf
p̃((i, j)) = I(i, j)

I Proposal transition probabilities

q((y1, y2)|(x1, x2)) = q(y1|x1)q(y2|x2)

with

q(y1|x1) =

{
1/3 if y1 = x1 ± 1 or y1 = x1, mod m1

0 otherwise

and similarly for q(y2|x2).
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Example: Simulation of an image
I Average number of visits to each pixel (i, j):
V(i,j)(n) = 1

n

∑n−1
t=0 I(Xt = (i, j))
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Example: Simulation of an image

I Target pmf
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Metropolis-Hastings algorithm on Rd

I The Metropolis-Hastings algorithm generalizes to continuous
state-space where Ω ⊆ Rd with

1. p is a pdf on Ω
2. q(·|x) is a pdf on Ω for any x ∈ Ω

I The Metropolis-Hastings algorithm thus defines a Markov chain on
Ω ⊆ Rd

I Precise definition of Markov chains on Rd is beyond the scope of this
course. We will just state the most important results without proof.
Assume for simplicity that p(x) > 0 for all x ∈ Ω
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Metropolis-Hastings algorithm on Rd

I The Markov chain X0, X1, . . . on Ω ⊆ Rd is irreducible if for any
x ∈ Ω and A ⊂ Ω, there is n such that

P(Xn ∈ A|X0 = x) > 0

Theorem

If the Metropolis-Hastings chain is irreducible, then for any function φ
such that Ep[|φ(X)|] <∞, the MH estimator is strongly consistent

θ̂MH
n =

1

n

n−1∑
t=0

φ(Xt)→ θ almost surely as n→∞

Part A Simulation. HT 2018. J. Berestycki. 37 / 57



Example: Gaussian distribution

I Let X ∼ N(µ, σ2) with

p(x) = (2πσ2)−1/2e−
(x−µ)2

2σ2

I MH algorithm with target pdf p and proposal transition pdf

q(y|x) =

{
1 for y ∈ [x− 1/2, x+ 1/2]
0 otherwise

I Acceptance probability

α(y|x) = min

(
1,
p(y)q(x|y)

p(x)q(y|x)

)
= min

(
1, e−

(y−µ)2

2σ2 +
(x−µ)2

2σ2

)
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Example: Gaussian distribution

Figure: Realizations from the MH Markov chain (X0, . . . , X1000) with X0 = 0.
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Example: Gaussian distribution

Figure: MH estimates θ̂t = 1
t

∑t−1
i=0Xi of θ = Ep[X] for different realizations of

the Markov chain.
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Example: Mixture of Gaussians distribution

I Let p(x) = π1(2πσ2
1)−1/2e

− (x−µ1)2

2σ2
1 + π2(2πσ2

2)−1/2e
− (x−µ2)2

2σ2
2

I MH algorithm with target pdf p and proposal transition pdf

q(y|x) =

{
1 for y ∈ [x− 1/2, x+ 1/2]
0 otherwise

I Acceptance probability

α(y|x) = min

(
1,
p(y)q(x|y)

p(x)q(y|x)

)
= min (1, p(y)/p(x))
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Example: Mixture of Gaussians distribution

Figure: Realization of the Markov chain (X0, . . . , X10000) with X0 = 0.
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Example
Consider a Metropolis algorithm for simulating samples from a bivariate
Normal distribution with mean µ = (0, 0) and covariance

Σ =

(
1 0.7

√
2

0.7
√

2 2

)
using a proposal distribution for each component

x′i|xi ∼ U(x− w, x+ w) i ∈ {1, 2}

The performance of the algorithm can be controlled by setting w.

I If w is small then we propose only small moves and the chain will
move slowly around the parameter space.

I If w is large then it is large then we may only accept a few moves.

There is an ‘art’ to implementing MCMC that involves choice of good
proposal distributions.
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Example

N =  4  w =  0.1  T =  100

−4 −2 0 2 4
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0
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4
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Example

N =  4  w =  0.1  T =  1000

−4 −2 0 2 4

−4
−2

0
2

4
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Example

N =  4  w =  0.1  T =  10000

−4 −2 0 2 4
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0
2

4
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Example

N =  4  w =  0.01  T =  10000

−4 −2 0 2 4

−4
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0
2

4
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Example

N =  4  w =  0.01  T =  1e+05
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Example

N =  4  w =  10  T =  1000

−4 −2 0 2 4

−4
−2

0
2

4
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MCMC: Practical aspects

I The MCMC chain does not start from the invariant distribution, so
E[φ(Xt)] 6= E[φ(X)] and the difference can be significant for small t

I Xt converges in distribution to p as t→∞
I Common practice is to discard the b first values of the Markov chain
X0, . . . , Xb−1, where we assume that Xb is approximately distributed
from p

I We use the estimator
1

n− b

n−1∑
t=b

φ(Xt)

I The initial X0, . . . , Xb−1 is called the burn-in period of the MCMC
chain.
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MCMC: Gibbs Sampler
A Gibbs sampler is a particular type of MCMC algorithm that has been
found to be very useful in high dimensional problems.

Suppose we wish to sample from π(θ) where θ = (θ1, . . . , θd). Each
iteration of the Gibbs sampler occurs as follows

1. An ordering of the d components of θ is chosen.

2. For each component in this ordering, θj say, we draw a new value
sampled from the full conditional distribution given all the other
components of θ.

θtj ∼ π(θj |θt−1
−j )

where θt−1
−j represents all the components of θ, except the for θj , at

their current values

θt−1
−j = (θt1, . . . , θ

t
j−1, θ

t−1
j+1, . . . , θ

t−1
d ).
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Example

Consider a single observation y = (y1, y2) from a bivariate Normal
distribution with unknown mean θ = (θ1, θ2) and known covariance

Σ =

(
1 ρ
ρ 1

)
. With a uniform prior on θ, the posterior distribution is

θ|y ∼ N(y,Σ)

In this case the posterior is tractable but we will consider how to construct
a Gibbs sampler.

We need the two conditional distributions π(θ1|θ2, y) and π(θ2|θ1, y).
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Bayesian statistics

Suppose that you observe y with pmf/pdf f(y|θ) where y and
θ = (θ1, . . . , θp) can be large dimensional. θ is a parameter of the model
that you are trying to estimate,
In Bayesian statistics we treat θ as a random variable. We choose π(θ) a
prior distribution that represents our belief about the value of the
parameter θ.
Bayes’ Theorem tells us that once we observe y we should update our
belief

π(θ|y) = [f(y|θ)π(θ)]/f(y) ∝ f(y|θ)π(θ).
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Example

π(θ1|θ2, y) ∝ π(θ1, θ2|y)

∝ exp

{
− 1

2
(θ − y)T Σ−1(θ − y)

}

∝ exp

{
− 1

2(1− ρ2)

(
θ1 − y1
θ2 − y2

)T (
1 −ρ
−ρ 1

)(
θ1 − y1
θ2 − y2

)}

= exp

{
(θ1 − y1)2 + 2ρ(θ1 − y1)(θ2 − y2) + (θ2 − y2)2

}

∝ exp

{
− 1

2(1− ρ2)
(θ1 − (y1 + ρ(θ2 − y2)))2

}

⇒ θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)

Similarly,
θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2)
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Example

N =  1  T =  1000
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Deriving full conditional distributions

The Gibbs sampler requires us to be able to obtain the full conditional
distributions of all components of the parameter vector θ.

To determine π(θj |θt−1
−j ) we write down the posterior distribution and

consider it as a function of θj .

If we are lucky then we will be able to ‘spot’ the distribution for θj |θt−1
−j

(using conjugate priors often helps).

If the full conditional is not of a nice form then this component could be
sampled using rejection sampling or a MH update could be used instead of
a Gibbs update.
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Gibbs sampling and Metropolis-Hastings

Gibbs sampling can be viewed as a special case of the MH algorithm with
proposal distributions equal to the full conditionals.

The MH acceptance ratio is min(1, r) where

r =
π(θ′)/q(θ′|θt−1)

π(θt−1)/q(θt−1|θ′)

We have θt−1 = (θ1, . . . , θj , . . . , θd) = (θj , θ
t−1
−j ) and we use proposal

q(θ′|θt−1) = π(θ′j |θt−1
−j )

so that θ′ = (θ1, . . . , θ
′
j , . . . , θd) = (θ′j , θ

t−1
−j ) and

q(θt−1|θ′) = π(θj |θt−1
−j )

.
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Gibbs sampling and Metropolis-Hastings
Then the MH acceptance ratio is min(1, r) where

r =
π(θ′)/q(θ′j |θt−1)

π(θt−1)/q(θt−1
j |θ′)

=
π(θ′)/π(θ′j |θ

t−1
−j )

π(θt−1)/π(θj |θt−1
−j )

But the numerator can be simplified

π(θ′)

π(θ′j |θ
t−1
−j )

=
π(θ′j , θ

t−1
−j )

π(θ′j |θ
t−1
−j )

= π(θt−1
−j )

Similarly the denominator can be simplified

π(θt−1)

π(θj |θt−1
−j )

=
π(θj , θ

t−1
−j )

π(θj |θt−1
−j )

= π(θt−1
−j )

So we have r =
π(θ′)/π(θ′j |θ

t−1
−j )

π(θt−1)/π(θj |θt−1
−j )

=
π(θt−1
−j )

π(θt−1
−j )

= 1

Thus, every proposed move is accepted.
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π(θt−1)/π(θj |θt−1
−j )

=
π(θt−1
−j )

π(θt−1
−j )

= 1

Thus, every proposed move is accepted.
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In its basic version, Gibbs sampling is a special case of the
MetropolisHastings algorithm. However, in its extended versions (see
below), it can be considered a general framework for sampling from a large
set of variables by sampling each variable (or in some cases, each group of
variables) in turn, and can incorporate the MetropolisHastings algorithm
(or more sophisticated methods such as slice sampling, adaptive rejection
sampling and adaptive rejection Metropolis algorithms) to implement one
or more of the sampling steps.
Gibbs sampling is applicable when the joint distribution is not known
explicitly or is difficult to sample from directly, but the conditional
distribution of each variable is known and is easy (or at least, easier) to
sample from. The Gibbs sampling algorithm generates an instance from
the distribution of each variable in turn, conditional on the current values
of the other variables. It can be shown that the sequence of samples
constitutes a Markov chain, and the stationary distribution of that Markov
chain is just the sought-after joint distribution.
Gibbs sampling is particularly well-adapted to sampling the posterior
distribution of a Bayesian network, since Bayesian networks are typically
specified as a collection of conditional distributions.
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